mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 13:36:09 +00:00
556 lines
19 KiB
C++
556 lines
19 KiB
C++
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Identifier.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Support/STLExtras.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
using namespace mlir;
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType*> {
|
|
// Functions are uniqued based on their inputs and results.
|
|
using KeyTy = std::pair<ArrayRef<Type*>, ArrayRef<Type*>>;
|
|
using DenseMapInfo<FunctionType*>::getHashValue;
|
|
using DenseMapInfo<FunctionType*>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(hash_combine_range(key.first.begin(), key.first.end()),
|
|
hash_combine_range(key.second.begin(),
|
|
key.second.end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == KeyTy(rhs->getInputs(), rhs->getResults());
|
|
}
|
|
};
|
|
|
|
struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> {
|
|
// Affine maps are uniqued based on their dim/symbol counts and affine
|
|
// expressions.
|
|
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr *>>;
|
|
using DenseMapInfo<AffineMap *>::getHashValue;
|
|
using DenseMapInfo<AffineMap *>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
std::get<0>(key), std::get<1>(key),
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const AffineMap *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_tuple(rhs->getNumDims(), rhs->getNumSymbols(),
|
|
rhs->getResults());
|
|
}
|
|
};
|
|
|
|
struct VectorTypeKeyInfo : DenseMapInfo<VectorType*> {
|
|
// Vectors are uniqued based on their element type and shape.
|
|
using KeyTy = std::pair<Type*, ArrayRef<unsigned>>;
|
|
using DenseMapInfo<VectorType*>::getHashValue;
|
|
using DenseMapInfo<VectorType*>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first),
|
|
hash_combine_range(key.second.begin(),
|
|
key.second.end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const VectorType *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
|
|
}
|
|
};
|
|
|
|
struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType*> {
|
|
// Ranked tensors are uniqued based on their element type and shape.
|
|
using KeyTy = std::pair<Type*, ArrayRef<int>>;
|
|
using DenseMapInfo<RankedTensorType*>::getHashValue;
|
|
using DenseMapInfo<RankedTensorType*>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first),
|
|
hash_combine_range(key.second.begin(),
|
|
key.second.end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
|
|
}
|
|
};
|
|
|
|
struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr*> {
|
|
// Array attributes are uniqued based on their elements.
|
|
using KeyTy = ArrayRef<Attribute*>;
|
|
using DenseMapInfo<ArrayAttr*>::getHashValue;
|
|
using DenseMapInfo<ArrayAttr*>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine_range(key.begin(), key.end());
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const ArrayAttr *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == rhs->getValue();
|
|
}
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
|
|
namespace mlir {
|
|
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
|
|
/// This class is completely private to this file, so everything is public.
|
|
class MLIRContextImpl {
|
|
public:
|
|
/// We put immortal objects into this allocator.
|
|
llvm::BumpPtrAllocator allocator;
|
|
|
|
/// These are identifiers uniqued into this MLIRContext.
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator&> identifiers;
|
|
|
|
// Primitive type uniquing.
|
|
PrimitiveType *primitives[int(Type::Kind::LAST_PRIMITIVE_TYPE)+1] = {nullptr};
|
|
|
|
// Affine map uniquing.
|
|
using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>;
|
|
AffineMapSet affineMaps;
|
|
|
|
// Affine binary op expression uniquing. Figure out uniquing of dimensional
|
|
// or symbolic identifiers.
|
|
DenseMap<std::tuple<unsigned, AffineExpr *, AffineExpr *>,
|
|
AffineBinaryOpExpr *>
|
|
affineExprs;
|
|
|
|
/// Integer type uniquing.
|
|
DenseMap<unsigned, IntegerType*> integers;
|
|
|
|
/// Function type uniquing.
|
|
using FunctionTypeSet = DenseSet<FunctionType*, FunctionTypeKeyInfo>;
|
|
FunctionTypeSet functions;
|
|
|
|
/// Vector type uniquing.
|
|
using VectorTypeSet = DenseSet<VectorType*, VectorTypeKeyInfo>;
|
|
VectorTypeSet vectors;
|
|
|
|
/// Ranked tensor type uniquing.
|
|
using RankedTensorTypeSet = DenseSet<RankedTensorType*,
|
|
RankedTensorTypeKeyInfo>;
|
|
RankedTensorTypeSet rankedTensors;
|
|
|
|
/// Unranked tensor type uniquing.
|
|
DenseMap<Type*, UnrankedTensorType*> unrankedTensors;
|
|
|
|
// Attribute uniquing.
|
|
BoolAttr *boolAttrs[2] = { nullptr };
|
|
DenseMap<int64_t, IntegerAttr*> integerAttrs;
|
|
DenseMap<int64_t, FloatAttr*> floatAttrs;
|
|
StringMap<StringAttr*> stringAttrs;
|
|
using ArrayAttrSet = DenseSet<ArrayAttr*, ArrayAttrKeyInfo>;
|
|
ArrayAttrSet arrayAttrs;
|
|
|
|
public:
|
|
MLIRContextImpl() : identifiers(allocator) {}
|
|
|
|
/// Copy the specified array of elements into memory managed by our bump
|
|
/// pointer allocator. This assumes the elements are all PODs.
|
|
template<typename T>
|
|
ArrayRef<T> copyInto(ArrayRef<T> elements) {
|
|
auto result = allocator.Allocate<T>(elements.size());
|
|
std::uninitialized_copy(elements.begin(), elements.end(), result);
|
|
return ArrayRef<T>(result, elements.size());
|
|
}
|
|
};
|
|
} // end namespace mlir
|
|
|
|
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
|
|
}
|
|
|
|
MLIRContext::~MLIRContext() {
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Identifier uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return an identifier for the specified string.
|
|
Identifier Identifier::get(StringRef str, const MLIRContext *context) {
|
|
assert(!str.empty() && "Cannot create an empty identifier");
|
|
assert(str.find('\0') == StringRef::npos &&
|
|
"Cannot create an identifier with a nul character");
|
|
|
|
auto &impl = context->getImpl();
|
|
auto it = impl.identifiers.insert({str, char()}).first;
|
|
return Identifier(it->getKeyData());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PrimitiveType *PrimitiveType::get(Kind kind, MLIRContext *context) {
|
|
assert(kind <= Kind::LAST_PRIMITIVE_TYPE && "Not a primitive type kind");
|
|
auto &impl = context->getImpl();
|
|
|
|
// We normally have these types.
|
|
if (impl.primitives[(int)kind])
|
|
return impl.primitives[(int)kind];
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *ptr = impl.allocator.Allocate<PrimitiveType>();
|
|
|
|
// Initialize the memory using placement new.
|
|
new(ptr) PrimitiveType(kind, context);
|
|
|
|
// Cache and return it.
|
|
return impl.primitives[(int)kind] = ptr;
|
|
}
|
|
|
|
IntegerType *IntegerType::get(unsigned width, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
auto *&result = impl.integers[width];
|
|
if (!result) {
|
|
result = impl.allocator.Allocate<IntegerType>();
|
|
new (result) IntegerType(width, context);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
FunctionType *FunctionType::get(ArrayRef<Type*> inputs, ArrayRef<Type*> results,
|
|
MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this function type.
|
|
FunctionTypeKeyInfo::KeyTy key(inputs, results);
|
|
auto existing = impl.functions.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<FunctionType>();
|
|
|
|
// Copy the inputs and results into the bump pointer.
|
|
SmallVector<Type*, 16> types;
|
|
types.reserve(inputs.size()+results.size());
|
|
types.append(inputs.begin(), inputs.end());
|
|
types.append(results.begin(), results.end());
|
|
auto typesList = impl.copyInto(ArrayRef<Type*>(types));
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) FunctionType(typesList.data(), inputs.size(), results.size(),
|
|
context);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
|
|
assert(!shape.empty() && "vector types must have at least one dimension");
|
|
assert((isa<PrimitiveType>(elementType) || isa<IntegerType>(elementType)) &&
|
|
"vectors elements must be primitives");
|
|
|
|
auto *context = elementType->getContext();
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this vector type.
|
|
VectorTypeKeyInfo::KeyTy key(elementType, shape);
|
|
auto existing = impl.vectors.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<VectorType>();
|
|
|
|
// Copy the shape into the bump pointer.
|
|
shape = impl.copyInto(shape);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) VectorType(shape, cast<PrimitiveType>(elementType), context);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
|
|
TensorType::TensorType(Kind kind, Type *elementType, MLIRContext *context)
|
|
: Type(kind, context), elementType(elementType) {
|
|
assert((isa<PrimitiveType>(elementType) || isa<VectorType>(elementType) ||
|
|
isa<IntegerType>(elementType)) &&
|
|
"tensor elements must be primitives or vectors");
|
|
assert(isa<TensorType>(this));
|
|
}
|
|
|
|
RankedTensorType *RankedTensorType::get(ArrayRef<int> shape,
|
|
Type *elementType) {
|
|
auto *context = elementType->getContext();
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this ranked tensor type.
|
|
RankedTensorTypeKeyInfo::KeyTy key(elementType, shape);
|
|
auto existing = impl.rankedTensors.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<RankedTensorType>();
|
|
|
|
// Copy the shape into the bump pointer.
|
|
shape = impl.copyInto(shape);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) RankedTensorType(shape, elementType, context);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
UnrankedTensorType *UnrankedTensorType::get(Type *elementType) {
|
|
auto *context = elementType->getContext();
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this unranked tensor type.
|
|
auto *&result = impl.unrankedTensors[elementType];
|
|
|
|
// If we already have it, return that value.
|
|
if (result)
|
|
return result;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
result = impl.allocator.Allocate<UnrankedTensorType>();
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) UnrankedTensorType(elementType, context);
|
|
return result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BoolAttr *BoolAttr::get(bool value, MLIRContext *context) {
|
|
auto *&result = context->getImpl().boolAttrs[value];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<BoolAttr>();
|
|
new (result) BoolAttr(value);
|
|
return result;
|
|
}
|
|
|
|
IntegerAttr *IntegerAttr::get(int64_t value, MLIRContext *context) {
|
|
auto *&result = context->getImpl().integerAttrs[value];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<IntegerAttr>();
|
|
new (result) IntegerAttr(value);
|
|
return result;
|
|
}
|
|
|
|
FloatAttr *FloatAttr::get(double value, MLIRContext *context) {
|
|
// We hash based on the bit representation of the double to ensure we don't
|
|
// merge things like -0.0 and 0.0 in the hash comparison.
|
|
union {
|
|
double floatValue;
|
|
int64_t intValue;
|
|
};
|
|
floatValue = value;
|
|
|
|
auto *&result = context->getImpl().floatAttrs[intValue];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<FloatAttr>();
|
|
new (result) FloatAttr(value);
|
|
return result;
|
|
}
|
|
|
|
StringAttr *StringAttr::get(StringRef bytes, MLIRContext *context) {
|
|
auto it = context->getImpl().stringAttrs.insert({bytes, nullptr}).first;
|
|
|
|
if (it->second)
|
|
return it->second;
|
|
|
|
auto result = context->getImpl().allocator.Allocate<StringAttr>();
|
|
new (result) StringAttr(it->first());
|
|
it->second = result;
|
|
return result;
|
|
}
|
|
|
|
ArrayAttr *ArrayAttr::get(ArrayRef<Attribute*> value, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this.
|
|
auto existing = impl.arrayAttrs.insert_as(nullptr, value);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<ArrayAttr>();
|
|
|
|
// Copy the elements into the bump pointer.
|
|
value = impl.copyInto(value);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) ArrayAttr(value);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMap and AffineExpr uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AffineMap *AffineMap::get(unsigned dimCount, unsigned symbolCount,
|
|
ArrayRef<AffineExpr *> results,
|
|
MLIRContext *context) {
|
|
// The number of results can't be zero.
|
|
assert(!results.empty());
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
// Check if we already have this affine map.
|
|
auto key = std::make_tuple(dimCount, symbolCount, results);
|
|
auto existing = impl.affineMaps.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *res = impl.allocator.Allocate<AffineMap>();
|
|
|
|
// Copy the results into the bump pointer.
|
|
results = impl.copyInto(ArrayRef<AffineExpr *>(results));
|
|
|
|
// Initialize the memory using placement new.
|
|
new (res) AffineMap(dimCount, symbolCount, results.size(), results.data());
|
|
|
|
// Cache and return it.
|
|
return *existing.first = res;
|
|
}
|
|
|
|
AffineBinaryOpExpr *AffineBinaryOpExpr::get(AffineExpr::Kind kind,
|
|
AffineExpr *lhsOperand,
|
|
AffineExpr *rhsOperand,
|
|
MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Check if we already have this affine expression.
|
|
auto keyValue = std::make_tuple((unsigned)kind, lhsOperand, rhsOperand);
|
|
auto *&result = impl.affineExprs[keyValue];
|
|
|
|
// If we already have it, return that value.
|
|
if (!result) {
|
|
// On the first use, we allocate them into the bump pointer.
|
|
result = impl.allocator.Allocate<AffineBinaryOpExpr>();
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) AffineBinaryOpExpr(kind, lhsOperand, rhsOperand);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// TODO(bondhugula): complete uniquing of remaining AffineExpr sub-classes.
|
|
AffineAddExpr *AffineAddExpr::get(AffineExpr *lhsOperand,
|
|
AffineExpr *rhsOperand,
|
|
MLIRContext *context) {
|
|
return cast<AffineAddExpr>(
|
|
AffineBinaryOpExpr::get(Kind::Add, lhsOperand, rhsOperand, context));
|
|
}
|
|
|
|
AffineSubExpr *AffineSubExpr::get(AffineExpr *lhsOperand,
|
|
AffineExpr *rhsOperand,
|
|
MLIRContext *context) {
|
|
return cast<AffineSubExpr>(
|
|
AffineBinaryOpExpr::get(Kind::Sub, lhsOperand, rhsOperand, context));
|
|
}
|
|
|
|
AffineMulExpr *AffineMulExpr::get(AffineExpr *lhsOperand,
|
|
AffineExpr *rhsOperand,
|
|
MLIRContext *context) {
|
|
return cast<AffineMulExpr>(
|
|
AffineBinaryOpExpr::get(Kind::Mul, lhsOperand, rhsOperand, context));
|
|
}
|
|
|
|
AffineFloorDivExpr *AffineFloorDivExpr::get(AffineExpr *lhsOperand,
|
|
AffineExpr *rhsOperand,
|
|
MLIRContext *context) {
|
|
return cast<AffineFloorDivExpr>(
|
|
AffineBinaryOpExpr::get(Kind::FloorDiv, lhsOperand, rhsOperand, context));
|
|
}
|
|
|
|
AffineCeilDivExpr *AffineCeilDivExpr::get(AffineExpr *lhsOperand,
|
|
AffineExpr *rhsOperand,
|
|
MLIRContext *context) {
|
|
return cast<AffineCeilDivExpr>(
|
|
AffineBinaryOpExpr::get(Kind::CeilDiv, lhsOperand, rhsOperand, context));
|
|
}
|
|
|
|
AffineModExpr *AffineModExpr::get(AffineExpr *lhsOperand,
|
|
AffineExpr *rhsOperand,
|
|
MLIRContext *context) {
|
|
return cast<AffineModExpr>(
|
|
AffineBinaryOpExpr::get(Kind::Mod, lhsOperand, rhsOperand, context));
|
|
}
|
|
|
|
AffineDimExpr *AffineDimExpr::get(unsigned position, MLIRContext *context) {
|
|
// TODO(bondhugula): complete this
|
|
// FIXME: this should be POD
|
|
return new AffineDimExpr(position);
|
|
}
|
|
|
|
AffineSymbolExpr *AffineSymbolExpr::get(unsigned position,
|
|
MLIRContext *context) {
|
|
// TODO(bondhugula): complete this
|
|
// FIXME: this should be POD
|
|
return new AffineSymbolExpr(position);
|
|
}
|
|
|
|
AffineConstantExpr *AffineConstantExpr::get(int64_t constant,
|
|
MLIRContext *context) {
|
|
// TODO(bondhugula): complete this
|
|
// FIXME: this should be POD
|
|
return new AffineConstantExpr(constant);
|
|
}
|