mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-01 16:26:07 +00:00

MemInfoBlocks (MIB) with empty callstacks are erased prematurely from the CallStackProfileData. This patch frees allocated histogram buffers when the MIB is associated with an empty callstack.
793 lines
30 KiB
C++
793 lines
30 KiB
C++
//===- RawMemProfReader.cpp - Instrumented memory profiling reader --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for reading MemProf profiling data.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
|
|
#include "llvm/DebugInfo/Symbolize/SymbolizableObjectFile.h"
|
|
#include "llvm/Object/Binary.h"
|
|
#include "llvm/Object/BuildID.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/ProfileData/MemProf.h"
|
|
#include "llvm/ProfileData/MemProfData.inc"
|
|
#include "llvm/ProfileData/MemProfReader.h"
|
|
#include "llvm/ProfileData/SampleProf.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
|
|
#define DEBUG_TYPE "memprof"
|
|
namespace llvm {
|
|
namespace memprof {
|
|
namespace {
|
|
template <class T = uint64_t> inline T alignedRead(const char *Ptr) {
|
|
static_assert(std::is_pod<T>::value, "Not a pod type.");
|
|
assert(reinterpret_cast<size_t>(Ptr) % sizeof(T) == 0 && "Unaligned Read");
|
|
return *reinterpret_cast<const T *>(Ptr);
|
|
}
|
|
|
|
Error checkBuffer(const MemoryBuffer &Buffer) {
|
|
if (!RawMemProfReader::hasFormat(Buffer))
|
|
return make_error<InstrProfError>(instrprof_error::bad_magic);
|
|
|
|
if (Buffer.getBufferSize() == 0)
|
|
return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
|
|
|
|
if (Buffer.getBufferSize() < sizeof(Header)) {
|
|
return make_error<InstrProfError>(instrprof_error::truncated);
|
|
}
|
|
|
|
// The size of the buffer can be > header total size since we allow repeated
|
|
// serialization of memprof profiles to the same file.
|
|
uint64_t TotalSize = 0;
|
|
const char *Next = Buffer.getBufferStart();
|
|
while (Next < Buffer.getBufferEnd()) {
|
|
const auto *H = reinterpret_cast<const Header *>(Next);
|
|
|
|
// Check if the version in header is among the supported versions.
|
|
bool IsSupported = false;
|
|
for (auto SupportedVersion : MEMPROF_RAW_SUPPORTED_VERSIONS) {
|
|
if (H->Version == SupportedVersion)
|
|
IsSupported = true;
|
|
}
|
|
if (!IsSupported) {
|
|
return make_error<InstrProfError>(instrprof_error::unsupported_version);
|
|
}
|
|
|
|
TotalSize += H->TotalSize;
|
|
Next += H->TotalSize;
|
|
}
|
|
|
|
if (Buffer.getBufferSize() != TotalSize) {
|
|
return make_error<InstrProfError>(instrprof_error::malformed);
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
llvm::SmallVector<SegmentEntry> readSegmentEntries(const char *Ptr) {
|
|
using namespace support;
|
|
|
|
const uint64_t NumItemsToRead =
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
|
|
llvm::SmallVector<SegmentEntry> Items;
|
|
for (uint64_t I = 0; I < NumItemsToRead; I++) {
|
|
Items.push_back(*reinterpret_cast<const SegmentEntry *>(
|
|
Ptr + I * sizeof(SegmentEntry)));
|
|
}
|
|
return Items;
|
|
}
|
|
|
|
llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>>
|
|
readMemInfoBlocksV3(const char *Ptr) {
|
|
using namespace support;
|
|
|
|
const uint64_t NumItemsToRead =
|
|
endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
|
|
|
|
llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>> Items;
|
|
for (uint64_t I = 0; I < NumItemsToRead; I++) {
|
|
const uint64_t Id =
|
|
endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
|
|
|
|
// We cheat a bit here and remove the const from cast to set the
|
|
// Histogram Pointer to newly allocated buffer. We also cheat, since V3 and
|
|
// V4 do not have the same fields. V3 is missing AccessHistogramSize and
|
|
// AccessHistogram. This means we read "dirty" data in here, but it should
|
|
// not segfault, since there will be callstack data placed after this in the
|
|
// binary format.
|
|
MemInfoBlock MIB = *reinterpret_cast<const MemInfoBlock *>(Ptr);
|
|
// Overwrite dirty data.
|
|
MIB.AccessHistogramSize = 0;
|
|
MIB.AccessHistogram = 0;
|
|
|
|
Items.push_back({Id, MIB});
|
|
// Only increment by the size of MIB in V3.
|
|
Ptr += MEMPROF_V3_MIB_SIZE;
|
|
}
|
|
return Items;
|
|
}
|
|
|
|
llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>>
|
|
readMemInfoBlocksV4(const char *Ptr) {
|
|
using namespace support;
|
|
|
|
const uint64_t NumItemsToRead =
|
|
endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
|
|
|
|
llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>> Items;
|
|
for (uint64_t I = 0; I < NumItemsToRead; I++) {
|
|
const uint64_t Id =
|
|
endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
|
|
// We cheat a bit here and remove the const from cast to set the
|
|
// Histogram Pointer to newly allocated buffer.
|
|
MemInfoBlock MIB = *reinterpret_cast<const MemInfoBlock *>(Ptr);
|
|
|
|
// Only increment by size of MIB since readNext implicitly increments.
|
|
Ptr += sizeof(MemInfoBlock);
|
|
|
|
if (MIB.AccessHistogramSize > 0) {
|
|
MIB.AccessHistogram =
|
|
(uintptr_t)malloc(MIB.AccessHistogramSize * sizeof(uint64_t));
|
|
}
|
|
|
|
for (uint64_t J = 0; J < MIB.AccessHistogramSize; J++) {
|
|
((uint64_t *)MIB.AccessHistogram)[J] =
|
|
endian::readNext<uint64_t, llvm::endianness::little, unaligned>(Ptr);
|
|
}
|
|
Items.push_back({Id, MIB});
|
|
}
|
|
return Items;
|
|
}
|
|
|
|
CallStackMap readStackInfo(const char *Ptr) {
|
|
using namespace support;
|
|
|
|
const uint64_t NumItemsToRead =
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
|
|
CallStackMap Items;
|
|
|
|
for (uint64_t I = 0; I < NumItemsToRead; I++) {
|
|
const uint64_t StackId =
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
|
|
const uint64_t NumPCs =
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Ptr);
|
|
|
|
SmallVector<uint64_t> CallStack;
|
|
CallStack.reserve(NumPCs);
|
|
for (uint64_t J = 0; J < NumPCs; J++) {
|
|
CallStack.push_back(
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Ptr));
|
|
}
|
|
|
|
Items[StackId] = CallStack;
|
|
}
|
|
return Items;
|
|
}
|
|
|
|
// Merges the contents of stack information in \p From to \p To. Returns true if
|
|
// any stack ids observed previously map to a different set of program counter
|
|
// addresses.
|
|
bool mergeStackMap(const CallStackMap &From, CallStackMap &To) {
|
|
for (const auto &[Id, Stack] : From) {
|
|
auto I = To.find(Id);
|
|
if (I == To.end()) {
|
|
To[Id] = Stack;
|
|
} else {
|
|
// Check that the PCs are the same (in order).
|
|
if (Stack != I->second)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Error report(Error E, const StringRef Context) {
|
|
return joinErrors(createStringError(inconvertibleErrorCode(), Context),
|
|
std::move(E));
|
|
}
|
|
|
|
bool isRuntimePath(const StringRef Path) {
|
|
const StringRef Filename = llvm::sys::path::filename(Path);
|
|
// This list should be updated in case new files with additional interceptors
|
|
// are added to the memprof runtime.
|
|
return Filename == "memprof_malloc_linux.cpp" ||
|
|
Filename == "memprof_interceptors.cpp" ||
|
|
Filename == "memprof_new_delete.cpp";
|
|
}
|
|
|
|
std::string getBuildIdString(const SegmentEntry &Entry) {
|
|
// If the build id is unset print a helpful string instead of all zeros.
|
|
if (Entry.BuildIdSize == 0)
|
|
return "<None>";
|
|
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
for (size_t I = 0; I < Entry.BuildIdSize; I++) {
|
|
OS << format_hex_no_prefix(Entry.BuildId[I], 2);
|
|
}
|
|
return OS.str();
|
|
}
|
|
} // namespace
|
|
|
|
MemProfReader::MemProfReader(
|
|
llvm::DenseMap<FrameId, Frame> FrameIdMap,
|
|
llvm::MapVector<GlobalValue::GUID, IndexedMemProfRecord> ProfData)
|
|
: IdToFrame(std::move(FrameIdMap)),
|
|
FunctionProfileData(std::move(ProfData)) {
|
|
// Populate CSId in each IndexedAllocationInfo and IndexedMemProfRecord
|
|
// while storing CallStack in CSIdToCallStack.
|
|
for (auto &KV : FunctionProfileData) {
|
|
IndexedMemProfRecord &Record = KV.second;
|
|
for (auto &AS : Record.AllocSites) {
|
|
CallStackId CSId = hashCallStack(AS.CallStack);
|
|
AS.CSId = CSId;
|
|
CSIdToCallStack.insert({CSId, AS.CallStack});
|
|
}
|
|
for (auto &CS : Record.CallSites) {
|
|
CallStackId CSId = hashCallStack(CS);
|
|
Record.CallSiteIds.push_back(CSId);
|
|
CSIdToCallStack.insert({CSId, CS});
|
|
}
|
|
}
|
|
}
|
|
|
|
Expected<std::unique_ptr<RawMemProfReader>>
|
|
RawMemProfReader::create(const Twine &Path, const StringRef ProfiledBinary,
|
|
bool KeepName) {
|
|
auto BufferOr = MemoryBuffer::getFileOrSTDIN(Path);
|
|
if (std::error_code EC = BufferOr.getError())
|
|
return report(errorCodeToError(EC), Path.getSingleStringRef());
|
|
|
|
std::unique_ptr<MemoryBuffer> Buffer(BufferOr.get().release());
|
|
return create(std::move(Buffer), ProfiledBinary, KeepName);
|
|
}
|
|
|
|
Expected<std::unique_ptr<RawMemProfReader>>
|
|
RawMemProfReader::create(std::unique_ptr<MemoryBuffer> Buffer,
|
|
const StringRef ProfiledBinary, bool KeepName) {
|
|
if (Error E = checkBuffer(*Buffer))
|
|
return report(std::move(E), Buffer->getBufferIdentifier());
|
|
|
|
if (ProfiledBinary.empty()) {
|
|
// Peek the build ids to print a helpful error message.
|
|
const std::vector<std::string> BuildIds = peekBuildIds(Buffer.get());
|
|
std::string ErrorMessage(
|
|
R"(Path to profiled binary is empty, expected binary with one of the following build ids:
|
|
)");
|
|
for (const auto &Id : BuildIds) {
|
|
ErrorMessage += "\n BuildId: ";
|
|
ErrorMessage += Id;
|
|
}
|
|
return report(
|
|
make_error<StringError>(ErrorMessage, inconvertibleErrorCode()),
|
|
/*Context=*/"");
|
|
}
|
|
|
|
auto BinaryOr = llvm::object::createBinary(ProfiledBinary);
|
|
if (!BinaryOr) {
|
|
return report(BinaryOr.takeError(), ProfiledBinary);
|
|
}
|
|
|
|
// Use new here since constructor is private.
|
|
std::unique_ptr<RawMemProfReader> Reader(
|
|
new RawMemProfReader(std::move(BinaryOr.get()), KeepName));
|
|
if (Error E = Reader->initialize(std::move(Buffer))) {
|
|
return std::move(E);
|
|
}
|
|
return std::move(Reader);
|
|
}
|
|
|
|
// We need to make sure that all leftover MIB histograms that have not been
|
|
// freed by merge are freed here.
|
|
RawMemProfReader::~RawMemProfReader() {
|
|
for (auto &[_, MIB] : CallstackProfileData) {
|
|
if (MemprofRawVersion >= 4ULL && MIB.AccessHistogramSize > 0) {
|
|
free((void *)MIB.AccessHistogram);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RawMemProfReader::hasFormat(const StringRef Path) {
|
|
auto BufferOr = MemoryBuffer::getFileOrSTDIN(Path);
|
|
if (!BufferOr)
|
|
return false;
|
|
|
|
std::unique_ptr<MemoryBuffer> Buffer(BufferOr.get().release());
|
|
return hasFormat(*Buffer);
|
|
}
|
|
|
|
bool RawMemProfReader::hasFormat(const MemoryBuffer &Buffer) {
|
|
if (Buffer.getBufferSize() < sizeof(uint64_t))
|
|
return false;
|
|
// Aligned read to sanity check that the buffer was allocated with at least 8b
|
|
// alignment.
|
|
const uint64_t Magic = alignedRead(Buffer.getBufferStart());
|
|
return Magic == MEMPROF_RAW_MAGIC_64;
|
|
}
|
|
|
|
void RawMemProfReader::printYAML(raw_ostream &OS) {
|
|
uint64_t NumAllocFunctions = 0, NumMibInfo = 0;
|
|
for (const auto &KV : FunctionProfileData) {
|
|
const size_t NumAllocSites = KV.second.AllocSites.size();
|
|
if (NumAllocSites > 0) {
|
|
NumAllocFunctions++;
|
|
NumMibInfo += NumAllocSites;
|
|
}
|
|
}
|
|
|
|
OS << "MemprofProfile:\n";
|
|
OS << " Summary:\n";
|
|
OS << " Version: " << MemprofRawVersion << "\n";
|
|
OS << " NumSegments: " << SegmentInfo.size() << "\n";
|
|
OS << " NumMibInfo: " << NumMibInfo << "\n";
|
|
OS << " NumAllocFunctions: " << NumAllocFunctions << "\n";
|
|
OS << " NumStackOffsets: " << StackMap.size() << "\n";
|
|
// Print out the segment information.
|
|
OS << " Segments:\n";
|
|
for (const auto &Entry : SegmentInfo) {
|
|
OS << " -\n";
|
|
OS << " BuildId: " << getBuildIdString(Entry) << "\n";
|
|
OS << " Start: 0x" << llvm::utohexstr(Entry.Start) << "\n";
|
|
OS << " End: 0x" << llvm::utohexstr(Entry.End) << "\n";
|
|
OS << " Offset: 0x" << llvm::utohexstr(Entry.Offset) << "\n";
|
|
}
|
|
// Print out the merged contents of the profiles.
|
|
OS << " Records:\n";
|
|
for (const auto &[GUID, Record] : *this) {
|
|
OS << " -\n";
|
|
OS << " FunctionGUID: " << GUID << "\n";
|
|
Record.print(OS);
|
|
}
|
|
}
|
|
|
|
Error RawMemProfReader::initialize(std::unique_ptr<MemoryBuffer> DataBuffer) {
|
|
const StringRef FileName = Binary.getBinary()->getFileName();
|
|
|
|
auto *ElfObject = dyn_cast<object::ELFObjectFileBase>(Binary.getBinary());
|
|
if (!ElfObject) {
|
|
return report(make_error<StringError>(Twine("Not an ELF file: "),
|
|
inconvertibleErrorCode()),
|
|
FileName);
|
|
}
|
|
|
|
// Check whether the profiled binary was built with position independent code
|
|
// (PIC). Perform sanity checks for assumptions we rely on to simplify
|
|
// symbolization.
|
|
auto *Elf64LEObject = llvm::cast<llvm::object::ELF64LEObjectFile>(ElfObject);
|
|
const llvm::object::ELF64LEFile &ElfFile = Elf64LEObject->getELFFile();
|
|
auto PHdrsOr = ElfFile.program_headers();
|
|
if (!PHdrsOr)
|
|
return report(
|
|
make_error<StringError>(Twine("Could not read program headers: "),
|
|
inconvertibleErrorCode()),
|
|
FileName);
|
|
|
|
int NumExecutableSegments = 0;
|
|
for (const auto &Phdr : *PHdrsOr) {
|
|
if (Phdr.p_type == ELF::PT_LOAD) {
|
|
if (Phdr.p_flags & ELF::PF_X) {
|
|
// We assume only one text segment in the main binary for simplicity and
|
|
// reduce the overhead of checking multiple ranges during symbolization.
|
|
if (++NumExecutableSegments > 1) {
|
|
return report(
|
|
make_error<StringError>(
|
|
"Expect only one executable load segment in the binary",
|
|
inconvertibleErrorCode()),
|
|
FileName);
|
|
}
|
|
// Segment will always be loaded at a page boundary, expect it to be
|
|
// aligned already. Assume 4K pagesize for the machine from which the
|
|
// profile has been collected. This should be fine for now, in case we
|
|
// want to support other pagesizes it can be recorded in the raw profile
|
|
// during collection.
|
|
PreferredTextSegmentAddress = Phdr.p_vaddr;
|
|
assert(Phdr.p_vaddr == (Phdr.p_vaddr & ~(0x1000 - 1U)) &&
|
|
"Expect p_vaddr to always be page aligned");
|
|
assert(Phdr.p_offset == 0 && "Expect p_offset = 0 for symbolization.");
|
|
}
|
|
}
|
|
}
|
|
|
|
auto Triple = ElfObject->makeTriple();
|
|
if (!Triple.isX86())
|
|
return report(make_error<StringError>(Twine("Unsupported target: ") +
|
|
Triple.getArchName(),
|
|
inconvertibleErrorCode()),
|
|
FileName);
|
|
|
|
// Process the raw profile.
|
|
if (Error E = readRawProfile(std::move(DataBuffer)))
|
|
return E;
|
|
|
|
if (Error E = setupForSymbolization())
|
|
return E;
|
|
|
|
auto *Object = cast<object::ObjectFile>(Binary.getBinary());
|
|
std::unique_ptr<DIContext> Context = DWARFContext::create(
|
|
*Object, DWARFContext::ProcessDebugRelocations::Process);
|
|
|
|
auto SOFOr = symbolize::SymbolizableObjectFile::create(
|
|
Object, std::move(Context), /*UntagAddresses=*/false);
|
|
if (!SOFOr)
|
|
return report(SOFOr.takeError(), FileName);
|
|
auto Symbolizer = std::move(SOFOr.get());
|
|
|
|
// The symbolizer ownership is moved into symbolizeAndFilterStackFrames so
|
|
// that it is freed automatically at the end, when it is no longer used. This
|
|
// reduces peak memory since it won't be live while also mapping the raw
|
|
// profile into records afterwards.
|
|
if (Error E = symbolizeAndFilterStackFrames(std::move(Symbolizer)))
|
|
return E;
|
|
|
|
return mapRawProfileToRecords();
|
|
}
|
|
|
|
Error RawMemProfReader::setupForSymbolization() {
|
|
auto *Object = cast<object::ObjectFile>(Binary.getBinary());
|
|
object::BuildIDRef BinaryId = object::getBuildID(Object);
|
|
if (BinaryId.empty())
|
|
return make_error<StringError>(Twine("No build id found in binary ") +
|
|
Binary.getBinary()->getFileName(),
|
|
inconvertibleErrorCode());
|
|
|
|
int NumMatched = 0;
|
|
for (const auto &Entry : SegmentInfo) {
|
|
llvm::ArrayRef<uint8_t> SegmentId(Entry.BuildId, Entry.BuildIdSize);
|
|
if (BinaryId == SegmentId) {
|
|
// We assume only one text segment in the main binary for simplicity and
|
|
// reduce the overhead of checking multiple ranges during symbolization.
|
|
if (++NumMatched > 1) {
|
|
return make_error<StringError>(
|
|
"We expect only one executable segment in the profiled binary",
|
|
inconvertibleErrorCode());
|
|
}
|
|
ProfiledTextSegmentStart = Entry.Start;
|
|
ProfiledTextSegmentEnd = Entry.End;
|
|
}
|
|
}
|
|
assert(NumMatched != 0 && "No matching executable segments in segment info.");
|
|
assert((PreferredTextSegmentAddress == 0 ||
|
|
(PreferredTextSegmentAddress == ProfiledTextSegmentStart)) &&
|
|
"Expect text segment address to be 0 or equal to profiled text "
|
|
"segment start.");
|
|
return Error::success();
|
|
}
|
|
|
|
Error RawMemProfReader::mapRawProfileToRecords() {
|
|
// Hold a mapping from function to each callsite location we encounter within
|
|
// it that is part of some dynamic allocation context. The location is stored
|
|
// as a pointer to a symbolized list of inline frames.
|
|
using LocationPtr = const llvm::SmallVector<FrameId> *;
|
|
llvm::MapVector<GlobalValue::GUID, llvm::SetVector<LocationPtr>>
|
|
PerFunctionCallSites;
|
|
|
|
// Convert the raw profile callstack data into memprof records. While doing so
|
|
// keep track of related contexts so that we can fill these in later.
|
|
for (const auto &[StackId, MIB] : CallstackProfileData) {
|
|
auto It = StackMap.find(StackId);
|
|
if (It == StackMap.end())
|
|
return make_error<InstrProfError>(
|
|
instrprof_error::malformed,
|
|
"memprof callstack record does not contain id: " + Twine(StackId));
|
|
|
|
// Construct the symbolized callstack.
|
|
llvm::SmallVector<FrameId> Callstack;
|
|
Callstack.reserve(It->getSecond().size());
|
|
|
|
llvm::ArrayRef<uint64_t> Addresses = It->getSecond();
|
|
for (size_t I = 0; I < Addresses.size(); I++) {
|
|
const uint64_t Address = Addresses[I];
|
|
assert(SymbolizedFrame.count(Address) > 0 &&
|
|
"Address not found in SymbolizedFrame map");
|
|
const SmallVector<FrameId> &Frames = SymbolizedFrame[Address];
|
|
|
|
assert(!idToFrame(Frames.back()).IsInlineFrame &&
|
|
"The last frame should not be inlined");
|
|
|
|
// Record the callsites for each function. Skip the first frame of the
|
|
// first address since it is the allocation site itself that is recorded
|
|
// as an alloc site.
|
|
for (size_t J = 0; J < Frames.size(); J++) {
|
|
if (I == 0 && J == 0)
|
|
continue;
|
|
// We attach the entire bottom-up frame here for the callsite even
|
|
// though we only need the frames up to and including the frame for
|
|
// Frames[J].Function. This will enable better deduplication for
|
|
// compression in the future.
|
|
const GlobalValue::GUID Guid = idToFrame(Frames[J]).Function;
|
|
PerFunctionCallSites[Guid].insert(&Frames);
|
|
}
|
|
|
|
// Add all the frames to the current allocation callstack.
|
|
Callstack.append(Frames.begin(), Frames.end());
|
|
}
|
|
|
|
CallStackId CSId = hashCallStack(Callstack);
|
|
CSIdToCallStack.insert({CSId, Callstack});
|
|
|
|
// We attach the memprof record to each function bottom-up including the
|
|
// first non-inline frame.
|
|
for (size_t I = 0; /*Break out using the condition below*/; I++) {
|
|
const Frame &F = idToFrame(Callstack[I]);
|
|
auto Result =
|
|
FunctionProfileData.insert({F.Function, IndexedMemProfRecord()});
|
|
IndexedMemProfRecord &Record = Result.first->second;
|
|
Record.AllocSites.emplace_back(Callstack, CSId, MIB);
|
|
|
|
if (!F.IsInlineFrame)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Fill in the related callsites per function.
|
|
for (const auto &[Id, Locs] : PerFunctionCallSites) {
|
|
// Some functions may have only callsite data and no allocation data. Here
|
|
// we insert a new entry for callsite data if we need to.
|
|
auto Result = FunctionProfileData.insert({Id, IndexedMemProfRecord()});
|
|
IndexedMemProfRecord &Record = Result.first->second;
|
|
for (LocationPtr Loc : Locs) {
|
|
CallStackId CSId = hashCallStack(*Loc);
|
|
CSIdToCallStack.insert({CSId, *Loc});
|
|
Record.CallSites.push_back(*Loc);
|
|
Record.CallSiteIds.push_back(CSId);
|
|
}
|
|
}
|
|
|
|
verifyFunctionProfileData(FunctionProfileData);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error RawMemProfReader::symbolizeAndFilterStackFrames(
|
|
std::unique_ptr<llvm::symbolize::SymbolizableModule> Symbolizer) {
|
|
// The specifier to use when symbolization is requested.
|
|
const DILineInfoSpecifier Specifier(
|
|
DILineInfoSpecifier::FileLineInfoKind::RawValue,
|
|
DILineInfoSpecifier::FunctionNameKind::LinkageName);
|
|
|
|
// For entries where all PCs in the callstack are discarded, we erase the
|
|
// entry from the stack map.
|
|
llvm::SmallVector<uint64_t> EntriesToErase;
|
|
// We keep track of all prior discarded entries so that we can avoid invoking
|
|
// the symbolizer for such entries.
|
|
llvm::DenseSet<uint64_t> AllVAddrsToDiscard;
|
|
for (auto &Entry : StackMap) {
|
|
for (const uint64_t VAddr : Entry.getSecond()) {
|
|
// Check if we have already symbolized and cached the result or if we
|
|
// don't want to attempt symbolization since we know this address is bad.
|
|
// In this case the address is also removed from the current callstack.
|
|
if (SymbolizedFrame.count(VAddr) > 0 ||
|
|
AllVAddrsToDiscard.contains(VAddr))
|
|
continue;
|
|
|
|
Expected<DIInliningInfo> DIOr = Symbolizer->symbolizeInlinedCode(
|
|
getModuleOffset(VAddr), Specifier, /*UseSymbolTable=*/false);
|
|
if (!DIOr)
|
|
return DIOr.takeError();
|
|
DIInliningInfo DI = DIOr.get();
|
|
|
|
// Drop frames which we can't symbolize or if they belong to the runtime.
|
|
if (DI.getFrame(0).FunctionName == DILineInfo::BadString ||
|
|
isRuntimePath(DI.getFrame(0).FileName)) {
|
|
AllVAddrsToDiscard.insert(VAddr);
|
|
continue;
|
|
}
|
|
|
|
for (size_t I = 0, NumFrames = DI.getNumberOfFrames(); I < NumFrames;
|
|
I++) {
|
|
const auto &DIFrame = DI.getFrame(I);
|
|
const uint64_t Guid =
|
|
IndexedMemProfRecord::getGUID(DIFrame.FunctionName);
|
|
const Frame F(Guid, DIFrame.Line - DIFrame.StartLine, DIFrame.Column,
|
|
// Only the last entry is not an inlined location.
|
|
I != NumFrames - 1);
|
|
// Here we retain a mapping from the GUID to canonical symbol name
|
|
// instead of adding it to the frame object directly to reduce memory
|
|
// overhead. This is because there can be many unique frames,
|
|
// particularly for callsite frames.
|
|
if (KeepSymbolName) {
|
|
StringRef CanonicalName =
|
|
sampleprof::FunctionSamples::getCanonicalFnName(
|
|
DIFrame.FunctionName);
|
|
GuidToSymbolName.insert({Guid, CanonicalName.str()});
|
|
}
|
|
|
|
const FrameId Hash = F.hash();
|
|
IdToFrame.insert({Hash, F});
|
|
SymbolizedFrame[VAddr].push_back(Hash);
|
|
}
|
|
}
|
|
|
|
auto &CallStack = Entry.getSecond();
|
|
llvm::erase_if(CallStack, [&AllVAddrsToDiscard](const uint64_t A) {
|
|
return AllVAddrsToDiscard.contains(A);
|
|
});
|
|
if (CallStack.empty())
|
|
EntriesToErase.push_back(Entry.getFirst());
|
|
}
|
|
|
|
// Drop the entries where the callstack is empty.
|
|
for (const uint64_t Id : EntriesToErase) {
|
|
StackMap.erase(Id);
|
|
if(CallstackProfileData[Id].AccessHistogramSize > 0)
|
|
free((void*) CallstackProfileData[Id].AccessHistogram);
|
|
CallstackProfileData.erase(Id);
|
|
}
|
|
|
|
if (StackMap.empty())
|
|
return make_error<InstrProfError>(
|
|
instrprof_error::malformed,
|
|
"no entries in callstack map after symbolization");
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
std::vector<std::string>
|
|
RawMemProfReader::peekBuildIds(MemoryBuffer *DataBuffer) {
|
|
const char *Next = DataBuffer->getBufferStart();
|
|
// Use a SetVector since a profile file may contain multiple raw profile
|
|
// dumps, each with segment information. We want them unique and in order they
|
|
// were stored in the profile; the profiled binary should be the first entry.
|
|
// The runtime uses dl_iterate_phdr and the "... first object visited by
|
|
// callback is the main program."
|
|
// https://man7.org/linux/man-pages/man3/dl_iterate_phdr.3.html
|
|
llvm::SetVector<std::string, std::vector<std::string>,
|
|
llvm::SmallSet<std::string, 10>>
|
|
BuildIds;
|
|
while (Next < DataBuffer->getBufferEnd()) {
|
|
const auto *Header = reinterpret_cast<const memprof::Header *>(Next);
|
|
|
|
const llvm::SmallVector<SegmentEntry> Entries =
|
|
readSegmentEntries(Next + Header->SegmentOffset);
|
|
|
|
for (const auto &Entry : Entries)
|
|
BuildIds.insert(getBuildIdString(Entry));
|
|
|
|
Next += Header->TotalSize;
|
|
}
|
|
return BuildIds.takeVector();
|
|
}
|
|
|
|
// FIXME: Add a schema for serializing similiar to IndexedMemprofReader. This
|
|
// will help being able to deserialize different versions raw memprof versions
|
|
// more easily.
|
|
llvm::SmallVector<std::pair<uint64_t, MemInfoBlock>>
|
|
RawMemProfReader::readMemInfoBlocks(const char *Ptr) {
|
|
if (MemprofRawVersion == 3ULL)
|
|
return readMemInfoBlocksV3(Ptr);
|
|
if (MemprofRawVersion == 4ULL)
|
|
return readMemInfoBlocksV4(Ptr);
|
|
llvm_unreachable(
|
|
"Panic: Unsupported version number when reading MemInfoBlocks");
|
|
}
|
|
|
|
Error RawMemProfReader::readRawProfile(
|
|
std::unique_ptr<MemoryBuffer> DataBuffer) {
|
|
const char *Next = DataBuffer->getBufferStart();
|
|
|
|
while (Next < DataBuffer->getBufferEnd()) {
|
|
const auto *Header = reinterpret_cast<const memprof::Header *>(Next);
|
|
|
|
// Set Reader version to memprof raw version of profile. Checking if version
|
|
// is supported is checked before creating the reader.
|
|
MemprofRawVersion = Header->Version;
|
|
|
|
// Read in the segment information, check whether its the same across all
|
|
// profiles in this binary file.
|
|
const llvm::SmallVector<SegmentEntry> Entries =
|
|
readSegmentEntries(Next + Header->SegmentOffset);
|
|
if (!SegmentInfo.empty() && SegmentInfo != Entries) {
|
|
// We do not expect segment information to change when deserializing from
|
|
// the same binary profile file. This can happen if dynamic libraries are
|
|
// loaded/unloaded between profile dumping.
|
|
return make_error<InstrProfError>(
|
|
instrprof_error::malformed,
|
|
"memprof raw profile has different segment information");
|
|
}
|
|
SegmentInfo.assign(Entries.begin(), Entries.end());
|
|
|
|
// Read in the MemInfoBlocks. Merge them based on stack id - we assume that
|
|
// raw profiles in the same binary file are from the same process so the
|
|
// stackdepot ids are the same.
|
|
for (const auto &[Id, MIB] : readMemInfoBlocks(Next + Header->MIBOffset)) {
|
|
if (CallstackProfileData.count(Id)) {
|
|
|
|
if (MemprofRawVersion >= 4ULL &&
|
|
(CallstackProfileData[Id].AccessHistogramSize > 0 ||
|
|
MIB.AccessHistogramSize > 0)) {
|
|
uintptr_t ShorterHistogram;
|
|
if (CallstackProfileData[Id].AccessHistogramSize >
|
|
MIB.AccessHistogramSize)
|
|
ShorterHistogram = MIB.AccessHistogram;
|
|
else
|
|
ShorterHistogram = CallstackProfileData[Id].AccessHistogram;
|
|
CallstackProfileData[Id].Merge(MIB);
|
|
free((void *)ShorterHistogram);
|
|
} else {
|
|
CallstackProfileData[Id].Merge(MIB);
|
|
}
|
|
} else {
|
|
CallstackProfileData[Id] = MIB;
|
|
}
|
|
}
|
|
|
|
// Read in the callstack for each ids. For multiple raw profiles in the same
|
|
// file, we expect that the callstack is the same for a unique id.
|
|
const CallStackMap CSM = readStackInfo(Next + Header->StackOffset);
|
|
if (StackMap.empty()) {
|
|
StackMap = CSM;
|
|
} else {
|
|
if (mergeStackMap(CSM, StackMap))
|
|
return make_error<InstrProfError>(
|
|
instrprof_error::malformed,
|
|
"memprof raw profile got different call stack for same id");
|
|
}
|
|
|
|
Next += Header->TotalSize;
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
object::SectionedAddress
|
|
RawMemProfReader::getModuleOffset(const uint64_t VirtualAddress) {
|
|
if (VirtualAddress > ProfiledTextSegmentStart &&
|
|
VirtualAddress <= ProfiledTextSegmentEnd) {
|
|
// For PIE binaries, the preferred address is zero and we adjust the virtual
|
|
// address by start of the profiled segment assuming that the offset of the
|
|
// segment in the binary is zero. For non-PIE binaries the preferred and
|
|
// profiled segment addresses should be equal and this is a no-op.
|
|
const uint64_t AdjustedAddress =
|
|
VirtualAddress + PreferredTextSegmentAddress - ProfiledTextSegmentStart;
|
|
return object::SectionedAddress{AdjustedAddress};
|
|
}
|
|
// Addresses which do not originate from the profiled text segment in the
|
|
// binary are not adjusted. These will fail symbolization and be filtered out
|
|
// during processing.
|
|
return object::SectionedAddress{VirtualAddress};
|
|
}
|
|
|
|
Error RawMemProfReader::readNextRecord(
|
|
GuidMemProfRecordPair &GuidRecord,
|
|
std::function<const Frame(const FrameId)> Callback) {
|
|
// Create a new callback for the RawMemProfRecord iterator so that we can
|
|
// provide the symbol name if the reader was initialized with KeepSymbolName =
|
|
// true. This is useful for debugging and testing.
|
|
auto IdToFrameCallback = [this](const FrameId Id) {
|
|
Frame F = this->idToFrame(Id);
|
|
if (!this->KeepSymbolName)
|
|
return F;
|
|
auto Iter = this->GuidToSymbolName.find(F.Function);
|
|
assert(Iter != this->GuidToSymbolName.end());
|
|
F.SymbolName = std::make_unique<std::string>(Iter->getSecond());
|
|
return F;
|
|
};
|
|
return MemProfReader::readNextRecord(GuidRecord, IdToFrameCallback);
|
|
}
|
|
} // namespace memprof
|
|
} // namespace llvm
|