mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-30 15:56:07 +00:00

They used to be classes with a virtual `run` function. This was inconvenient because post analysis steps are stored in BufferizationOptions. Because of this design choice, BufferizationOptions were not copyable. Differential Revision: https://reviews.llvm.org/D119258
795 lines
32 KiB
C++
795 lines
32 KiB
C++
//===- OneShotAnalysis.cpp - One-Shot (Single Pass) Analysis --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// One-Shot Analysis analyzes function bodies. Function boundaries (FuncOp
|
|
// bbArgs, CallOps, ReturnOps) are treated as "unknown" ops.
|
|
// ModuleBufferization.cpp is an extension of One-Shot Analysis for simple
|
|
// call graphs.
|
|
//
|
|
// One-Shot Bufferize consists of two phases.
|
|
//
|
|
// 1. Analyze ops to decide which OpResults can bufferize inplace, i.e., without
|
|
// inserting buffer copies. The analysis queries op bufferization semantics
|
|
// via `BufferizableOpInterface`.
|
|
// 2. Bufferize ops by calling `BufferizableOpInterface::bufferize`. This
|
|
// function does not generate buffer copies for OpResults that were decided
|
|
// to bufferize inplace during the analysis phase.
|
|
//
|
|
// This file contains only the analysis. The actual bufferization is implemented
|
|
// via `bufferizeOp` (Bufferize.h). For convenience, this file also contains a
|
|
// helper function `runOneShotBufferize` that analyzes an op (and its nested
|
|
// ops) and then bufferizes it.
|
|
//
|
|
// Inplace bufferization decisions are passed from the analysis to the
|
|
// bufferization phase via `BufferizationState` and `BufferizationAliasInfo`.
|
|
// They can be printed for debugging purposes with `testAnalysisOnly`.
|
|
//
|
|
// Ops that do not implement `BufferizableOpInterface` can be analyzed but are
|
|
// treated conservatively. E.g., the analysis has to assume that their tensor
|
|
// OpOperands bufferize to memory writes. While such ops can be analyzed, they
|
|
// are not bufferized and remain in the IR. to_tensor and to_memref ops are
|
|
// inserted at the bufferization boundary.
|
|
//
|
|
// This analysis caters to high-performance codegen where buffer reuse is deemed
|
|
// critical: the analysis should fail if the bufferized form of the function
|
|
// needs to return a buffer, unless `allowReturnMemref` is enabled.
|
|
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
|
|
#include <random>
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/AsmState.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Interfaces/ControlFlowInterfaces.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bufferization-specific attribute manipulation.
|
|
// These are for testing and debugging only. Bufferization information is
|
|
// stored in BufferizationAliasInfo. When run with `testAnalysisOnly`, the IR
|
|
// is annotated with the results of the analysis (copied from
|
|
// BufferizationAliasInfo), so that they can be checked in tests.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Attribute marker to specify op results that can be bufferized inPlace.
|
|
constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_operands_attr__";
|
|
|
|
/// Mark whether OpOperand will be bufferized inplace.
|
|
static void setInPlaceOpOperand(OpOperand &opOperand, bool inPlace) {
|
|
Operation *op = opOperand.getOwner();
|
|
auto attr =
|
|
op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>();
|
|
SmallVector<StringRef> inPlaceVector;
|
|
if (attr) {
|
|
inPlaceVector = SmallVector<StringRef>(
|
|
llvm::to_vector<4>(attr.getAsValueRange<StringAttr>()));
|
|
} else {
|
|
inPlaceVector = SmallVector<StringRef>(op->getNumOperands(), "none");
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (opOperand.get().getType().isa<TensorType>())
|
|
inPlaceVector[opOperand.getOperandNumber()] = "false";
|
|
}
|
|
|
|
inPlaceVector[opOperand.getOperandNumber()] = inPlace ? "true" : "false";
|
|
op->setAttr(kInPlaceResultsAttrName,
|
|
OpBuilder(op).getStrArrayAttr(inPlaceVector));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BufferizationAliasInfo
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BufferizationAliasInfo::BufferizationAliasInfo(Operation *rootOp) {
|
|
rootOp->walk([&](Operation *op) {
|
|
for (Value v : op->getResults())
|
|
if (v.getType().isa<TensorType>())
|
|
createAliasInfoEntry(v);
|
|
for (Region &r : op->getRegions())
|
|
for (Block &b : r.getBlocks())
|
|
for (auto bbArg : b.getArguments())
|
|
if (bbArg.getType().isa<TensorType>())
|
|
createAliasInfoEntry(bbArg);
|
|
});
|
|
}
|
|
|
|
/// Add a new entry for `v` in the `aliasInfo` and `equivalentInfo`. In the
|
|
/// beginning the alias and equivalence sets only contain `v` itself.
|
|
void BufferizationAliasInfo::createAliasInfoEntry(Value v) {
|
|
aliasInfo.insert(v);
|
|
equivalentInfo.insert(v);
|
|
}
|
|
|
|
/// Insert an info entry for `newValue` and merge its alias set with that of
|
|
/// `alias`.
|
|
void BufferizationAliasInfo::insertNewBufferAlias(Value newValue, Value alias) {
|
|
createAliasInfoEntry(newValue);
|
|
aliasInfo.unionSets(newValue, alias);
|
|
}
|
|
|
|
/// Insert an info entry for `newValue` and merge its alias set with that of
|
|
/// `alias`. Additionally, merge their equivalence classes.
|
|
void BufferizationAliasInfo::insertNewBufferEquivalence(Value newValue,
|
|
Value alias) {
|
|
insertNewBufferAlias(newValue, alias);
|
|
equivalentInfo.unionSets(newValue, alias);
|
|
}
|
|
|
|
/// Return `true` if a value was marked as in-place bufferized.
|
|
bool BufferizationAliasInfo::isInPlace(OpOperand &operand) const {
|
|
return inplaceBufferized.contains(&operand);
|
|
}
|
|
|
|
/// Set the inPlace bufferization spec to true.
|
|
void BufferizationAliasInfo::bufferizeInPlace(OpOperand &operand,
|
|
BufferizationState &state) {
|
|
markInPlace(operand);
|
|
if (OpResult result = state.getAliasingOpResult(operand))
|
|
aliasInfo.unionSets(result, operand.get());
|
|
}
|
|
|
|
/// Set the inPlace bufferization spec to false.
|
|
void BufferizationAliasInfo::bufferizeOutOfPlace(OpOperand &operand) {
|
|
assert(!inplaceBufferized.contains(&operand) &&
|
|
"OpOperand was already decided to bufferize inplace");
|
|
}
|
|
|
|
/// Apply `fun` to all the members of the equivalence class of `v`.
|
|
void BufferizationAliasInfo::applyOnEquivalenceClass(
|
|
Value v, function_ref<void(Value)> fun) const {
|
|
auto leaderIt = equivalentInfo.findLeader(v);
|
|
for (auto mit = leaderIt, meit = equivalentInfo.member_end(); mit != meit;
|
|
++mit) {
|
|
fun(*mit);
|
|
}
|
|
}
|
|
|
|
/// Apply `fun` to all aliases of `v`.
|
|
void BufferizationAliasInfo::applyOnAliases(
|
|
Value v, function_ref<void(Value)> fun) const {
|
|
auto leaderIt = aliasInfo.findLeader(v);
|
|
for (auto mit = leaderIt, meit = aliasInfo.member_end(); mit != meit; ++mit) {
|
|
fun(*mit);
|
|
}
|
|
}
|
|
|
|
BufferizationAliasInfo::EquivalenceClassRangeType
|
|
BufferizationAliasInfo::getAliases(Value v) const {
|
|
DenseSet<Value> res;
|
|
auto it = aliasInfo.findValue(aliasInfo.getLeaderValue(v));
|
|
for (auto mit = aliasInfo.member_begin(it), meit = aliasInfo.member_end();
|
|
mit != meit; ++mit) {
|
|
res.insert(static_cast<Value>(*mit));
|
|
}
|
|
return BufferizationAliasInfo::EquivalenceClassRangeType(
|
|
aliasInfo.member_begin(it), aliasInfo.member_end());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AnalysisBufferizationState
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AnalysisBufferizationState::AnalysisBufferizationState(
|
|
Operation *op, const AnalysisBufferizationOptions &options)
|
|
: BufferizationState(options), aliasInfo(op) {
|
|
// Set up alias sets for OpResults that must bufferize in-place. This should
|
|
// be done before making any other bufferization decisions.
|
|
op->walk([&](BufferizableOpInterface bufferizableOp) {
|
|
if (!options.isOpAllowed(bufferizableOp))
|
|
return WalkResult::skip();
|
|
for (OpOperand &opOperand : bufferizableOp->getOpOperands()) {
|
|
if (opOperand.get().getType().isa<TensorType>())
|
|
if (bufferizableOp.mustBufferizeInPlace(opOperand, *this)) {
|
|
if (OpResult opResult =
|
|
bufferizableOp.getAliasingOpResult(opOperand, *this))
|
|
aliasInfo.unionAliasSets(opOperand.get(), opResult);
|
|
aliasInfo.markInPlace(opOperand);
|
|
}
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
bool AnalysisBufferizationState::isInPlace(OpOperand &opOperand) const {
|
|
return aliasInfo.isInPlace(opOperand);
|
|
}
|
|
|
|
bool AnalysisBufferizationState::areEquivalentBufferizedValues(Value v1,
|
|
Value v2) const {
|
|
return aliasInfo.areEquivalentBufferizedValues(v1, v2);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bufferization-specific alias analysis.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return true if opOperand has been decided to bufferize in-place.
|
|
static bool isInplaceMemoryWrite(OpOperand &opOperand,
|
|
const BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state) {
|
|
// OpOperands that do not bufferize to a memory write do not write in-place.
|
|
if (!state.bufferizesToMemoryWrite(opOperand))
|
|
return false;
|
|
// Check current bufferization decisions.
|
|
return aliasInfo.isInPlace(opOperand);
|
|
}
|
|
|
|
/// Return true if, under current bufferization decisions, the buffer of `value`
|
|
/// is not writable.
|
|
static bool aliasesNonWritableBuffer(Value value,
|
|
const BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state) {
|
|
bool foundNonWritableBuffer = false;
|
|
aliasInfo.applyOnAliases(value, [&](Value v) {
|
|
// Query BufferizableOpInterface to see if the value is writable.
|
|
// TODO: Out-of-place bufferized value could be considered writable.
|
|
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(v))
|
|
if (bufferizableOp && bufferizableOp.isWritable(v, state))
|
|
return;
|
|
|
|
// Query BufferizableOpInterface to see if the BlockArgument is writable.
|
|
if (auto bbArg = v.dyn_cast<BlockArgument>())
|
|
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(
|
|
bbArg.getOwner()->getParentOp()))
|
|
if (bufferizableOp.isWritable(bbArg, state))
|
|
return;
|
|
|
|
foundNonWritableBuffer = true;
|
|
});
|
|
|
|
return foundNonWritableBuffer;
|
|
}
|
|
|
|
/// Return true if the buffer to which `operand` would bufferize is equivalent
|
|
/// to some buffer write.
|
|
static bool aliasesInPlaceWrite(Value value,
|
|
const BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state) {
|
|
bool foundInplaceWrite = false;
|
|
aliasInfo.applyOnAliases(value, [&](Value v) {
|
|
for (auto &use : v.getUses()) {
|
|
if (isInplaceMemoryWrite(use, aliasInfo, state)) {
|
|
foundInplaceWrite = true;
|
|
return;
|
|
}
|
|
}
|
|
});
|
|
return foundInplaceWrite;
|
|
}
|
|
|
|
/// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors
|
|
/// properly dominates `b` and `b` is not inside `a`.
|
|
static bool happensBefore(Operation *a, Operation *b,
|
|
const DominanceInfo &domInfo) {
|
|
do {
|
|
// TODO: Instead of isProperAncestor + properlyDominates, we should use
|
|
// properlyDominatesImpl(a, b, /*enclosingOpOk=*/false)
|
|
if (a->isProperAncestor(b))
|
|
return false;
|
|
if (domInfo.properlyDominates(a, b))
|
|
return true;
|
|
} while ((a = a->getParentOp()));
|
|
return false;
|
|
}
|
|
|
|
/// Annotate IR with details about the detected RaW conflict.
|
|
static void annotateConflict(OpOperand *uRead, OpOperand *uConflictingWrite,
|
|
Value lastWrite) {
|
|
static uint64_t counter = 0;
|
|
Operation *readingOp = uRead->getOwner();
|
|
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
|
|
|
|
OpBuilder b(conflictingWritingOp->getContext());
|
|
std::string id = "C_" + std::to_string(counter++);
|
|
|
|
std::string conflictingWriteAttr =
|
|
id +
|
|
"[CONFL-WRITE: " + std::to_string(uConflictingWrite->getOperandNumber()) +
|
|
"]";
|
|
conflictingWritingOp->setAttr(conflictingWriteAttr, b.getUnitAttr());
|
|
|
|
std::string readAttr =
|
|
id + "[READ: " + std::to_string(uRead->getOperandNumber()) + "]";
|
|
readingOp->setAttr(readAttr, b.getUnitAttr());
|
|
|
|
if (auto opResult = lastWrite.dyn_cast<OpResult>()) {
|
|
std::string lastWriteAttr = id + "[LAST-WRITE: result " +
|
|
std::to_string(opResult.getResultNumber()) +
|
|
"]";
|
|
opResult.getDefiningOp()->setAttr(lastWriteAttr, b.getUnitAttr());
|
|
} else {
|
|
auto bbArg = lastWrite.cast<BlockArgument>();
|
|
std::string lastWriteAttr =
|
|
id + "[LAST-WRITE: bbArg " + std::to_string(bbArg.getArgNumber()) + "]";
|
|
bbArg.getOwner()->getParentOp()->setAttr(lastWriteAttr, b.getUnitAttr());
|
|
}
|
|
}
|
|
|
|
/// Given sets of uses and writes, return true if there is a RaW conflict under
|
|
/// the assumption that all given reads/writes alias the same buffer and that
|
|
/// all given writes bufferize inplace.
|
|
///
|
|
/// A conflict is: According to SSA use-def chains, a read R is supposed to read
|
|
/// the result of a write W1. But because of bufferization decisions, R actually
|
|
/// reads another write W2.
|
|
static bool hasReadAfterWriteInterference(
|
|
const DenseSet<OpOperand *> &usesRead,
|
|
const DenseSet<OpOperand *> &usesWrite, const DominanceInfo &domInfo,
|
|
BufferizationState &state, const BufferizationAliasInfo &aliasInfo) {
|
|
const BufferizationOptions &options = state.getOptions();
|
|
|
|
for (OpOperand *uRead : usesRead) {
|
|
Operation *readingOp = uRead->getOwner();
|
|
|
|
// Find most recent writes of uRead by following the SSA use-def chain.
|
|
// E.g.:
|
|
//
|
|
// %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32>
|
|
// %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32>
|
|
// %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type
|
|
//
|
|
// In the above example, if uRead is the OpOperand of reading_op, lastWrite
|
|
// is %0. Note that operations that create an alias but do not write (such
|
|
// as ExtractSliceOp) are skipped.
|
|
SetVector<Value> lastWrites = state.findLastPrecedingWrite(uRead->get());
|
|
|
|
// Look for conflicting memory writes. Potential conflicts are writes to an
|
|
// alias that have been decided to bufferize inplace.
|
|
for (OpOperand *uConflictingWrite : usesWrite) {
|
|
// Throughout this loop, check for multiple requirements that have to be
|
|
// met for uConflictingWrite to be an actual conflict.
|
|
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
|
|
|
|
// No conflict if the readingOp dominates conflictingWritingOp, i.e., the
|
|
// write is not visible when reading.
|
|
if (happensBefore(readingOp, conflictingWritingOp, domInfo))
|
|
continue;
|
|
|
|
// No conflict if the reading use equals the use of the conflicting write.
|
|
// A use cannot conflict with itself. Note: Just being the same op is not
|
|
// enough. It has to be the same use.
|
|
if (uConflictingWrite == uRead)
|
|
continue;
|
|
|
|
// No conflict if the op interface says so.
|
|
if (auto bufferizableOp = options.dynCastBufferizableOp(readingOp))
|
|
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state))
|
|
continue;
|
|
|
|
if (conflictingWritingOp != readingOp)
|
|
if (auto bufferizableOp =
|
|
options.dynCastBufferizableOp(conflictingWritingOp))
|
|
if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite, state))
|
|
continue;
|
|
|
|
// Ops are not conflicting if they are in mutually exclusive regions.
|
|
if (insideMutuallyExclusiveRegions(readingOp, conflictingWritingOp))
|
|
continue;
|
|
|
|
// Check all possible last writes.
|
|
for (Value lastWrite : lastWrites) {
|
|
// No conflict if the conflicting write happens before the last
|
|
// write.
|
|
if (Operation *writingOp = lastWrite.getDefiningOp()) {
|
|
if (happensBefore(conflictingWritingOp, writingOp, domInfo))
|
|
// conflictingWritingOp happens before writingOp. No conflict.
|
|
continue;
|
|
// No conflict if conflictingWritingOp is contained in writingOp.
|
|
if (writingOp->isProperAncestor(conflictingWritingOp))
|
|
continue;
|
|
} else {
|
|
auto bbArg = lastWrite.cast<BlockArgument>();
|
|
Block *block = bbArg.getOwner();
|
|
if (!block->findAncestorOpInBlock(*conflictingWritingOp))
|
|
// conflictingWritingOp happens outside of the block. No
|
|
// conflict.
|
|
continue;
|
|
}
|
|
|
|
// No conflict if the conflicting write and the last write are the same
|
|
// use.
|
|
if (state.getAliasingOpResult(*uConflictingWrite) == lastWrite)
|
|
continue;
|
|
|
|
// All requirements are met. Conflict found!
|
|
|
|
if (options.printConflicts)
|
|
annotateConflict(uRead, uConflictingWrite, lastWrite);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return true if bufferizing `operand` inplace would create a conflict. A read
|
|
/// R and a write W of the same alias set is a conflict if inplace bufferization
|
|
/// of W changes the value read by R to a value different from the one that
|
|
/// would be expected by tracing back R's origin through SSA use-def chains.
|
|
/// A conflict can only be introduced by a new alias and/or an inplace
|
|
/// bufferization decision.
|
|
///
|
|
/// Example:
|
|
/// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?}
|
|
/// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32>
|
|
/// %e = tensor.extract_slice %1
|
|
/// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32>
|
|
/// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32>
|
|
///
|
|
/// In the above example, the two TransferWriteOps have already been decided to
|
|
/// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a
|
|
/// conflict because:
|
|
/// * According to SSA use-def chains, we expect to read the result of %1.
|
|
/// * However, adding an alias {%0, %t} would mean that the second
|
|
/// TransferWriteOp overwrites the first one. Therefore, the TransferReadOp
|
|
/// would no longer be reading the result of %1.
|
|
///
|
|
/// If `checkConsistencyOnly` is true, this function checks if there is a
|
|
/// read-after-write conflict without bufferizing `operand` inplace. This would
|
|
/// indicate a problem with the current inplace bufferization decisions.
|
|
///
|
|
/// Note: If `checkConsistencyOnly`, this function may be called with a null
|
|
/// OpResult. In that case, only the consistency of bufferization decisions
|
|
/// involving aliases of the given OpOperand are checked.
|
|
static bool wouldCreateReadAfterWriteInterference(
|
|
OpOperand &operand, const DominanceInfo &domInfo, BufferizationState &state,
|
|
const BufferizationAliasInfo &aliasInfo,
|
|
bool checkConsistencyOnly = false) {
|
|
// Helper function to iterate on aliases of `root` and capture the reads.
|
|
auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) {
|
|
aliasInfo.applyOnAliases(root, [&](Value alias) {
|
|
for (auto &use : alias.getUses())
|
|
// Read to a value that aliases root.
|
|
if (state.bufferizesToMemoryRead(use))
|
|
res.insert(&use);
|
|
});
|
|
};
|
|
|
|
// Helper function to iterate on aliases of `root` and capture the writes.
|
|
auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) {
|
|
aliasInfo.applyOnAliases(root, [&](Value alias) {
|
|
for (auto &use : alias.getUses())
|
|
// Inplace write to a value that aliases root.
|
|
if (isInplaceMemoryWrite(use, aliasInfo, state))
|
|
res.insert(&use);
|
|
});
|
|
};
|
|
|
|
// Collect reads and writes of all aliases of OpOperand and OpResult.
|
|
DenseSet<OpOperand *> usesRead, usesWrite;
|
|
getAliasingReads(usesRead, operand.get());
|
|
getAliasingInplaceWrites(usesWrite, operand.get());
|
|
if (OpResult result = state.getAliasingOpResult(operand)) {
|
|
getAliasingReads(usesRead, result);
|
|
getAliasingInplaceWrites(usesWrite, result);
|
|
}
|
|
if (!checkConsistencyOnly && state.bufferizesToMemoryWrite(operand))
|
|
usesWrite.insert(&operand);
|
|
|
|
return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, state,
|
|
aliasInfo);
|
|
}
|
|
|
|
/// Return true if bufferizing `opOperand` inplace would create a write to a
|
|
/// non-writable buffer.
|
|
static bool
|
|
wouldCreateWriteToNonWritableBuffer(OpOperand &opOperand,
|
|
const BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state) {
|
|
// Certain buffers are not writeable:
|
|
// 1. A function bbArg that is not inplaceable or
|
|
// 2. A constant op.
|
|
bool nonWritable =
|
|
aliasesNonWritableBuffer(opOperand.get(), aliasInfo, state);
|
|
if (!nonWritable)
|
|
return false;
|
|
|
|
// This is a problem only if the buffer is written to via some alias.
|
|
bool hasWrite = aliasesInPlaceWrite(opOperand.get(), aliasInfo, state) ||
|
|
state.bufferizesToMemoryWrite(opOperand);
|
|
|
|
if (OpResult opResult = state.getAliasingOpResult(opOperand))
|
|
hasWrite |= aliasesInPlaceWrite(opResult, aliasInfo, state);
|
|
|
|
return hasWrite;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bufferization analyses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Determine if `operand` can be bufferized in-place.
|
|
static LogicalResult bufferizableInPlaceAnalysisImpl(
|
|
OpOperand &operand, BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state, const DominanceInfo &domInfo) {
|
|
bool foundInterference =
|
|
wouldCreateWriteToNonWritableBuffer(operand, aliasInfo, state) ||
|
|
wouldCreateReadAfterWriteInterference(operand, domInfo, state, aliasInfo);
|
|
|
|
if (foundInterference)
|
|
aliasInfo.bufferizeOutOfPlace(operand);
|
|
else
|
|
aliasInfo.bufferizeInPlace(operand, state);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Analyze the `ops` to determine which OpOperands are inplaceable. Walk ops in
|
|
/// reverse and bufferize ops greedily. This is a good starter heuristic.
|
|
///
|
|
/// Even if an op does not read or write, it may still create an alias when
|
|
/// bufferized in-place. An example of such ops is tensor.extract_slice.
|
|
///
|
|
/// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace:
|
|
///
|
|
/// When bufferized out of place, an ExtractSliceOp lowers to alloc + copy. This
|
|
/// cannot change the flow of information for either the source or the
|
|
/// result buffers.
|
|
///
|
|
/// When bufferized inplace, an ExtractSliceOp does not by itself create any
|
|
/// read or write from memory. Instead, it has the effect of merging the alias
|
|
/// sets of the source and the result buffers.
|
|
///
|
|
/// An analysis is required to ensure inplace bufferization would not result in
|
|
/// RaW dependence violations.
|
|
static LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state,
|
|
const DominanceInfo &domInfo,
|
|
unsigned analysisFuzzerSeed = 0) {
|
|
if (analysisFuzzerSeed) {
|
|
// This is a fuzzer. For testing purposes only. Randomize the order in which
|
|
// operations are analyzed. The bufferization quality is likely worse, but
|
|
// we want to make sure that no assertions are triggered anywhere.
|
|
std::mt19937 g(analysisFuzzerSeed);
|
|
llvm::shuffle(ops.begin(), ops.end(), g);
|
|
}
|
|
|
|
// Walk ops in reverse for better interference analysis.
|
|
for (Operation *op : reverse(ops))
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (opOperand.get().getType().isa<TensorType>())
|
|
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op))
|
|
if (failed(bufferizableInPlaceAnalysisImpl(opOperand, aliasInfo,
|
|
state, domInfo)))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Return true if the given op has a tensor result or a tensor operand.
|
|
static bool hasTensorSemantics(Operation *op) {
|
|
bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
|
|
bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
|
|
return hasTensorResult || hasTensorOperand;
|
|
}
|
|
|
|
/// Analyze all ops that are contained in `op`.
|
|
static LogicalResult inPlaceAnalysis(Operation *op,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state,
|
|
const DominanceInfo &domInfo,
|
|
unsigned analysisFuzzerSeed = 0) {
|
|
// Collect ops so we can build our own reverse traversal.
|
|
SmallVector<Operation *> ops;
|
|
op->walk([&](Operation *op) {
|
|
// No tensors => no buffers.
|
|
if (!hasTensorSemantics(op))
|
|
return;
|
|
ops.push_back(op);
|
|
});
|
|
|
|
return inPlaceAnalysis(ops, aliasInfo, state, domInfo, analysisFuzzerSeed);
|
|
}
|
|
|
|
/// Analyze equivalence of tied OpResult/OpOperand pairs of the given ops.
|
|
static void equivalenceAnalysis(SmallVector<Operation *> &ops,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state) {
|
|
for (Operation *op : ops)
|
|
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op))
|
|
for (OpResult opResult : op->getOpResults())
|
|
if (opResult.getType().isa<TensorType>())
|
|
for (OpOperand *opOperand :
|
|
bufferizableOp.getAliasingOpOperand(opResult, state))
|
|
if (state.isInPlace(*opOperand))
|
|
if (bufferizableOp.bufferRelation(opResult, state) ==
|
|
BufferRelation::Equivalent)
|
|
aliasInfo.unionEquivalenceClasses(opResult, opOperand->get());
|
|
}
|
|
|
|
/// Analyze equivalence of tied OpResult/OpOperand pairs of all ops contained
|
|
/// in `op`.
|
|
static void equivalenceAnalysis(Operation *op,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state) {
|
|
// Traverse ops in PostOrder: Nested ops first, then enclosing ops.
|
|
SmallVector<Operation *> ops;
|
|
op->walk<WalkOrder::PostOrder>([&](Operation *op) {
|
|
// No tensors => no buffers.
|
|
if (none_of(op->getResultTypes(), isaTensor))
|
|
return;
|
|
ops.push_back(op);
|
|
});
|
|
|
|
equivalenceAnalysis(ops, aliasInfo, state);
|
|
}
|
|
|
|
/// Assert that the current bufferization decisions are consistent.
|
|
static LogicalResult
|
|
checkAliasInfoConsistency(Operation *op, const DominanceInfo &domInfo,
|
|
BufferizationState &state,
|
|
const BufferizationAliasInfo &aliasInfo) {
|
|
const BufferizationOptions &options = state.getOptions();
|
|
Operation *inconsistentOp = nullptr;
|
|
WalkResult walkResult = op->walk([&](Operation *op) {
|
|
if (auto bufferizableOp = options.dynCastBufferizableOp(op))
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (opOperand.get().getType().isa<TensorType>()) {
|
|
if (wouldCreateReadAfterWriteInterference(
|
|
opOperand, domInfo, state, aliasInfo,
|
|
/*checkConsistencyOnly=*/true)) {
|
|
// This error can happen if certain "mustBufferizeInPlace" interface
|
|
// methods are implemented incorrectly, such that the IR already has
|
|
// a RaW conflict before making any bufferization decisions.
|
|
inconsistentOp = op;
|
|
return WalkResult::interrupt();
|
|
}
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
|
|
if (walkResult.wasInterrupted())
|
|
return inconsistentOp->emitError("input IR has RaW conflict");
|
|
return success();
|
|
}
|
|
|
|
/// Annotate the IR with the result of the analysis. For testing/debugging only.
|
|
static void
|
|
annotateOpsWithBufferizationMarkers(Operation *op,
|
|
const BufferizationAliasInfo &aliasInfo,
|
|
BufferizationState &state) {
|
|
op->walk([&](Operation *op) {
|
|
if (auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op))
|
|
for (OpOperand &opOperand : op->getOpOperands())
|
|
if (opOperand.get().getType().isa<TensorType>())
|
|
setInPlaceOpOperand(opOperand, aliasInfo.isInPlace(opOperand));
|
|
});
|
|
}
|
|
|
|
/// Assert that IR is in destination-passing style. I.e., every value that is
|
|
/// returned or yielded from a block is:
|
|
/// * aliasing a bbArg of that block or a parent block, or
|
|
/// * aliasing an OpResult of a op in a parent block.
|
|
///
|
|
/// Example:
|
|
/// ```
|
|
/// %0 = "some_op" : tensor<?xf32>
|
|
/// %1 = scf.if %c -> (tensor<?xf32>) {
|
|
/// scf.yield %0 : tensor<?xf32>
|
|
/// } else {
|
|
/// %t = linalg.init_tensor : tensor<?xf32>
|
|
/// scf.yield %t : tensor<?xf32>
|
|
/// }
|
|
/// ```
|
|
/// In the above example, the first scf.yield op satifies destination-passing
|
|
/// style because the yielded value %0 is defined in the parent block. The
|
|
/// second scf.yield op does not satisfy destination-passing style because the
|
|
/// yielded value %t is defined in the same block as the scf.yield op.
|
|
// TODO: The current implementation checks for equivalent values instead of
|
|
// aliasing values, which is stricter than needed. We can currently not check
|
|
// for aliasing values because the analysis is a maybe-alias analysis and we
|
|
// need a must-alias analysis here.
|
|
static LogicalResult
|
|
assertDestinationPassingStyle(Operation *op, BufferizationState &state,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
SmallVector<Operation *> &newOps) {
|
|
LogicalResult status = success();
|
|
DominanceInfo domInfo(op);
|
|
op->walk([&](Operation *returnOp) {
|
|
if (!isRegionReturnLike(returnOp))
|
|
return WalkResult::advance();
|
|
|
|
for (OpOperand &returnValOperand : returnOp->getOpOperands()) {
|
|
Value returnVal = returnValOperand.get();
|
|
// Skip non-tensor values.
|
|
if (!returnVal.getType().isa<TensorType>())
|
|
continue;
|
|
|
|
bool foundEquivValue = false;
|
|
aliasInfo.applyOnEquivalenceClass(returnVal, [&](Value equivVal) {
|
|
if (auto bbArg = equivVal.dyn_cast<BlockArgument>()) {
|
|
Operation *definingOp = bbArg.getOwner()->getParentOp();
|
|
if (definingOp->isProperAncestor(returnOp))
|
|
foundEquivValue = true;
|
|
return;
|
|
}
|
|
|
|
Operation *definingOp = equivVal.getDefiningOp();
|
|
if (definingOp->getBlock()->findAncestorOpInBlock(
|
|
*returnOp->getParentOp()))
|
|
// Skip ops that happen after `returnOp` and parent ops.
|
|
if (happensBefore(definingOp, returnOp, domInfo))
|
|
foundEquivValue = true;
|
|
});
|
|
|
|
if (!foundEquivValue)
|
|
status =
|
|
returnOp->emitError()
|
|
<< "operand #" << returnValOperand.getOperandNumber()
|
|
<< " of ReturnLike op does not satisfy destination passing style";
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
|
|
return status;
|
|
}
|
|
|
|
LogicalResult bufferization::analyzeOp(Operation *op,
|
|
AnalysisBufferizationState &state) {
|
|
DominanceInfo domInfo(op);
|
|
BufferizationAliasInfo &aliasInfo = state.getAliasInfo();
|
|
const auto &options =
|
|
static_cast<const AnalysisBufferizationOptions &>(state.getOptions());
|
|
|
|
if (failed(checkAliasInfoConsistency(op, domInfo, state, aliasInfo)))
|
|
return failure();
|
|
|
|
// If the analysis fails, just return.
|
|
if (failed(inPlaceAnalysis(op, aliasInfo, state, domInfo,
|
|
options.analysisFuzzerSeed)))
|
|
return failure();
|
|
equivalenceAnalysis(op, aliasInfo, state);
|
|
|
|
for (const PostAnalysisStepFn &fn : options.postAnalysisSteps) {
|
|
SmallVector<Operation *> newOps;
|
|
if (failed(fn(op, state, aliasInfo, newOps)))
|
|
return failure();
|
|
// Analyze ops that were created by the PostAnalysisStepFn.
|
|
if (failed(inPlaceAnalysis(newOps, aliasInfo, state, domInfo)))
|
|
return failure();
|
|
equivalenceAnalysis(newOps, aliasInfo, state);
|
|
}
|
|
|
|
if (!options.allowReturnMemref) {
|
|
SmallVector<Operation *> newOps;
|
|
if (failed(assertDestinationPassingStyle(op, state, aliasInfo, newOps)))
|
|
return failure();
|
|
}
|
|
|
|
// Annotate operations if we only want to report the analysis.
|
|
if (options.testAnalysisOnly)
|
|
annotateOpsWithBufferizationMarkers(op, aliasInfo, state);
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult bufferization::runOneShotBufferize(
|
|
Operation *op, std::unique_ptr<AnalysisBufferizationOptions> options) {
|
|
AnalysisBufferizationState state(op, *options);
|
|
if (failed(analyzeOp(op, state)))
|
|
return failure();
|
|
if (options->testAnalysisOnly)
|
|
return success();
|
|
return bufferizeOp(op, state);
|
|
}
|