Matthias Springer cdb7675c26 [mlir][bufferize][NFC] Make PostAnalysisSteps a function
They used to be classes with a virtual `run` function. This was inconvenient because post analysis steps are stored in BufferizationOptions. Because of this design choice, BufferizationOptions were not copyable.

Differential Revision: https://reviews.llvm.org/D119258
2022-02-09 18:56:06 +09:00

699 lines
28 KiB
C++

//===- LinalgInterfaceImpl.cpp - Linalg Impl. of BufferizableOpInterface --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/LinalgInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace linalg;
using namespace comprehensive_bufferize;
using namespace mlir::bufferization;
namespace {
// TODO: Ops in the linalg dialect can directly implement this interface.
/// Generic conversion for any LinalgOp on tensors.
static LogicalResult bufferizeLinalgOp(RewriterBase &rewriter, LinalgOp op,
const BufferizationState &state) {
// Take a guard before anything else.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
// Nothing to do. This op is already bufferized.
if (op.hasBufferSemantics())
return success();
// Ensure op has only tensors. Allow mixed tensor-buffer mode on a per-need
// basis.
if (!op.hasTensorSemantics())
return op->emitError() << "op does not have tensor semantics";
// New input operands for the cloned op.
SmallVector<Value> newInputBuffers;
newInputBuffers.reserve(op.getNumInputs());
for (OpOperand *opOperand : op.getInputOperands()) {
if (op.isScalar(opOperand)) {
newInputBuffers.push_back(opOperand->get());
continue;
}
// Input operands are never written to.
newInputBuffers.push_back(
*state.getBuffer(rewriter, *opOperand, /*forceInPlace=*/true));
}
// New output operands for the cloned op.
SmallVector<Value> newOutputBuffers;
for (OpResult opResult : op->getOpResults()) {
SmallVector<OpOperand *> aliasingOpOperands =
state.getAliasingOpOperand(opResult);
assert(aliasingOpOperands.size() == 1 && "expected 1 OpOperand");
FailureOr<Value> resultBuffer =
state.getBuffer(rewriter, *aliasingOpOperands.front());
if (failed(resultBuffer))
return failure();
newOutputBuffers.push_back(*resultBuffer);
}
// Merge input/output operands.
SmallVector<Value> newOperands = newInputBuffers;
newOperands.append(newOutputBuffers.begin(), newOutputBuffers.end());
// Set insertion point now that potential alloc/dealloc are introduced.
rewriter.setInsertionPoint(op);
// Clone the op, but use the new operands. Move the existing block into the
// new op. Since the new op does not have any tensor results, it does not
// return anything.
assert(op->getNumRegions() == 1 && "expected that op has 1 region");
auto newOp = cast<LinalgOp>(op.cloneWithoutRegions(
rewriter, op.getLoc(), /*resultTypes=*/TypeRange{}, newOperands));
rewriter.inlineRegionBefore(op->getRegion(0), newOp->getRegion(0),
newOp->getRegion(0).begin());
// Replace the results of the old op with the new output buffers.
replaceOpWithBufferizedValues(rewriter, op, newOutputBuffers);
return success();
}
/// Linalg OpResults usually bufferize inplace with their tied (output
/// OpOperands. However, if an output OpOperand is not used in the computation,
/// it is better to bufferize inplace with an actually used input OpOperand;
/// less memory will be touched that way.
///
/// Example:
/// O(i, j) = A(i, j) + B(j) --> bufferizes inplace to: A(i, j) += B(j)
///
/// O(i, j) = A(j, i) + B(j) --> cannot bufferize inplace with A because
/// indexing maps are not identical
///
/// O(i, j) += A(i, j) + B(j) --> Output is used in computation.
/// This could bufferize inplace with A:
/// A(i, j) += O(i, j) + B(j)
/// However, we choose to bufferize inplace with O here, as there is no clear
/// benefit of choosing A. TODO: We may want to consider both options and make
/// an informed decision during analysis in the future.
static DenseMap<OpOperand *, OpResult> computeAliasingPairs(LinalgOp op) {
DenseMap<OpOperand *, OpResult> mapping;
for (OpResult opResult : op->getOpResults()) {
OpOperand *tiedOperand =
op.getOutputTensorOperands()[opResult.getResultNumber()];
AffineMap outputIndexingMap = op.getTiedIndexingMap(tiedOperand);
bool onlyParallelIterators = op.getNumParallelLoops() == op.getNumLoops();
bool tiedOperandUsed = op.payloadUsesValueFromOperand(tiedOperand);
// If the output arg is used in the computation or at least one iterator is
// not parallel, try to bufferize inplace with the corresponding output
// tensor.
if (tiedOperandUsed || !onlyParallelIterators) {
mapping[tiedOperand] = opResult;
continue;
}
// Otherwise, try to bufferize inplace with one of the inputs.
OpOperand *chosenOperand = nullptr;
for (OpOperand *opOperand : op.getInputTensorOperands()) {
if (opOperand->get().getType() != opResult.getType())
continue;
if (!op.payloadUsesValueFromOperand(opOperand))
continue;
if (op.getTiedIndexingMap(opOperand) != outputIndexingMap)
continue;
// No other OpResult bufferizes aliases with this OpOperand.
if (mapping.count(opOperand))
continue;
assert(op.getTiedIndexingMap(opOperand).isProjectedPermutation() &&
"expected projected permutation");
chosenOperand = opOperand;
break;
}
// No suitable input tensor found. Use output tensor.
// TODO: This operand could bufferize inplace with OpOperands that have the
// correct type, even if they are not used inside the computation.
if (!chosenOperand)
chosenOperand = tiedOperand;
mapping[chosenOperand] = opResult;
}
return mapping;
}
/// Bufferization of linalg.generic. Replace with a new linalg.generic that
/// operates entirely on memrefs.
template <typename OpTy>
struct LinalgOpInterface
: public BufferizableOpInterface::ExternalModel<LinalgOpInterface<OpTy>,
OpTy> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
// Operand is read if it is used in the computation.
auto genericOp = cast<linalg::LinalgOp>(op);
return genericOp.payloadUsesValueFromOperand(&opOperand);
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
// Operand is written to if it has an aliasing OpResult. For more details,
// see `computeAliasingPairs`.
auto bufferizableOp = cast<BufferizableOpInterface>(op);
return static_cast<bool>(
bufferizableOp.getAliasingOpResult(opOperand, state));
}
SmallVector<OpOperand *>
getAliasingOpOperand(Operation *op, OpResult opResult,
const BufferizationState &state) const {
auto genericOp = cast<linalg::LinalgOp>(op);
// Aliasing OpOperand/OpResult pairs are computed by `computeAliasingPairs`.
DenseMap<OpOperand *, OpResult> pairs = computeAliasingPairs(genericOp);
for (OpOperand *opOperand : genericOp.getInputAndOutputOperands())
if (pairs[opOperand] == opResult)
return {opOperand};
return {};
}
OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
auto genericOp = cast<linalg::LinalgOp>(op);
// Aliasing OpOperand/OpResult pairs are computed by `computeAliasingPairs`.
DenseMap<OpOperand *, OpResult> pairs = computeAliasingPairs(genericOp);
return pairs[&opOperand];
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const BufferizationState &state) const {
return BufferRelation::Equivalent;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationState &state) const {
return bufferizeLinalgOp(rewriter, cast<LinalgOp>(op), state);
}
};
struct InitTensorOpInterface
: public BufferizableOpInterface::ExternalModel<InitTensorOpInterface,
linalg::InitTensorOp> {
bool isMemoryWrite(Operation *op, OpResult opResult,
const BufferizationState &state) const {
// InitTensorOps allocate but do not write.
return false;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationState &state) const {
auto initTensorOp = cast<linalg::InitTensorOp>(op);
// The InitTensorOp may have been eliminated.
if (initTensorOp->getUses().empty())
return success();
FailureOr<Value> alloc =
createAlloc(rewriter, initTensorOp->getLoc(), initTensorOp.result(),
state.getOptions().createDeallocs, state.getOptions());
if (failed(alloc))
return failure();
replaceOpWithBufferizedValues(rewriter, op, *alloc);
return success();
}
};
/// Bufferization of linalg.tiled_loop. Replace with a new linalg.tiled_loop
/// that operates entirely on memrefs.
struct TiledLoopOpInterface
: public BufferizableOpInterface::ExternalModel<TiledLoopOpInterface,
linalg::TiledLoopOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
auto tiledLoopOp = cast<linalg::TiledLoopOp>(op);
// linalg.tiled_loop operands alone do not bufferize to a memory read, but
// one of the uses of their matching bbArgs may.
return state.isValueRead(tiledLoopOp.getTiedBlockArgument(opOperand));
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
auto bufferizableOp = cast<BufferizableOpInterface>(op);
// Only operands with an aliasing OpResult (i.e., output operands) bufferize
// to a memory write.
return static_cast<bool>(
bufferizableOp.getAliasingOpResult(opOperand, state));
}
OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
auto tiledLoopOp = cast<linalg::TiledLoopOp>(op);
// Output operands are tied to their corresponding OpResults.
return tiledLoopOp.getTiedOpResult(opOperand);
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const BufferizationState &state) const {
return BufferRelation::Equivalent;
}
bool isWritable(Operation *op, Value value,
const BufferizationState &state) const {
// Interestingly, linalg::TiledLoopOp's bbArgs can **always** be viewed
// inplace from the perspective of nested ops:
// 1. Either the matching iter operand is not bufferized inplace and an
// alloc + optional copy makes the bbArg itself inplaceable.
// 2. Or the matching iter operand is bufferized inplace and bbArg just
// bufferizes to that too.
return true;
}
bool isAllocationHoistingBarrier(Operation *op) const { return true; }
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationState &state) const {
auto tiledLoopOp = cast<linalg::TiledLoopOp>(op);
// Compute new inputs, outputs and results.
SmallVector<Value> newInputs, newOutputs, newResults;
for (unsigned i = tiledLoopOp.getNumControlOperands();
i < tiledLoopOp->getNumOperands(); ++i) {
OpOperand &operand = tiledLoopOp->getOpOperand(i);
Value rewrittenValue = operand.get();
if (rewrittenValue.getType().isa<TensorType>()) {
FailureOr<Value> bufferOrFailure = state.getBuffer(rewriter, operand);
if (failed(bufferOrFailure))
return failure();
rewrittenValue = *bufferOrFailure;
}
if (i <
tiledLoopOp.getNumControlOperands() + tiledLoopOp.getNumInputs()) {
newInputs.push_back(rewrittenValue);
} else {
newOutputs.push_back(rewrittenValue);
if (operand.get().getType().isa<TensorType>())
newResults.push_back(rewrittenValue);
}
}
// Create new TiledLoopOp.
auto newTiledLoopOp = rewriter.create<TiledLoopOp>(
tiledLoopOp.getLoc(), tiledLoopOp.lowerBound(),
tiledLoopOp.upperBound(), tiledLoopOp.step(), newInputs, newOutputs,
tiledLoopOp.iterator_types(), tiledLoopOp.distribution_types());
// Remove terminator.
if (!newTiledLoopOp.getBody()->empty())
rewriter.eraseOp(tiledLoopOp.getBody()->getTerminator());
// Compute new loop body arguments.
SmallVector<Value> newBlockArgs, newRegionInOutArgs, oldRegionInOutArgs;
ValueRange newInductionVars = newTiledLoopOp.getInductionVars();
newBlockArgs.append(newInductionVars.begin(), newInductionVars.end());
ValueRange newRegionInArgs = newTiledLoopOp.getRegionInputArgs();
ValueRange newRegionOutArgs = newTiledLoopOp.getRegionOutputArgs();
newRegionInOutArgs.append(newRegionInArgs.begin(), newRegionInArgs.end());
newRegionInOutArgs.append(newRegionOutArgs.begin(), newRegionOutArgs.end());
ValueRange oldRegionInArgs = tiledLoopOp.getRegionInputArgs();
ValueRange oldRegionOutArgs = tiledLoopOp.getRegionOutputArgs();
oldRegionInOutArgs.append(oldRegionInArgs.begin(), oldRegionInArgs.end());
oldRegionInOutArgs.append(oldRegionOutArgs.begin(), oldRegionOutArgs.end());
assert(newRegionInArgs.size() == oldRegionInArgs.size() &&
"expected same number of input args");
assert(newRegionOutArgs.size() == oldRegionOutArgs.size() &&
"expected same number of output args");
for (auto it : llvm::zip(oldRegionInOutArgs, newRegionInOutArgs)) {
Value oldArg = std::get<0>(it);
Value newArg = std::get<1>(it);
rewriter.setInsertionPointToStart(newTiledLoopOp.getBody());
if (oldArg.getType().isa<TensorType>()) {
newBlockArgs.push_back(rewriter.create<bufferization::ToTensorOp>(
oldArg.getLoc(), newArg));
} else {
newBlockArgs.push_back(newArg);
}
}
// Move old body into new loop.
rewriter.mergeBlocks(tiledLoopOp.getBody(), newTiledLoopOp.getBody(),
newBlockArgs);
// Replace previous terminator with a new one that does not yield anything.
auto oldTerminator =
cast<linalg::YieldOp>(newTiledLoopOp.getBody()->getTerminator());
rewriter.setInsertionPointToEnd(newTiledLoopOp.getBody());
auto newTerminator =
rewriter.create<linalg::YieldOp>(oldTerminator->getLoc());
// Copy buffer of yielded tensor to output buffer. If everything bufferized
// inplace, this copy will fold away.
rewriter.setInsertionPoint(newTerminator);
for (auto it : llvm::zip(oldTerminator.values(), newOutputs)) {
Value output = std::get<1>(it);
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
newTerminator.getLoc(), output.getType(), std::get<0>(it));
if (failed(createMemCpy(rewriter, newTerminator.getLoc(), toMemrefOp,
output, state.getOptions())))
return failure();
}
// Erase old terminator.
rewriter.eraseOp(oldTerminator);
// Replace results and delete old op.
replaceOpWithBufferizedValues(rewriter, op, newResults);
return success();
}
};
/// Bufferization of linalg.yield. Bufferized as part of linalg.tiled_loop's
/// bufferization.
struct YieldOpInterface
: public BufferizableOpInterface::ExternalModel<YieldOpInterface,
linalg::YieldOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
return false;
}
OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
return OpResult();
}
bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand,
const BufferizationState &state) const {
// Yield operands always bufferize inplace. Otherwise, an alloc + copy
// may be generated inside the block. We should not return/yield allocations
// when possible.
return true;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationState &state) const {
auto yieldOp = cast<linalg::YieldOp>(op);
if (!yieldOp->getParentOfType<TiledLoopOp>())
return yieldOp->emitError(
"expected that linalg.yield terminates a tiled_loop");
assert(yieldOp->getOpOperands().empty() &&
"expected that linalg.yield was bufferized together with"
" tiled_loop");
return success();
}
};
/// Helper structure that iterates over all LinalgOps in `OpTys` and registers
/// the `BufferizableOpInterface` with each of them.
template <typename... OpTys>
struct LinalgOpInterfaceHelper;
template <typename First, typename... Others>
struct LinalgOpInterfaceHelper<First, Others...> {
static void registerOpInterface(DialectRegistry &registry) {
registry.addOpInterface<First, LinalgOpInterface<First>>();
LinalgOpInterfaceHelper<Others...>::registerOpInterface(registry);
}
};
template <>
struct LinalgOpInterfaceHelper<> {
static void registerOpInterface(DialectRegistry &registry) {}
};
} // namespace
/// Return true if all `neededValues` are in scope at the given
/// `insertionPoint`.
static bool
neededValuesDominateInsertionPoint(const DominanceInfo &domInfo,
Operation *insertionPoint,
const SmallVector<Value> &neededValues) {
for (Value val : neededValues) {
if (auto bbArg = val.dyn_cast<BlockArgument>()) {
Block *owner = bbArg.getOwner();
if (!owner->findAncestorOpInBlock(*insertionPoint))
return false;
} else {
auto opResult = val.cast<OpResult>();
if (!domInfo.dominates(opResult.getOwner(), insertionPoint))
return false;
}
}
return true;
}
/// Return true if the given `insertionPoint` dominates all uses of
/// `initTensorOp`.
static bool insertionPointDominatesUses(const DominanceInfo &domInfo,
Operation *insertionPoint,
Operation *initTensorOp) {
for (Operation *user : initTensorOp->getUsers())
if (!domInfo.dominates(insertionPoint, user))
return false;
return true;
}
/// Find a valid insertion point for a replacement of `initTensorOp`, assuming
/// that the replacement may use any value from `neededValues`.
static Operation *
findValidInsertionPoint(Operation *initTensorOp,
const SmallVector<Value> &neededValues) {
DominanceInfo domInfo;
// Gather all possible insertion points: the location of `initTensorOp` and
// right after the definition of each value in `neededValues`.
SmallVector<Operation *> insertionPointCandidates;
insertionPointCandidates.push_back(initTensorOp);
for (Value val : neededValues) {
// Note: The anchor op is using all of `neededValues`, so:
// * in case of a block argument: There must be at least one op in the block
// (the anchor op or one of its parents).
// * in case of an OpResult: There must be at least one op right after the
// defining op (the anchor op or one of its
// parents).
if (auto bbArg = val.dyn_cast<BlockArgument>()) {
insertionPointCandidates.push_back(
&bbArg.getOwner()->getOperations().front());
} else {
insertionPointCandidates.push_back(val.getDefiningOp()->getNextNode());
}
}
// Select first matching insertion point.
for (Operation *insertionPoint : insertionPointCandidates) {
// Check if all needed values are in scope.
if (!neededValuesDominateInsertionPoint(domInfo, insertionPoint,
neededValues))
continue;
// Check if the insertion point is before all uses.
if (!insertionPointDominatesUses(domInfo, insertionPoint, initTensorOp))
continue;
return insertionPoint;
}
// No suitable insertion point was found.
return nullptr;
}
/// Try to eliminate InitTensorOps inside `op`. An InitTensorOp is replaced
/// with the the result of `rewriteFunc` if it is anchored on a matching
/// OpOperand. "Anchored" means that there is a path on the reverse SSA use-def
/// chain, starting from the OpOperand and always following the aliasing
/// OpOperand, that eventually ends at a single InitTensorOp.
LogicalResult
mlir::linalg::comprehensive_bufferize::linalg_ext::eliminateInitTensors(
Operation *op, BufferizationState &state, BufferizationAliasInfo &aliasInfo,
AnchorMatchFn anchorMatchFunc, RewriteFn rewriteFunc,
SmallVector<Operation *> &newOps) {
OpBuilder b(op->getContext());
WalkResult status = op->walk([&](Operation *op) {
for (OpOperand &operand : op->getOpOperands()) {
// Skip operands that do not bufferize inplace.
if (!aliasInfo.isInPlace(operand))
continue;
// All values that are needed to create the replacement op.
SmallVector<Value> neededValues;
// Is this a matching OpOperand?
if (!anchorMatchFunc(operand, neededValues))
continue;
SetVector<Value> maybeInitTensor =
state.findValueInReverseUseDefChain(operand.get(), [&](Value val) {
// Continue traversal until this function returns true.
OpResult opResult = val.dyn_cast<OpResult>();
if (!opResult)
return true;
SmallVector<OpOperand *> opOperands =
state.getAliasingOpOperand(opResult);
if (!llvm::all_of(opOperands, [&](OpOperand *operand) {
return aliasInfo.isInPlace(*operand);
}))
return true;
// Only equivalent tensors are supported at the moment.
// TODO: Support cases such as extract_slice(init_tensor)
return !llvm::all_of(opOperands, [&](OpOperand *operand) {
return aliasInfo.areEquivalentBufferizedValues(operand->get(),
opResult);
});
});
// Replace only if the reverse use-def chain ends at exactly one
// InitTensorOp.
if (maybeInitTensor.size() != 1 ||
!maybeInitTensor.front().getDefiningOp<InitTensorOp>())
return WalkResult::skip();
Value initTensor = maybeInitTensor.front();
// Find a suitable insertion point.
Operation *insertionPoint =
findValidInsertionPoint(initTensor.getDefiningOp(), neededValues);
if (!insertionPoint)
continue;
// Create a replacement for the InitTensorOp.
b.setInsertionPoint(insertionPoint);
Value replacement = rewriteFunc(b, initTensor.getLoc(), operand);
if (!replacement)
continue;
// Uses of the InitTensorOp are replaced here, but the op is not deleted.
// InitTensorOps without uses are ignored by the bufferization.
initTensor.replaceAllUsesWith(replacement);
aliasInfo.createAliasInfoEntry(replacement);
aliasInfo.unionAliasSets(initTensor, replacement);
aliasInfo.unionEquivalenceClasses(initTensor, replacement);
// Register replacement ops.
if (Operation *newOp = replacement.getDefiningOp())
newOps.push_back(newOp);
}
// Advance to the next operation.
return WalkResult::advance();
});
return failure(status.wasInterrupted());
}
/// Try to eliminate InitTensorOps inside `op`. An InitTensorOp can be
/// eliminated if it is eventually inserted into another tensor (and some other
/// conditions are met).
///
/// E.g.:
/// %0 = linalg.init_tensor
/// %1 = linalg.fill(%cst, %0) {inplace = [true]}
/// %2 = tensor.insert_slice %1 into %t[10][20][1]
///
/// InitTensorOp elimination will try to fill %t inplace instead of filling a
/// new allocation %0 and inserting it into %t. This is done by replacing the
/// InitTensorOp with:
///
/// %0 = tensor.extract_slice %t[10][20][1]
///
/// The analysis looks for matching ExtractSliceOp/InsertSliceOp pairs and lets
/// those bufferize inplace in the absence of other conflicts.
///
/// Starting from an InsertSliceOp, an InitTensorOp at the end of the insert
/// source's reverse use-def chain is eliminated if:
/// * The InsertSliceOp was decided to bufferize inplace.
/// * On the reverse use-def chain path from the InsertSliceOp to the
/// InitTensorOp, all ops were decided to bufferize inplace and the buffer
/// relation is "equivalent" (TODO: can be relaxed if needed).
/// * The reverse use-def chain has exactly one end, which is the InitTensorOp.
///
/// Note that the newly inserted ExtractSliceOp may have to bufferize
/// out-of-place due to RaW conflicts.
LogicalResult mlir::linalg::comprehensive_bufferize::linalg_ext::
insertSliceAnchoredInitTensorEliminationStep(
Operation *op, BufferizationState &state,
BufferizationAliasInfo &aliasInfo, SmallVector<Operation *> &newOps) {
return eliminateInitTensors(
op, state, aliasInfo,
/*anchorMatchFunc=*/
[&](OpOperand &operand, SmallVector<Value> &neededValues) {
auto insertSliceOp =
dyn_cast<tensor::InsertSliceOp>(operand.getOwner());
if (!insertSliceOp)
return false;
// Only inplace bufferized InsertSliceOps are eligible.
if (!aliasInfo.isInPlace(insertSliceOp->getOpOperand(1) /*dest*/))
return false;
if (&operand != &insertSliceOp->getOpOperand(0) /*source*/)
return false;
// Collect all values that are needed to construct the replacement op.
neededValues.append(insertSliceOp.offsets().begin(),
insertSliceOp.offsets().end());
neededValues.append(insertSliceOp.sizes().begin(),
insertSliceOp.sizes().end());
neededValues.append(insertSliceOp.strides().begin(),
insertSliceOp.strides().end());
neededValues.push_back(insertSliceOp.dest());
return true;
},
/*rewriteFunc=*/
[](OpBuilder &b, Location loc, OpOperand &operand) {
auto insertOp = cast<tensor::InsertSliceOp>(operand.getOwner());
// Expand offsets, sizes and strides to the full rank to handle the
// rank-reducing case.
SmallVector<OpFoldResult> mixedOffsets = insertOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = insertOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = insertOp.getMixedStrides();
OffsetSizeAndStrideOpInterface::expandToRank(
insertOp.dest(), mixedOffsets, mixedSizes, mixedStrides,
[&](Value target, int64_t dim) -> OpFoldResult {
auto shapedType = target.getType().cast<ShapedType>();
if (shapedType.isDynamicDim(dim))
return b.create<tensor::DimOp>(loc, target, dim).result();
return b.getIndexAttr(shapedType.getDimSize(dim));
});
auto t = tensor::ExtractSliceOp::inferRankReducedResultType(
insertOp.getSourceType().getRank(),
insertOp.dest().getType().cast<RankedTensorType>(), mixedOffsets,
mixedSizes, mixedStrides);
auto extractOp = b.create<tensor::ExtractSliceOp>(
loc, t, insertOp.dest(), mixedOffsets, mixedSizes, mixedStrides);
return extractOp.result();
},
newOps);
}
void mlir::linalg::comprehensive_bufferize::linalg_ext::
registerBufferizableOpInterfaceExternalModels(DialectRegistry &registry) {
registry.addOpInterface<linalg::InitTensorOp, InitTensorOpInterface>();
registry.addOpInterface<linalg::TiledLoopOp, TiledLoopOpInterface>();
registry.addOpInterface<linalg::YieldOp, YieldOpInterface>();
// Register all Linalg structured ops. `LinalgOp` is an interface and it is
// not possible to attach an external interface to an existing interface.
// Therefore, attach the `BufferizableOpInterface` to all ops one-by-one.
LinalgOpInterfaceHelper<
#define GET_OP_LIST
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>::registerOpInterface(registry);
}