llvm-project/clang/lib/AST/ParentMap.cpp
Jordan Rose cf10ea8cb2 [analyzer; new edges] Simplify edges in a C++11 for-range loop.
Previously our edges were completely broken here; now, the final result
is a very simple set of edges in most cases: one up to the "for" keyword
for context, and one into the body of the loop. This matches the behavior
for ObjC for-in loops.

In the AST, however, CXXForRangeStmts are handled very differently from
ObjCForCollectionStmts. Since they are specified in terms of equivalent
statements in the C++ standard, we actually have implicit AST nodes for
all of the semantic statements. This makes evaluation very easy, but
diagnostic locations a bit trickier. Fortunately, the problem can be
generally defined away by marking all of the implicit statements as
part of the top-level for-range statement.

One of the implicit statements in a for-range statement is the declaration
of implicit iterators __begin and __end. The CFG synthesizes two
separate DeclStmts to match each of these decls, but until now these
synthetic DeclStmts weren't in the function's ParentMap. Now, the CFG
keeps track of its synthetic statements, and the AnalysisDeclContext will
make sure to add them to the ParentMap.

<rdar://problem/14038483>

llvm-svn: 183449
2013-06-06 21:53:45 +00:00

199 lines
5.5 KiB
C++

//===--- ParentMap.cpp - Mappings from Stmts to their Parents ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ParentMap class.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ParentMap.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "llvm/ADT/DenseMap.h"
using namespace clang;
typedef llvm::DenseMap<Stmt*, Stmt*> MapTy;
enum OpaqueValueMode {
OV_Transparent,
OV_Opaque
};
static void BuildParentMap(MapTy& M, Stmt* S,
OpaqueValueMode OVMode = OV_Transparent) {
switch (S->getStmtClass()) {
case Stmt::PseudoObjectExprClass: {
assert(OVMode == OV_Transparent && "Should not appear alongside OVEs");
PseudoObjectExpr *POE = cast<PseudoObjectExpr>(S);
// If we are rebuilding the map, clear out any existing state.
if (M[POE->getSyntacticForm()])
for (Stmt::child_range I = S->children(); I; ++I)
M[*I] = 0;
M[POE->getSyntacticForm()] = S;
BuildParentMap(M, POE->getSyntacticForm(), OV_Transparent);
for (PseudoObjectExpr::semantics_iterator I = POE->semantics_begin(),
E = POE->semantics_end();
I != E; ++I) {
M[*I] = S;
BuildParentMap(M, *I, OV_Opaque);
}
break;
}
case Stmt::BinaryConditionalOperatorClass: {
assert(OVMode == OV_Transparent && "Should not appear alongside OVEs");
BinaryConditionalOperator *BCO = cast<BinaryConditionalOperator>(S);
M[BCO->getCommon()] = S;
BuildParentMap(M, BCO->getCommon(), OV_Transparent);
M[BCO->getCond()] = S;
BuildParentMap(M, BCO->getCond(), OV_Opaque);
M[BCO->getTrueExpr()] = S;
BuildParentMap(M, BCO->getTrueExpr(), OV_Opaque);
M[BCO->getFalseExpr()] = S;
BuildParentMap(M, BCO->getFalseExpr(), OV_Transparent);
break;
}
case Stmt::OpaqueValueExprClass: {
// FIXME: This isn't correct; it assumes that multiple OpaqueValueExprs
// share a single source expression, but in the AST a single
// OpaqueValueExpr is shared among multiple parent expressions.
// The right thing to do is to give the OpaqueValueExpr its syntactic
// parent, then not reassign that when traversing the semantic expressions.
OpaqueValueExpr *OVE = cast<OpaqueValueExpr>(S);
if (OVMode == OV_Transparent || !M[OVE->getSourceExpr()]) {
M[OVE->getSourceExpr()] = S;
BuildParentMap(M, OVE->getSourceExpr(), OV_Transparent);
}
break;
}
default:
for (Stmt::child_range I = S->children(); I; ++I) {
if (*I) {
M[*I] = S;
BuildParentMap(M, *I, OVMode);
}
}
break;
}
}
ParentMap::ParentMap(Stmt* S) : Impl(0) {
if (S) {
MapTy *M = new MapTy();
BuildParentMap(*M, S);
Impl = M;
}
}
ParentMap::~ParentMap() {
delete (MapTy*) Impl;
}
void ParentMap::addStmt(Stmt* S) {
if (S) {
BuildParentMap(*(MapTy*) Impl, S);
}
}
void ParentMap::setParent(const Stmt *S, const Stmt *Parent) {
assert(S);
assert(Parent);
MapTy *M = reinterpret_cast<MapTy *>(Impl);
M->insert(std::make_pair(const_cast<Stmt *>(S), const_cast<Stmt *>(Parent)));
}
Stmt* ParentMap::getParent(Stmt* S) const {
MapTy* M = (MapTy*) Impl;
MapTy::iterator I = M->find(S);
return I == M->end() ? 0 : I->second;
}
Stmt *ParentMap::getParentIgnoreParens(Stmt *S) const {
do { S = getParent(S); } while (S && isa<ParenExpr>(S));
return S;
}
Stmt *ParentMap::getParentIgnoreParenCasts(Stmt *S) const {
do {
S = getParent(S);
}
while (S && (isa<ParenExpr>(S) || isa<CastExpr>(S)));
return S;
}
Stmt *ParentMap::getParentIgnoreParenImpCasts(Stmt *S) const {
do {
S = getParent(S);
} while (S && isa<Expr>(S) && cast<Expr>(S)->IgnoreParenImpCasts() != S);
return S;
}
Stmt *ParentMap::getOuterParenParent(Stmt *S) const {
Stmt *Paren = 0;
while (isa<ParenExpr>(S)) {
Paren = S;
S = getParent(S);
};
return Paren;
}
bool ParentMap::isConsumedExpr(Expr* E) const {
Stmt *P = getParent(E);
Stmt *DirectChild = E;
// Ignore parents that don't guarantee consumption.
while (P && (isa<ParenExpr>(P) || isa<CastExpr>(P) ||
isa<ExprWithCleanups>(P))) {
DirectChild = P;
P = getParent(P);
}
if (!P)
return false;
switch (P->getStmtClass()) {
default:
return isa<Expr>(P);
case Stmt::DeclStmtClass:
return true;
case Stmt::BinaryOperatorClass: {
BinaryOperator *BE = cast<BinaryOperator>(P);
// If it is a comma, only the right side is consumed.
// If it isn't a comma, both sides are consumed.
return BE->getOpcode()!=BO_Comma ||DirectChild==BE->getRHS();
}
case Stmt::ForStmtClass:
return DirectChild == cast<ForStmt>(P)->getCond();
case Stmt::WhileStmtClass:
return DirectChild == cast<WhileStmt>(P)->getCond();
case Stmt::DoStmtClass:
return DirectChild == cast<DoStmt>(P)->getCond();
case Stmt::IfStmtClass:
return DirectChild == cast<IfStmt>(P)->getCond();
case Stmt::IndirectGotoStmtClass:
return DirectChild == cast<IndirectGotoStmt>(P)->getTarget();
case Stmt::SwitchStmtClass:
return DirectChild == cast<SwitchStmt>(P)->getCond();
case Stmt::ReturnStmtClass:
return true;
}
}