llvm-project/clang/lib/CodeGen/CGDebugInfo.cpp
Mariya Podchishchaeva d6942d54f6
[MS][clang] Add support for vector deleting destructors (#126240)
Whereas it is UB in terms of the standard to delete an array of objects
via pointer whose static type doesn't match its dynamic type, MSVC
supports an extension allowing to do it.
Aside from array deletion not working correctly in the mentioned case,
currently not having this extension implemented causes clang to generate
code that is not compatible with the code generated by MSVC, because
clang always puts scalar deleting destructor to the vftable. This PR
aims to resolve these problems.

Fixes https://github.com/llvm/llvm-project/issues/19772
2025-03-04 09:17:50 +01:00

6220 lines
239 KiB
C++

//===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This coordinates the debug information generation while generating code.
//
//===----------------------------------------------------------------------===//
#include "CGDebugInfo.h"
#include "CGBlocks.h"
#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/ModuleMap.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/SHA256.h"
#include "llvm/Support/TimeProfiler.h"
#include <optional>
using namespace clang;
using namespace clang::CodeGen;
static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) {
auto TI = Ctx.getTypeInfo(Ty);
if (TI.isAlignRequired())
return TI.Align;
// MaxFieldAlignmentAttr is the attribute added to types
// declared after #pragma pack(n).
if (auto *Decl = Ty->getAsRecordDecl())
if (Decl->hasAttr<MaxFieldAlignmentAttr>())
return TI.Align;
return 0;
}
static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) {
return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx);
}
static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) {
return D->hasAttr<AlignedAttr>() ? D->getMaxAlignment() : 0;
}
/// Returns true if \ref VD is a a holding variable (aka a
/// VarDecl retrieved using \ref BindingDecl::getHoldingVar).
static bool IsDecomposedVarDecl(VarDecl const *VD) {
auto const *Init = VD->getInit();
if (!Init)
return false;
auto const *RefExpr =
llvm::dyn_cast_or_null<DeclRefExpr>(Init->IgnoreUnlessSpelledInSource());
if (!RefExpr)
return false;
return llvm::dyn_cast_or_null<DecompositionDecl>(RefExpr->getDecl());
}
/// Returns true if \ref VD is a compiler-generated variable
/// and should be treated as artificial for the purposes
/// of debug-info generation.
static bool IsArtificial(VarDecl const *VD) {
// Tuple-like bindings are marked as implicit despite
// being spelled out in source. Don't treat them as artificial
// variables.
if (IsDecomposedVarDecl(VD))
return false;
return VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) &&
cast<Decl>(VD->getDeclContext())->isImplicit());
}
CGDebugInfo::CGDebugInfo(CodeGenModule &CGM)
: CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()),
DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs),
DBuilder(CGM.getModule()) {
CreateCompileUnit();
}
CGDebugInfo::~CGDebugInfo() {
assert(LexicalBlockStack.empty() &&
"Region stack mismatch, stack not empty!");
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
SourceLocation TemporaryLocation)
: CGF(&CGF) {
init(TemporaryLocation);
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
bool DefaultToEmpty,
SourceLocation TemporaryLocation)
: CGF(&CGF) {
init(TemporaryLocation, DefaultToEmpty);
}
void ApplyDebugLocation::init(SourceLocation TemporaryLocation,
bool DefaultToEmpty) {
auto *DI = CGF->getDebugInfo();
if (!DI) {
CGF = nullptr;
return;
}
OriginalLocation = CGF->Builder.getCurrentDebugLocation();
if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled())
return;
if (TemporaryLocation.isValid()) {
DI->EmitLocation(CGF->Builder, TemporaryLocation);
return;
}
if (DefaultToEmpty) {
CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc());
return;
}
// Construct a location that has a valid scope, but no line info.
assert(!DI->LexicalBlockStack.empty());
CGF->Builder.SetCurrentDebugLocation(
llvm::DILocation::get(DI->LexicalBlockStack.back()->getContext(), 0, 0,
DI->LexicalBlockStack.back(), DI->getInlinedAt()));
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E)
: CGF(&CGF) {
init(E->getExprLoc());
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc)
: CGF(&CGF) {
if (!CGF.getDebugInfo()) {
this->CGF = nullptr;
return;
}
OriginalLocation = CGF.Builder.getCurrentDebugLocation();
if (Loc)
CGF.Builder.SetCurrentDebugLocation(std::move(Loc));
}
ApplyDebugLocation::~ApplyDebugLocation() {
// Query CGF so the location isn't overwritten when location updates are
// temporarily disabled (for C++ default function arguments)
if (CGF)
CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation));
}
ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF,
GlobalDecl InlinedFn)
: CGF(&CGF) {
if (!CGF.getDebugInfo()) {
this->CGF = nullptr;
return;
}
auto &DI = *CGF.getDebugInfo();
SavedLocation = DI.getLocation();
assert((DI.getInlinedAt() ==
CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) &&
"CGDebugInfo and IRBuilder are out of sync");
DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn);
}
ApplyInlineDebugLocation::~ApplyInlineDebugLocation() {
if (!CGF)
return;
auto &DI = *CGF->getDebugInfo();
DI.EmitInlineFunctionEnd(CGF->Builder);
DI.EmitLocation(CGF->Builder, SavedLocation);
}
void CGDebugInfo::setLocation(SourceLocation Loc) {
// If the new location isn't valid return.
if (Loc.isInvalid())
return;
CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc);
// If we've changed files in the middle of a lexical scope go ahead
// and create a new lexical scope with file node if it's different
// from the one in the scope.
if (LexicalBlockStack.empty())
return;
SourceManager &SM = CGM.getContext().getSourceManager();
auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc);
if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc))
return;
if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) {
LexicalBlockStack.pop_back();
LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile(
LBF->getScope(), getOrCreateFile(CurLoc)));
} else if (isa<llvm::DILexicalBlock>(Scope) ||
isa<llvm::DISubprogram>(Scope)) {
LexicalBlockStack.pop_back();
LexicalBlockStack.emplace_back(
DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc)));
}
}
llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) {
llvm::DIScope *Mod = getParentModuleOrNull(D);
return getContextDescriptor(cast<Decl>(D->getDeclContext()),
Mod ? Mod : TheCU);
}
llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context,
llvm::DIScope *Default) {
if (!Context)
return Default;
auto I = RegionMap.find(Context);
if (I != RegionMap.end()) {
llvm::Metadata *V = I->second;
return dyn_cast_or_null<llvm::DIScope>(V);
}
// Check namespace.
if (const auto *NSDecl = dyn_cast<NamespaceDecl>(Context))
return getOrCreateNamespace(NSDecl);
if (const auto *RDecl = dyn_cast<RecordDecl>(Context))
if (!RDecl->isDependentType())
return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl),
TheCU->getFile());
return Default;
}
PrintingPolicy CGDebugInfo::getPrintingPolicy() const {
PrintingPolicy PP = CGM.getContext().getPrintingPolicy();
// If we're emitting codeview, it's important to try to match MSVC's naming so
// that visualizers written for MSVC will trigger for our class names. In
// particular, we can't have spaces between arguments of standard templates
// like basic_string and vector, but we must have spaces between consecutive
// angle brackets that close nested template argument lists.
if (CGM.getCodeGenOpts().EmitCodeView) {
PP.MSVCFormatting = true;
PP.SplitTemplateClosers = true;
} else {
// For DWARF, printing rules are underspecified.
// SplitTemplateClosers yields better interop with GCC and GDB (PR46052).
PP.SplitTemplateClosers = true;
}
PP.SuppressInlineNamespace =
PrintingPolicy::SuppressInlineNamespaceMode::None;
PP.PrintCanonicalTypes = true;
PP.UsePreferredNames = false;
PP.AlwaysIncludeTypeForTemplateArgument = true;
PP.UseEnumerators = false;
// Apply -fdebug-prefix-map.
PP.Callbacks = &PrintCB;
return PP;
}
StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) {
return internString(GetName(FD));
}
StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) {
SmallString<256> MethodName;
llvm::raw_svector_ostream OS(MethodName);
OS << (OMD->isInstanceMethod() ? '-' : '+') << '[';
const DeclContext *DC = OMD->getDeclContext();
if (const auto *OID = dyn_cast<ObjCImplementationDecl>(DC)) {
OS << OID->getName();
} else if (const auto *OID = dyn_cast<ObjCInterfaceDecl>(DC)) {
OS << OID->getName();
} else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(DC)) {
if (OC->IsClassExtension()) {
OS << OC->getClassInterface()->getName();
} else {
OS << OC->getIdentifier()->getNameStart() << '('
<< OC->getIdentifier()->getNameStart() << ')';
}
} else if (const auto *OCD = dyn_cast<ObjCCategoryImplDecl>(DC)) {
OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')';
}
OS << ' ' << OMD->getSelector().getAsString() << ']';
return internString(OS.str());
}
StringRef CGDebugInfo::getSelectorName(Selector S) {
return internString(S.getAsString());
}
StringRef CGDebugInfo::getClassName(const RecordDecl *RD) {
if (isa<ClassTemplateSpecializationDecl>(RD)) {
// Copy this name on the side and use its reference.
return internString(GetName(RD));
}
// quick optimization to avoid having to intern strings that are already
// stored reliably elsewhere
if (const IdentifierInfo *II = RD->getIdentifier())
return II->getName();
// The CodeView printer in LLVM wants to see the names of unnamed types
// because they need to have a unique identifier.
// These names are used to reconstruct the fully qualified type names.
if (CGM.getCodeGenOpts().EmitCodeView) {
if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) {
assert(RD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
return D->getDeclName().getAsIdentifierInfo()->getName();
}
if (CGM.getLangOpts().CPlusPlus) {
StringRef Name;
ASTContext &Context = CGM.getContext();
if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD))
// Anonymous types without a name for linkage purposes have their
// declarator mangled in if they have one.
Name = DD->getName();
else if (const TypedefNameDecl *TND =
Context.getTypedefNameForUnnamedTagDecl(RD))
// Anonymous types without a name for linkage purposes have their
// associate typedef mangled in if they have one.
Name = TND->getName();
// Give lambdas a display name based on their name mangling.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->isLambda())
return internString(
CGM.getCXXABI().getMangleContext().getLambdaString(CXXRD));
if (!Name.empty()) {
SmallString<256> UnnamedType("<unnamed-type-");
UnnamedType += Name;
UnnamedType += '>';
return internString(UnnamedType);
}
}
}
return StringRef();
}
std::optional<llvm::DIFile::ChecksumKind>
CGDebugInfo::computeChecksum(FileID FID, SmallString<64> &Checksum) const {
Checksum.clear();
if (!CGM.getCodeGenOpts().EmitCodeView &&
CGM.getCodeGenOpts().DwarfVersion < 5)
return std::nullopt;
SourceManager &SM = CGM.getContext().getSourceManager();
std::optional<llvm::MemoryBufferRef> MemBuffer = SM.getBufferOrNone(FID);
if (!MemBuffer)
return std::nullopt;
auto Data = llvm::arrayRefFromStringRef(MemBuffer->getBuffer());
switch (CGM.getCodeGenOpts().getDebugSrcHash()) {
case clang::CodeGenOptions::DSH_MD5:
llvm::toHex(llvm::MD5::hash(Data), /*LowerCase=*/true, Checksum);
return llvm::DIFile::CSK_MD5;
case clang::CodeGenOptions::DSH_SHA1:
llvm::toHex(llvm::SHA1::hash(Data), /*LowerCase=*/true, Checksum);
return llvm::DIFile::CSK_SHA1;
case clang::CodeGenOptions::DSH_SHA256:
llvm::toHex(llvm::SHA256::hash(Data), /*LowerCase=*/true, Checksum);
return llvm::DIFile::CSK_SHA256;
}
llvm_unreachable("Unhandled DebugSrcHashKind enum");
}
std::optional<StringRef> CGDebugInfo::getSource(const SourceManager &SM,
FileID FID) {
if (!CGM.getCodeGenOpts().EmbedSource)
return std::nullopt;
bool SourceInvalid = false;
StringRef Source = SM.getBufferData(FID, &SourceInvalid);
if (SourceInvalid)
return std::nullopt;
return Source;
}
llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) {
SourceManager &SM = CGM.getContext().getSourceManager();
StringRef FileName;
FileID FID;
std::optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo;
if (Loc.isInvalid()) {
// The DIFile used by the CU is distinct from the main source file. Call
// createFile() below for canonicalization if the source file was specified
// with an absolute path.
FileName = TheCU->getFile()->getFilename();
CSInfo = TheCU->getFile()->getChecksum();
} else {
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
FileName = PLoc.getFilename();
if (FileName.empty()) {
FileName = TheCU->getFile()->getFilename();
} else {
FileName = PLoc.getFilename();
}
FID = PLoc.getFileID();
}
// Cache the results.
auto It = DIFileCache.find(FileName.data());
if (It != DIFileCache.end()) {
// Verify that the information still exists.
if (llvm::Metadata *V = It->second)
return cast<llvm::DIFile>(V);
}
// Put Checksum at a scope where it will persist past the createFile call.
SmallString<64> Checksum;
if (!CSInfo) {
std::optional<llvm::DIFile::ChecksumKind> CSKind =
computeChecksum(FID, Checksum);
if (CSKind)
CSInfo.emplace(*CSKind, Checksum);
}
return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc)));
}
llvm::DIFile *CGDebugInfo::createFile(
StringRef FileName,
std::optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo,
std::optional<StringRef> Source) {
StringRef Dir;
StringRef File;
std::string RemappedFile = remapDIPath(FileName);
std::string CurDir = remapDIPath(getCurrentDirname());
SmallString<128> DirBuf;
SmallString<128> FileBuf;
if (llvm::sys::path::is_absolute(RemappedFile)) {
// Strip the common prefix (if it is more than just "/" or "C:\") from
// current directory and FileName for a more space-efficient encoding.
auto FileIt = llvm::sys::path::begin(RemappedFile);
auto FileE = llvm::sys::path::end(RemappedFile);
auto CurDirIt = llvm::sys::path::begin(CurDir);
auto CurDirE = llvm::sys::path::end(CurDir);
for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt)
llvm::sys::path::append(DirBuf, *CurDirIt);
if (llvm::sys::path::root_path(DirBuf) == DirBuf) {
// Don't strip the common prefix if it is only the root ("/" or "C:\")
// since that would make LLVM diagnostic locations confusing.
Dir = {};
File = RemappedFile;
} else {
for (; FileIt != FileE; ++FileIt)
llvm::sys::path::append(FileBuf, *FileIt);
Dir = DirBuf;
File = FileBuf;
}
} else {
if (!llvm::sys::path::is_absolute(FileName))
Dir = CurDir;
File = RemappedFile;
}
llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source);
DIFileCache[FileName.data()].reset(F);
return F;
}
std::string CGDebugInfo::remapDIPath(StringRef Path) const {
SmallString<256> P = Path;
for (auto &[From, To] : llvm::reverse(CGM.getCodeGenOpts().DebugPrefixMap))
if (llvm::sys::path::replace_path_prefix(P, From, To))
break;
return P.str().str();
}
unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) {
if (Loc.isInvalid())
return 0;
SourceManager &SM = CGM.getContext().getSourceManager();
return SM.getPresumedLoc(Loc).getLine();
}
unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) {
// We may not want column information at all.
if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo)
return 0;
// If the location is invalid then use the current column.
if (Loc.isInvalid() && CurLoc.isInvalid())
return 0;
SourceManager &SM = CGM.getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc);
return PLoc.isValid() ? PLoc.getColumn() : 0;
}
StringRef CGDebugInfo::getCurrentDirname() {
if (!CGM.getCodeGenOpts().DebugCompilationDir.empty())
return CGM.getCodeGenOpts().DebugCompilationDir;
if (!CWDName.empty())
return CWDName;
llvm::ErrorOr<std::string> CWD =
CGM.getFileSystem()->getCurrentWorkingDirectory();
if (!CWD)
return StringRef();
return CWDName = internString(*CWD);
}
void CGDebugInfo::CreateCompileUnit() {
SmallString<64> Checksum;
std::optional<llvm::DIFile::ChecksumKind> CSKind;
std::optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo;
// Should we be asking the SourceManager for the main file name, instead of
// accepting it as an argument? This just causes the main file name to
// mismatch with source locations and create extra lexical scopes or
// mismatched debug info (a CU with a DW_AT_file of "-", because that's what
// the driver passed, but functions/other things have DW_AT_file of "<stdin>"
// because that's what the SourceManager says)
// Get absolute path name.
SourceManager &SM = CGM.getContext().getSourceManager();
auto &CGO = CGM.getCodeGenOpts();
const LangOptions &LO = CGM.getLangOpts();
std::string MainFileName = CGO.MainFileName;
if (MainFileName.empty())
MainFileName = "<stdin>";
// The main file name provided via the "-main-file-name" option contains just
// the file name itself with no path information. This file name may have had
// a relative path, so we look into the actual file entry for the main
// file to determine the real absolute path for the file.
std::string MainFileDir;
if (OptionalFileEntryRef MainFile =
SM.getFileEntryRefForID(SM.getMainFileID())) {
MainFileDir = std::string(MainFile->getDir().getName());
if (!llvm::sys::path::is_absolute(MainFileName)) {
llvm::SmallString<1024> MainFileDirSS(MainFileDir);
llvm::sys::path::Style Style =
LO.UseTargetPathSeparator
? (CGM.getTarget().getTriple().isOSWindows()
? llvm::sys::path::Style::windows_backslash
: llvm::sys::path::Style::posix)
: llvm::sys::path::Style::native;
llvm::sys::path::append(MainFileDirSS, Style, MainFileName);
MainFileName = std::string(
llvm::sys::path::remove_leading_dotslash(MainFileDirSS, Style));
}
// If the main file name provided is identical to the input file name, and
// if the input file is a preprocessed source, use the module name for
// debug info. The module name comes from the name specified in the first
// linemarker if the input is a preprocessed source. In this case we don't
// know the content to compute a checksum.
if (MainFile->getName() == MainFileName &&
FrontendOptions::getInputKindForExtension(
MainFile->getName().rsplit('.').second)
.isPreprocessed()) {
MainFileName = CGM.getModule().getName().str();
} else {
CSKind = computeChecksum(SM.getMainFileID(), Checksum);
}
}
llvm::dwarf::SourceLanguage LangTag;
if (LO.CPlusPlus) {
if (LO.ObjC)
LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus;
else if (CGO.DebugStrictDwarf && CGO.DwarfVersion < 5)
LangTag = llvm::dwarf::DW_LANG_C_plus_plus;
else if (LO.CPlusPlus14)
LangTag = llvm::dwarf::DW_LANG_C_plus_plus_14;
else if (LO.CPlusPlus11)
LangTag = llvm::dwarf::DW_LANG_C_plus_plus_11;
else
LangTag = llvm::dwarf::DW_LANG_C_plus_plus;
} else if (LO.ObjC) {
LangTag = llvm::dwarf::DW_LANG_ObjC;
} else if (LO.OpenCL && (!CGM.getCodeGenOpts().DebugStrictDwarf ||
CGM.getCodeGenOpts().DwarfVersion >= 5)) {
LangTag = llvm::dwarf::DW_LANG_OpenCL;
} else if (LO.C11 && !(CGO.DebugStrictDwarf && CGO.DwarfVersion < 5)) {
LangTag = llvm::dwarf::DW_LANG_C11;
} else if (LO.C99) {
LangTag = llvm::dwarf::DW_LANG_C99;
} else {
LangTag = llvm::dwarf::DW_LANG_C89;
}
std::string Producer = getClangFullVersion();
// Figure out which version of the ObjC runtime we have.
unsigned RuntimeVers = 0;
if (LO.ObjC)
RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1;
llvm::DICompileUnit::DebugEmissionKind EmissionKind;
switch (DebugKind) {
case llvm::codegenoptions::NoDebugInfo:
case llvm::codegenoptions::LocTrackingOnly:
EmissionKind = llvm::DICompileUnit::NoDebug;
break;
case llvm::codegenoptions::DebugLineTablesOnly:
EmissionKind = llvm::DICompileUnit::LineTablesOnly;
break;
case llvm::codegenoptions::DebugDirectivesOnly:
EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly;
break;
case llvm::codegenoptions::DebugInfoConstructor:
case llvm::codegenoptions::LimitedDebugInfo:
case llvm::codegenoptions::FullDebugInfo:
case llvm::codegenoptions::UnusedTypeInfo:
EmissionKind = llvm::DICompileUnit::FullDebug;
break;
}
uint64_t DwoId = 0;
auto &CGOpts = CGM.getCodeGenOpts();
// The DIFile used by the CU is distinct from the main source
// file. Its directory part specifies what becomes the
// DW_AT_comp_dir (the compilation directory), even if the source
// file was specified with an absolute path.
if (CSKind)
CSInfo.emplace(*CSKind, Checksum);
llvm::DIFile *CUFile = DBuilder.createFile(
remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo,
getSource(SM, SM.getMainFileID()));
StringRef Sysroot, SDK;
if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) {
Sysroot = CGM.getHeaderSearchOpts().Sysroot;
auto B = llvm::sys::path::rbegin(Sysroot);
auto E = llvm::sys::path::rend(Sysroot);
auto It =
std::find_if(B, E, [](auto SDK) { return SDK.ends_with(".sdk"); });
if (It != E)
SDK = *It;
}
llvm::DICompileUnit::DebugNameTableKind NameTableKind =
static_cast<llvm::DICompileUnit::DebugNameTableKind>(
CGOpts.DebugNameTable);
if (CGM.getTarget().getTriple().isNVPTX())
NameTableKind = llvm::DICompileUnit::DebugNameTableKind::None;
else if (CGM.getTarget().getTriple().getVendor() == llvm::Triple::Apple)
NameTableKind = llvm::DICompileUnit::DebugNameTableKind::Apple;
// Create new compile unit.
TheCU = DBuilder.createCompileUnit(
LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "",
LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO,
CGOpts.DwarfDebugFlags, RuntimeVers, CGOpts.SplitDwarfFile, EmissionKind,
DwoId, CGOpts.SplitDwarfInlining, CGOpts.DebugInfoForProfiling,
NameTableKind, CGOpts.DebugRangesBaseAddress, remapDIPath(Sysroot), SDK);
}
llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) {
llvm::dwarf::TypeKind Encoding;
StringRef BTName;
switch (BT->getKind()) {
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
llvm_unreachable("Unexpected builtin type");
case BuiltinType::NullPtr:
return DBuilder.createNullPtrType();
case BuiltinType::Void:
return nullptr;
case BuiltinType::ObjCClass:
if (!ClassTy)
ClassTy =
DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_class", TheCU, TheCU->getFile(), 0);
return ClassTy;
case BuiltinType::ObjCId: {
// typedef struct objc_class *Class;
// typedef struct objc_object {
// Class isa;
// } *id;
if (ObjTy)
return ObjTy;
if (!ClassTy)
ClassTy =
DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_class", TheCU, TheCU->getFile(), 0);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
auto *ISATy = DBuilder.createPointerType(ClassTy, Size);
ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0,
0, 0, llvm::DINode::FlagZero, nullptr,
llvm::DINodeArray());
DBuilder.replaceArrays(
ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType(
ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0,
llvm::DINode::FlagZero, ISATy)));
return ObjTy;
}
case BuiltinType::ObjCSel: {
if (!SelTy)
SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_selector", TheCU,
TheCU->getFile(), 0);
return SelTy;
}
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \
SingletonId);
#include "clang/Basic/OpenCLImageTypes.def"
case BuiltinType::OCLSampler:
return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy);
case BuiltinType::OCLEvent:
return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy);
case BuiltinType::OCLClkEvent:
return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy);
case BuiltinType::OCLQueue:
return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy);
case BuiltinType::OCLReserveID:
return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy);
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id: \
return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty);
#include "clang/Basic/OpenCLExtensionTypes.def"
#define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \
case BuiltinType::Id: \
return getOrCreateStructPtrType(#Name, SingletonId);
#include "clang/Basic/HLSLIntangibleTypes.def"
#define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
{
if (BT->getKind() == BuiltinType::MFloat8) {
Encoding = llvm::dwarf::DW_ATE_unsigned_char;
BTName = BT->getName(CGM.getLangOpts());
// Bit size and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(BT);
return DBuilder.createBasicType(BTName, Size, Encoding);
}
ASTContext::BuiltinVectorTypeInfo Info =
// For svcount_t, only the lower 2 bytes are relevant.
BT->getKind() == BuiltinType::SveCount
? ASTContext::BuiltinVectorTypeInfo(
CGM.getContext().BoolTy, llvm::ElementCount::getFixed(16),
1)
: CGM.getContext().getBuiltinVectorTypeInfo(BT);
// A single vector of bytes may not suffice as the representation of
// svcount_t tuples because of the gap between the active 16bits of
// successive tuple members. Currently no such tuples are defined for
// svcount_t, so assert that NumVectors is 1.
assert((BT->getKind() != BuiltinType::SveCount || Info.NumVectors == 1) &&
"Unsupported number of vectors for svcount_t");
// Debuggers can't extract 1bit from a vector, so will display a
// bitpattern for predicates instead.
unsigned NumElems = Info.EC.getKnownMinValue() * Info.NumVectors;
if (Info.ElementType == CGM.getContext().BoolTy) {
NumElems /= 8;
Info.ElementType = CGM.getContext().UnsignedCharTy;
}
llvm::Metadata *LowerBound, *UpperBound;
LowerBound = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0));
if (Info.EC.isScalable()) {
unsigned NumElemsPerVG = NumElems / 2;
SmallVector<uint64_t, 9> Expr(
{llvm::dwarf::DW_OP_constu, NumElemsPerVG, llvm::dwarf::DW_OP_bregx,
/* AArch64::VG */ 46, 0, llvm::dwarf::DW_OP_mul,
llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus});
UpperBound = DBuilder.createExpression(Expr);
} else
UpperBound = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), NumElems - 1));
llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange(
/*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr);
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
llvm::DIType *ElemTy =
getOrCreateType(Info.ElementType, TheCU->getFile());
auto Align = getTypeAlignIfRequired(BT, CGM.getContext());
return DBuilder.createVectorType(/*Size*/ 0, Align, ElemTy,
SubscriptArray);
}
// It doesn't make sense to generate debug info for PowerPC MMA vector types.
// So we return a safe type here to avoid generating an error.
#define PPC_VECTOR_TYPE(Name, Id, size) \
case BuiltinType::Id:
#include "clang/Basic/PPCTypes.def"
return CreateType(cast<const BuiltinType>(CGM.getContext().IntTy));
#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
#include "clang/Basic/RISCVVTypes.def"
{
ASTContext::BuiltinVectorTypeInfo Info =
CGM.getContext().getBuiltinVectorTypeInfo(BT);
unsigned ElementCount = Info.EC.getKnownMinValue();
unsigned SEW = CGM.getContext().getTypeSize(Info.ElementType);
bool Fractional = false;
unsigned LMUL;
unsigned FixedSize = ElementCount * SEW;
if (Info.ElementType == CGM.getContext().BoolTy) {
// Mask type only occupies one vector register.
LMUL = 1;
} else if (FixedSize < 64) {
// In RVV scalable vector types, we encode 64 bits in the fixed part.
Fractional = true;
LMUL = 64 / FixedSize;
} else {
LMUL = FixedSize / 64;
}
// Element count = (VLENB / SEW) x LMUL
SmallVector<uint64_t, 12> Expr(
// The DW_OP_bregx operation has two operands: a register which is
// specified by an unsigned LEB128 number, followed by a signed LEB128
// offset.
{llvm::dwarf::DW_OP_bregx, // Read the contents of a register.
4096 + 0xC22, // RISC-V VLENB CSR register.
0, // Offset for DW_OP_bregx. It is dummy here.
llvm::dwarf::DW_OP_constu,
SEW / 8, // SEW is in bits.
llvm::dwarf::DW_OP_div, llvm::dwarf::DW_OP_constu, LMUL});
if (Fractional)
Expr.push_back(llvm::dwarf::DW_OP_div);
else
Expr.push_back(llvm::dwarf::DW_OP_mul);
// Element max index = count - 1
Expr.append({llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus});
auto *LowerBound =
llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0));
auto *UpperBound = DBuilder.createExpression(Expr);
llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange(
/*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr);
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
llvm::DIType *ElemTy =
getOrCreateType(Info.ElementType, TheCU->getFile());
auto Align = getTypeAlignIfRequired(BT, CGM.getContext());
return DBuilder.createVectorType(/*Size=*/0, Align, ElemTy,
SubscriptArray);
}
#define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \
case BuiltinType::Id: { \
if (!SingletonId) \
SingletonId = \
DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, \
MangledName, TheCU, TheCU->getFile(), 0); \
return SingletonId; \
}
#include "clang/Basic/WebAssemblyReferenceTypes.def"
#define AMDGPU_OPAQUE_PTR_TYPE(Name, Id, SingletonId, Width, Align, AS) \
case BuiltinType::Id: { \
if (!SingletonId) \
SingletonId = \
DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name, \
TheCU, TheCU->getFile(), 0); \
return SingletonId; \
}
#define AMDGPU_NAMED_BARRIER_TYPE(Name, Id, SingletonId, Width, Align, Scope) \
case BuiltinType::Id: { \
if (!SingletonId) \
SingletonId = \
DBuilder.createBasicType(Name, Width, llvm::dwarf::DW_ATE_unsigned); \
return SingletonId; \
}
#include "clang/Basic/AMDGPUTypes.def"
case BuiltinType::UChar:
case BuiltinType::Char_U:
Encoding = llvm::dwarf::DW_ATE_unsigned_char;
break;
case BuiltinType::Char_S:
case BuiltinType::SChar:
Encoding = llvm::dwarf::DW_ATE_signed_char;
break;
case BuiltinType::Char8:
case BuiltinType::Char16:
case BuiltinType::Char32:
Encoding = llvm::dwarf::DW_ATE_UTF;
break;
case BuiltinType::UShort:
case BuiltinType::UInt:
case BuiltinType::UInt128:
case BuiltinType::ULong:
case BuiltinType::WChar_U:
case BuiltinType::ULongLong:
Encoding = llvm::dwarf::DW_ATE_unsigned;
break;
case BuiltinType::Short:
case BuiltinType::Int:
case BuiltinType::Int128:
case BuiltinType::Long:
case BuiltinType::WChar_S:
case BuiltinType::LongLong:
Encoding = llvm::dwarf::DW_ATE_signed;
break;
case BuiltinType::Bool:
Encoding = llvm::dwarf::DW_ATE_boolean;
break;
case BuiltinType::Half:
case BuiltinType::Float:
case BuiltinType::LongDouble:
case BuiltinType::Float16:
case BuiltinType::BFloat16:
case BuiltinType::Float128:
case BuiltinType::Double:
case BuiltinType::Ibm128:
// FIXME: For targets where long double, __ibm128 and __float128 have the
// same size, they are currently indistinguishable in the debugger without
// some special treatment. However, there is currently no consensus on
// encoding and this should be updated once a DWARF encoding exists for
// distinct floating point types of the same size.
Encoding = llvm::dwarf::DW_ATE_float;
break;
case BuiltinType::ShortAccum:
case BuiltinType::Accum:
case BuiltinType::LongAccum:
case BuiltinType::ShortFract:
case BuiltinType::Fract:
case BuiltinType::LongFract:
case BuiltinType::SatShortFract:
case BuiltinType::SatFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatShortAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatLongAccum:
Encoding = llvm::dwarf::DW_ATE_signed_fixed;
break;
case BuiltinType::UShortAccum:
case BuiltinType::UAccum:
case BuiltinType::ULongAccum:
case BuiltinType::UShortFract:
case BuiltinType::UFract:
case BuiltinType::ULongFract:
case BuiltinType::SatUShortAccum:
case BuiltinType::SatUAccum:
case BuiltinType::SatULongAccum:
case BuiltinType::SatUShortFract:
case BuiltinType::SatUFract:
case BuiltinType::SatULongFract:
Encoding = llvm::dwarf::DW_ATE_unsigned_fixed;
break;
}
BTName = BT->getName(CGM.getLangOpts());
// Bit size and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(BT);
return DBuilder.createBasicType(BTName, Size, Encoding);
}
llvm::DIType *CGDebugInfo::CreateType(const BitIntType *Ty) {
StringRef Name = Ty->isUnsigned() ? "unsigned _BitInt" : "_BitInt";
llvm::dwarf::TypeKind Encoding = Ty->isUnsigned()
? llvm::dwarf::DW_ATE_unsigned
: llvm::dwarf::DW_ATE_signed;
return DBuilder.createBasicType(Name, CGM.getContext().getTypeSize(Ty),
Encoding);
}
llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) {
// Bit size and offset of the type.
llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float;
if (Ty->isComplexIntegerType())
Encoding = llvm::dwarf::DW_ATE_lo_user;
uint64_t Size = CGM.getContext().getTypeSize(Ty);
return DBuilder.createBasicType("complex", Size, Encoding);
}
static void stripUnusedQualifiers(Qualifiers &Q) {
// Ignore these qualifiers for now.
Q.removeObjCGCAttr();
Q.removeAddressSpace();
Q.removeObjCLifetime();
Q.removeUnaligned();
}
static llvm::dwarf::Tag getNextQualifier(Qualifiers &Q) {
if (Q.hasConst()) {
Q.removeConst();
return llvm::dwarf::DW_TAG_const_type;
}
if (Q.hasVolatile()) {
Q.removeVolatile();
return llvm::dwarf::DW_TAG_volatile_type;
}
if (Q.hasRestrict()) {
Q.removeRestrict();
return llvm::dwarf::DW_TAG_restrict_type;
}
return (llvm::dwarf::Tag)0;
}
llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty,
llvm::DIFile *Unit) {
QualifierCollector Qc;
const Type *T = Qc.strip(Ty);
stripUnusedQualifiers(Qc);
// We will create one Derived type for one qualifier and recurse to handle any
// additional ones.
llvm::dwarf::Tag Tag = getNextQualifier(Qc);
if (!Tag) {
assert(Qc.empty() && "Unknown type qualifier for debug info");
return getOrCreateType(QualType(T, 0), Unit);
}
auto *FromTy = getOrCreateType(Qc.apply(CGM.getContext(), T), Unit);
// No need to fill in the Name, Line, Size, Alignment, Offset in case of
// CVR derived types.
return DBuilder.createQualifiedType(Tag, FromTy);
}
llvm::DIType *CGDebugInfo::CreateQualifiedType(const FunctionProtoType *F,
llvm::DIFile *Unit) {
FunctionProtoType::ExtProtoInfo EPI = F->getExtProtoInfo();
Qualifiers &Q = EPI.TypeQuals;
stripUnusedQualifiers(Q);
// We will create one Derived type for one qualifier and recurse to handle any
// additional ones.
llvm::dwarf::Tag Tag = getNextQualifier(Q);
if (!Tag) {
assert(Q.empty() && "Unknown type qualifier for debug info");
return nullptr;
}
auto *FromTy =
getOrCreateType(CGM.getContext().getFunctionType(F->getReturnType(),
F->getParamTypes(), EPI),
Unit);
// No need to fill in the Name, Line, Size, Alignment, Offset in case of
// CVR derived types.
return DBuilder.createQualifiedType(Tag, FromTy);
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty,
llvm::DIFile *Unit) {
// The frontend treats 'id' as a typedef to an ObjCObjectType,
// whereas 'id<protocol>' is treated as an ObjCPointerType. For the
// debug info, we want to emit 'id' in both cases.
if (Ty->isObjCQualifiedIdType())
return getOrCreateType(CGM.getContext().getObjCIdType(), Unit);
return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
Ty->getPointeeType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty,
llvm::DIFile *Unit) {
return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
Ty->getPointeeType(), Unit);
}
/// \return whether a C++ mangling exists for the type defined by TD.
static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) {
switch (TheCU->getSourceLanguage()) {
case llvm::dwarf::DW_LANG_C_plus_plus:
case llvm::dwarf::DW_LANG_C_plus_plus_11:
case llvm::dwarf::DW_LANG_C_plus_plus_14:
return true;
case llvm::dwarf::DW_LANG_ObjC_plus_plus:
return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD);
default:
return false;
}
}
// Determines if the debug info for this tag declaration needs a type
// identifier. The purpose of the unique identifier is to deduplicate type
// information for identical types across TUs. Because of the C++ one definition
// rule (ODR), it is valid to assume that the type is defined the same way in
// every TU and its debug info is equivalent.
//
// C does not have the ODR, and it is common for codebases to contain multiple
// different definitions of a struct with the same name in different TUs.
// Therefore, if the type doesn't have a C++ mangling, don't give it an
// identifer. Type information in C is smaller and simpler than C++ type
// information, so the increase in debug info size is negligible.
//
// If the type is not externally visible, it should be unique to the current TU,
// and should not need an identifier to participate in type deduplication.
// However, when emitting CodeView, the format internally uses these
// unique type name identifers for references between debug info. For example,
// the method of a class in an anonymous namespace uses the identifer to refer
// to its parent class. The Microsoft C++ ABI attempts to provide unique names
// for such types, so when emitting CodeView, always use identifiers for C++
// types. This may create problems when attempting to emit CodeView when the MS
// C++ ABI is not in use.
static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM,
llvm::DICompileUnit *TheCU) {
// We only add a type identifier for types with C++ name mangling.
if (!hasCXXMangling(TD, TheCU))
return false;
// Externally visible types with C++ mangling need a type identifier.
if (TD->isExternallyVisible())
return true;
// CodeView types with C++ mangling need a type identifier.
if (CGM.getCodeGenOpts().EmitCodeView)
return true;
return false;
}
// Returns a unique type identifier string if one exists, or an empty string.
static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM,
llvm::DICompileUnit *TheCU) {
SmallString<256> Identifier;
const TagDecl *TD = Ty->getDecl();
if (!needsTypeIdentifier(TD, CGM, TheCU))
return Identifier;
if (const auto *RD = dyn_cast<CXXRecordDecl>(TD))
if (RD->getDefinition())
if (RD->isDynamicClass() &&
CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage)
return Identifier;
// TODO: This is using the RTTI name. Is there a better way to get
// a unique string for a type?
llvm::raw_svector_ostream Out(Identifier);
CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out);
return Identifier;
}
/// \return the appropriate DWARF tag for a composite type.
static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) {
llvm::dwarf::Tag Tag;
if (RD->isStruct() || RD->isInterface())
Tag = llvm::dwarf::DW_TAG_structure_type;
else if (RD->isUnion())
Tag = llvm::dwarf::DW_TAG_union_type;
else {
// FIXME: This could be a struct type giving a default visibility different
// than C++ class type, but needs llvm metadata changes first.
assert(RD->isClass());
Tag = llvm::dwarf::DW_TAG_class_type;
}
return Tag;
}
llvm::DICompositeType *
CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty,
llvm::DIScope *Ctx) {
const RecordDecl *RD = Ty->getDecl();
if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD)))
return cast<llvm::DICompositeType>(T);
llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
const unsigned Line =
getLineNumber(RD->getLocation().isValid() ? RD->getLocation() : CurLoc);
StringRef RDName = getClassName(RD);
uint64_t Size = 0;
uint32_t Align = 0;
const RecordDecl *D = RD->getDefinition();
if (D && D->isCompleteDefinition())
Size = CGM.getContext().getTypeSize(Ty);
llvm::DINode::DIFlags Flags = llvm::DINode::FlagFwdDecl;
// Add flag to nontrivial forward declarations. To be consistent with MSVC,
// add the flag if a record has no definition because we don't know whether
// it will be trivial or not.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (!CXXRD->hasDefinition() ||
(CXXRD->hasDefinition() && !CXXRD->isTrivial()))
Flags |= llvm::DINode::FlagNonTrivial;
// Create the type.
SmallString<256> Identifier;
// Don't include a linkage name in line tables only.
if (CGM.getCodeGenOpts().hasReducedDebugInfo())
Identifier = getTypeIdentifier(Ty, CGM, TheCU);
llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType(
getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, Flags,
Identifier);
if (CGM.getCodeGenOpts().DebugFwdTemplateParams)
if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD))
DBuilder.replaceArrays(RetTy, llvm::DINodeArray(),
CollectCXXTemplateParams(TSpecial, DefUnit));
ReplaceMap.emplace_back(
std::piecewise_construct, std::make_tuple(Ty),
std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
return RetTy;
}
llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag,
const Type *Ty,
QualType PointeeTy,
llvm::DIFile *Unit) {
// Bit size, align and offset of the type.
// Size is always the size of a pointer.
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
std::optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(
CGM.getTypes().getTargetAddressSpace(PointeeTy));
const BTFTagAttributedType *BTFAttrTy;
if (auto *Atomic = PointeeTy->getAs<AtomicType>())
BTFAttrTy = dyn_cast<BTFTagAttributedType>(Atomic->getValueType());
else
BTFAttrTy = dyn_cast<BTFTagAttributedType>(PointeeTy);
SmallVector<llvm::Metadata *, 4> Annots;
while (BTFAttrTy) {
StringRef Tag = BTFAttrTy->getAttr()->getBTFTypeTag();
if (!Tag.empty()) {
llvm::Metadata *Ops[2] = {
llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_type_tag")),
llvm::MDString::get(CGM.getLLVMContext(), Tag)};
Annots.insert(Annots.begin(),
llvm::MDNode::get(CGM.getLLVMContext(), Ops));
}
BTFAttrTy = dyn_cast<BTFTagAttributedType>(BTFAttrTy->getWrappedType());
}
llvm::DINodeArray Annotations = nullptr;
if (Annots.size() > 0)
Annotations = DBuilder.getOrCreateArray(Annots);
if (Tag == llvm::dwarf::DW_TAG_reference_type ||
Tag == llvm::dwarf::DW_TAG_rvalue_reference_type)
return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit),
Size, Align, DWARFAddressSpace);
else
return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit), Size,
Align, DWARFAddressSpace, StringRef(),
Annotations);
}
llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name,
llvm::DIType *&Cache) {
if (Cache)
return Cache;
Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name,
TheCU, TheCU->getFile(), 0);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
Cache = DBuilder.createPointerType(Cache, Size);
return Cache;
}
uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer(
const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy,
unsigned LineNo, SmallVectorImpl<llvm::Metadata *> &EltTys) {
QualType FType;
// Advanced by calls to CreateMemberType in increments of FType, then
// returned as the overall size of the default elements.
uint64_t FieldOffset = 0;
// Blocks in OpenCL have unique constraints which make the standard fields
// redundant while requiring size and align fields for enqueue_kernel. See
// initializeForBlockHeader in CGBlocks.cpp
if (CGM.getLangOpts().OpenCL) {
FType = CGM.getContext().IntTy;
EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset));
} else {
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
FType = CGM.getContext().IntTy;
EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset));
FType = CGM.getContext().getPointerType(Ty->getPointeeType());
EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset));
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
uint64_t FieldSize = CGM.getContext().getTypeSize(Ty);
uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty);
EltTys.push_back(DBuilder.createMemberType(
Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign,
FieldOffset, llvm::DINode::FlagZero, DescTy));
FieldOffset += FieldSize;
}
return FieldOffset;
}
llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty,
llvm::DIFile *Unit) {
SmallVector<llvm::Metadata *, 8> EltTys;
QualType FType;
uint64_t FieldOffset;
llvm::DINodeArray Elements;
FieldOffset = 0;
FType = CGM.getContext().UnsignedLongTy;
EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset));
Elements = DBuilder.getOrCreateArray(EltTys);
EltTys.clear();
llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock;
auto *EltTy =
DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0,
FieldOffset, 0, Flags, nullptr, Elements);
// Bit size, align and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto *DescTy = DBuilder.createPointerType(EltTy, Size);
FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy,
0, EltTys);
Elements = DBuilder.getOrCreateArray(EltTys);
// The __block_literal_generic structs are marked with a special
// DW_AT_APPLE_BLOCK attribute and are an implementation detail only
// the debugger needs to know about. To allow type uniquing, emit
// them without a name or a location.
EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0,
Flags, nullptr, Elements);
return DBuilder.createPointerType(EltTy, Size);
}
static llvm::SmallVector<TemplateArgument>
GetTemplateArgs(const TemplateDecl *TD, const TemplateSpecializationType *Ty) {
assert(Ty->isTypeAlias());
// TemplateSpecializationType doesn't know if its template args are
// being substituted into a parameter pack. We can find out if that's
// the case now by inspecting the TypeAliasTemplateDecl template
// parameters. Insert Ty's template args into SpecArgs, bundling args
// passed to a parameter pack into a TemplateArgument::Pack. It also
// doesn't know the value of any defaulted args, so collect those now
// too.
SmallVector<TemplateArgument> SpecArgs;
ArrayRef SubstArgs = Ty->template_arguments();
for (const NamedDecl *Param : TD->getTemplateParameters()->asArray()) {
// If Param is a parameter pack, pack the remaining arguments.
if (Param->isParameterPack()) {
SpecArgs.push_back(TemplateArgument(SubstArgs));
break;
}
// Skip defaulted args.
// FIXME: Ideally, we wouldn't do this. We can read the default values
// for each parameter. However, defaulted arguments which are dependent
// values or dependent types can't (easily?) be resolved here.
if (SubstArgs.empty()) {
// If SubstArgs is now empty (we're taking from it each iteration) and
// this template parameter isn't a pack, then that should mean we're
// using default values for the remaining template parameters (after
// which there may be an empty pack too which we will ignore).
break;
}
// Take the next argument.
SpecArgs.push_back(SubstArgs.front());
SubstArgs = SubstArgs.drop_front();
}
return SpecArgs;
}
llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty,
llvm::DIFile *Unit) {
assert(Ty->isTypeAlias());
llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit);
const TemplateDecl *TD = Ty->getTemplateName().getAsTemplateDecl();
if (isa<BuiltinTemplateDecl>(TD))
return Src;
const auto *AliasDecl = cast<TypeAliasTemplateDecl>(TD)->getTemplatedDecl();
if (AliasDecl->hasAttr<NoDebugAttr>())
return Src;
SmallString<128> NS;
llvm::raw_svector_ostream OS(NS);
auto PP = getPrintingPolicy();
Ty->getTemplateName().print(OS, PP, TemplateName::Qualified::None);
SourceLocation Loc = AliasDecl->getLocation();
if (CGM.getCodeGenOpts().DebugTemplateAlias &&
// FIXME: This is a workaround for the issue
// https://github.com/llvm/llvm-project/issues/89774
// The TemplateSpecializationType doesn't contain any instantiation
// information; dependent template arguments can't be resolved. For now,
// fall back to DW_TAG_typedefs for template aliases that are
// instantiation dependent, e.g.:
// ```
// template <int>
// using A = int;
//
// template<int I>
// struct S {
// using AA = A<I>; // Instantiation dependent.
// AA aa;
// };
//
// S<0> s;
// ```
// S::AA's underlying type A<I> is dependent on I so will be emitted as a
// DW_TAG_typedef.
!Ty->isInstantiationDependentType()) {
auto ArgVector = ::GetTemplateArgs(TD, Ty);
TemplateArgs Args = {TD->getTemplateParameters(), ArgVector};
// FIXME: Respect DebugTemplateNameKind::Mangled, e.g. by using GetName.
// Note we can't use GetName without additional work: TypeAliasTemplateDecl
// doesn't have instantiation information, so
// TypeAliasTemplateDecl::getNameForDiagnostic wouldn't have access to the
// template args.
std::string Name;
llvm::raw_string_ostream OS(Name);
TD->getNameForDiagnostic(OS, PP, /*Qualified=*/false);
if (CGM.getCodeGenOpts().getDebugSimpleTemplateNames() !=
llvm::codegenoptions::DebugTemplateNamesKind::Simple ||
!HasReconstitutableArgs(Args.Args))
printTemplateArgumentList(OS, Args.Args, PP);
llvm::DIDerivedType *AliasTy = DBuilder.createTemplateAlias(
Src, Name, getOrCreateFile(Loc), getLineNumber(Loc),
getDeclContextDescriptor(AliasDecl), CollectTemplateParams(Args, Unit));
return AliasTy;
}
printTemplateArgumentList(OS, Ty->template_arguments(), PP,
TD->getTemplateParameters());
return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc),
getLineNumber(Loc),
getDeclContextDescriptor(AliasDecl));
}
/// Convert an AccessSpecifier into the corresponding DINode flag.
/// As an optimization, return 0 if the access specifier equals the
/// default for the containing type.
static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access,
const RecordDecl *RD) {
AccessSpecifier Default = clang::AS_none;
if (RD && RD->isClass())
Default = clang::AS_private;
else if (RD && (RD->isStruct() || RD->isUnion()))
Default = clang::AS_public;
if (Access == Default)
return llvm::DINode::FlagZero;
switch (Access) {
case clang::AS_private:
return llvm::DINode::FlagPrivate;
case clang::AS_protected:
return llvm::DINode::FlagProtected;
case clang::AS_public:
return llvm::DINode::FlagPublic;
case clang::AS_none:
return llvm::DINode::FlagZero;
}
llvm_unreachable("unexpected access enumerator");
}
llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty,
llvm::DIFile *Unit) {
llvm::DIType *Underlying =
getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit);
if (Ty->getDecl()->hasAttr<NoDebugAttr>())
return Underlying;
// We don't set size information, but do specify where the typedef was
// declared.
SourceLocation Loc = Ty->getDecl()->getLocation();
uint32_t Align = getDeclAlignIfRequired(Ty->getDecl(), CGM.getContext());
// Typedefs are derived from some other type.
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(Ty->getDecl());
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
const DeclContext *DC = Ty->getDecl()->getDeclContext();
if (isa<RecordDecl>(DC))
Flags = getAccessFlag(Ty->getDecl()->getAccess(), cast<RecordDecl>(DC));
return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(),
getOrCreateFile(Loc), getLineNumber(Loc),
getDeclContextDescriptor(Ty->getDecl()), Align,
Flags, Annotations);
}
static unsigned getDwarfCC(CallingConv CC) {
switch (CC) {
case CC_C:
// Avoid emitting DW_AT_calling_convention if the C convention was used.
return 0;
case CC_X86StdCall:
return llvm::dwarf::DW_CC_BORLAND_stdcall;
case CC_X86FastCall:
return llvm::dwarf::DW_CC_BORLAND_msfastcall;
case CC_X86ThisCall:
return llvm::dwarf::DW_CC_BORLAND_thiscall;
case CC_X86VectorCall:
return llvm::dwarf::DW_CC_LLVM_vectorcall;
case CC_X86Pascal:
return llvm::dwarf::DW_CC_BORLAND_pascal;
case CC_Win64:
return llvm::dwarf::DW_CC_LLVM_Win64;
case CC_X86_64SysV:
return llvm::dwarf::DW_CC_LLVM_X86_64SysV;
case CC_AAPCS:
case CC_AArch64VectorCall:
case CC_AArch64SVEPCS:
return llvm::dwarf::DW_CC_LLVM_AAPCS;
case CC_AAPCS_VFP:
return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP;
case CC_IntelOclBicc:
return llvm::dwarf::DW_CC_LLVM_IntelOclBicc;
case CC_SpirFunction:
return llvm::dwarf::DW_CC_LLVM_SpirFunction;
case CC_OpenCLKernel:
case CC_AMDGPUKernelCall:
return llvm::dwarf::DW_CC_LLVM_OpenCLKernel;
case CC_Swift:
return llvm::dwarf::DW_CC_LLVM_Swift;
case CC_SwiftAsync:
return llvm::dwarf::DW_CC_LLVM_SwiftTail;
case CC_PreserveMost:
return llvm::dwarf::DW_CC_LLVM_PreserveMost;
case CC_PreserveAll:
return llvm::dwarf::DW_CC_LLVM_PreserveAll;
case CC_X86RegCall:
return llvm::dwarf::DW_CC_LLVM_X86RegCall;
case CC_M68kRTD:
return llvm::dwarf::DW_CC_LLVM_M68kRTD;
case CC_PreserveNone:
return llvm::dwarf::DW_CC_LLVM_PreserveNone;
case CC_RISCVVectorCall:
return llvm::dwarf::DW_CC_LLVM_RISCVVectorCall;
#define CC_VLS_CASE(ABI_VLEN) case CC_RISCVVLSCall_##ABI_VLEN:
CC_VLS_CASE(32)
CC_VLS_CASE(64)
CC_VLS_CASE(128)
CC_VLS_CASE(256)
CC_VLS_CASE(512)
CC_VLS_CASE(1024)
CC_VLS_CASE(2048)
CC_VLS_CASE(4096)
CC_VLS_CASE(8192)
CC_VLS_CASE(16384)
CC_VLS_CASE(32768)
CC_VLS_CASE(65536)
#undef CC_VLS_CASE
return llvm::dwarf::DW_CC_LLVM_RISCVVLSCall;
}
return 0;
}
static llvm::DINode::DIFlags getRefFlags(const FunctionProtoType *Func) {
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (Func->getExtProtoInfo().RefQualifier == RQ_LValue)
Flags |= llvm::DINode::FlagLValueReference;
if (Func->getExtProtoInfo().RefQualifier == RQ_RValue)
Flags |= llvm::DINode::FlagRValueReference;
return Flags;
}
llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty,
llvm::DIFile *Unit) {
const auto *FPT = dyn_cast<FunctionProtoType>(Ty);
if (FPT) {
if (llvm::DIType *QTy = CreateQualifiedType(FPT, Unit))
return QTy;
}
// Create the type without any qualifiers
SmallVector<llvm::Metadata *, 16> EltTys;
// Add the result type at least.
EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit));
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
// Set up remainder of arguments if there is a prototype.
// otherwise emit it as a variadic function.
if (!FPT) {
EltTys.push_back(DBuilder.createUnspecifiedParameter());
} else {
Flags = getRefFlags(FPT);
for (const QualType &ParamType : FPT->param_types())
EltTys.push_back(getOrCreateType(ParamType, Unit));
if (FPT->isVariadic())
EltTys.push_back(DBuilder.createUnspecifiedParameter());
}
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
llvm::DIType *F = DBuilder.createSubroutineType(
EltTypeArray, Flags, getDwarfCC(Ty->getCallConv()));
return F;
}
llvm::DIDerivedType *
CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl,
llvm::DIScope *RecordTy, const RecordDecl *RD) {
StringRef Name = BitFieldDecl->getName();
QualType Ty = BitFieldDecl->getType();
if (BitFieldDecl->hasAttr<PreferredTypeAttr>())
Ty = BitFieldDecl->getAttr<PreferredTypeAttr>()->getType();
SourceLocation Loc = BitFieldDecl->getLocation();
llvm::DIFile *VUnit = getOrCreateFile(Loc);
llvm::DIType *DebugType = getOrCreateType(Ty, VUnit);
// Get the location for the field.
llvm::DIFile *File = getOrCreateFile(Loc);
unsigned Line = getLineNumber(Loc);
const CGBitFieldInfo &BitFieldInfo =
CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl);
uint64_t SizeInBits = BitFieldInfo.Size;
assert(SizeInBits > 0 && "found named 0-width bitfield");
uint64_t StorageOffsetInBits =
CGM.getContext().toBits(BitFieldInfo.StorageOffset);
uint64_t Offset = BitFieldInfo.Offset;
// The bit offsets for big endian machines are reversed for big
// endian target, compensate for that as the DIDerivedType requires
// un-reversed offsets.
if (CGM.getDataLayout().isBigEndian())
Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset;
uint64_t OffsetInBits = StorageOffsetInBits + Offset;
llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD);
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(BitFieldDecl);
return DBuilder.createBitFieldMemberType(
RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits,
Flags, DebugType, Annotations);
}
llvm::DIDerivedType *CGDebugInfo::createBitFieldSeparatorIfNeeded(
const FieldDecl *BitFieldDecl, const llvm::DIDerivedType *BitFieldDI,
llvm::ArrayRef<llvm::Metadata *> PreviousFieldsDI, const RecordDecl *RD) {
if (!CGM.getTargetCodeGenInfo().shouldEmitDWARFBitFieldSeparators())
return nullptr;
/*
Add a *single* zero-bitfield separator between two non-zero bitfields
separated by one or more zero-bitfields. This is used to distinguish between
structures such the ones below, where the memory layout is the same, but how
the ABI assigns fields to registers differs.
struct foo {
int space[4];
char a : 8; // on amdgpu, passed on v4
char b : 8;
char x : 8;
char y : 8;
};
struct bar {
int space[4];
char a : 8; // on amdgpu, passed on v4
char b : 8;
char : 0;
char x : 8; // passed on v5
char y : 8;
};
*/
if (PreviousFieldsDI.empty())
return nullptr;
// If we already emitted metadata for a 0-length bitfield, nothing to do here.
auto *PreviousMDEntry =
PreviousFieldsDI.empty() ? nullptr : PreviousFieldsDI.back();
auto *PreviousMDField =
dyn_cast_or_null<llvm::DIDerivedType>(PreviousMDEntry);
if (!PreviousMDField || !PreviousMDField->isBitField() ||
PreviousMDField->getSizeInBits() == 0)
return nullptr;
auto PreviousBitfield = RD->field_begin();
std::advance(PreviousBitfield, BitFieldDecl->getFieldIndex() - 1);
assert(PreviousBitfield->isBitField());
if (!PreviousBitfield->isZeroLengthBitField())
return nullptr;
QualType Ty = PreviousBitfield->getType();
SourceLocation Loc = PreviousBitfield->getLocation();
llvm::DIFile *VUnit = getOrCreateFile(Loc);
llvm::DIType *DebugType = getOrCreateType(Ty, VUnit);
llvm::DIScope *RecordTy = BitFieldDI->getScope();
llvm::DIFile *File = getOrCreateFile(Loc);
unsigned Line = getLineNumber(Loc);
uint64_t StorageOffsetInBits =
cast<llvm::ConstantInt>(BitFieldDI->getStorageOffsetInBits())
->getZExtValue();
llvm::DINode::DIFlags Flags =
getAccessFlag(PreviousBitfield->getAccess(), RD);
llvm::DINodeArray Annotations =
CollectBTFDeclTagAnnotations(*PreviousBitfield);
return DBuilder.createBitFieldMemberType(
RecordTy, "", File, Line, 0, StorageOffsetInBits, StorageOffsetInBits,
Flags, DebugType, Annotations);
}
llvm::DIType *CGDebugInfo::createFieldType(
StringRef name, QualType type, SourceLocation loc, AccessSpecifier AS,
uint64_t offsetInBits, uint32_t AlignInBits, llvm::DIFile *tunit,
llvm::DIScope *scope, const RecordDecl *RD, llvm::DINodeArray Annotations) {
llvm::DIType *debugType = getOrCreateType(type, tunit);
// Get the location for the field.
llvm::DIFile *file = getOrCreateFile(loc);
const unsigned line = getLineNumber(loc.isValid() ? loc : CurLoc);
uint64_t SizeInBits = 0;
auto Align = AlignInBits;
if (!type->isIncompleteArrayType()) {
TypeInfo TI = CGM.getContext().getTypeInfo(type);
SizeInBits = TI.Width;
if (!Align)
Align = getTypeAlignIfRequired(type, CGM.getContext());
}
llvm::DINode::DIFlags flags = getAccessFlag(AS, RD);
return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align,
offsetInBits, flags, debugType, Annotations);
}
llvm::DISubprogram *
CGDebugInfo::createInlinedTrapSubprogram(StringRef FuncName,
llvm::DIFile *FileScope) {
// We are caching the subprogram because we don't want to duplicate
// subprograms with the same message. Note that `SPFlagDefinition` prevents
// subprograms from being uniqued.
llvm::DISubprogram *&SP = InlinedTrapFuncMap[FuncName];
if (!SP) {
llvm::DISubroutineType *DIFnTy = DBuilder.createSubroutineType(nullptr);
SP = DBuilder.createFunction(
/*Scope=*/FileScope, /*Name=*/FuncName, /*LinkageName=*/StringRef(),
/*File=*/FileScope, /*LineNo=*/0, /*Ty=*/DIFnTy,
/*ScopeLine=*/0,
/*Flags=*/llvm::DINode::FlagArtificial,
/*SPFlags=*/llvm::DISubprogram::SPFlagDefinition,
/*TParams=*/nullptr, /*ThrownTypes=*/nullptr, /*Annotations=*/nullptr);
}
return SP;
}
void CGDebugInfo::CollectRecordLambdaFields(
const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements,
llvm::DIType *RecordTy) {
// For C++11 Lambdas a Field will be the same as a Capture, but the Capture
// has the name and the location of the variable so we should iterate over
// both concurrently.
const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl);
RecordDecl::field_iterator Field = CXXDecl->field_begin();
unsigned fieldno = 0;
for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(),
E = CXXDecl->captures_end();
I != E; ++I, ++Field, ++fieldno) {
const LambdaCapture &C = *I;
if (C.capturesVariable()) {
SourceLocation Loc = C.getLocation();
assert(!Field->isBitField() && "lambdas don't have bitfield members!");
ValueDecl *V = C.getCapturedVar();
StringRef VName = V->getName();
llvm::DIFile *VUnit = getOrCreateFile(Loc);
auto Align = getDeclAlignIfRequired(V, CGM.getContext());
llvm::DIType *FieldType = createFieldType(
VName, Field->getType(), Loc, Field->getAccess(),
layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl);
elements.push_back(FieldType);
} else if (C.capturesThis()) {
// TODO: Need to handle 'this' in some way by probably renaming the
// this of the lambda class and having a field member of 'this' or
// by using AT_object_pointer for the function and having that be
// used as 'this' for semantic references.
FieldDecl *f = *Field;
llvm::DIFile *VUnit = getOrCreateFile(f->getLocation());
QualType type = f->getType();
StringRef ThisName =
CGM.getCodeGenOpts().EmitCodeView ? "__this" : "this";
llvm::DIType *fieldType = createFieldType(
ThisName, type, f->getLocation(), f->getAccess(),
layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl);
elements.push_back(fieldType);
}
}
}
llvm::DIDerivedType *
CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy,
const RecordDecl *RD) {
// Create the descriptor for the static variable, with or without
// constant initializers.
Var = Var->getCanonicalDecl();
llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation());
llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit);
unsigned LineNumber = getLineNumber(Var->getLocation());
StringRef VName = Var->getName();
// FIXME: to avoid complications with type merging we should
// emit the constant on the definition instead of the declaration.
llvm::Constant *C = nullptr;
if (Var->getInit()) {
const APValue *Value = Var->evaluateValue();
if (Value) {
if (Value->isInt())
C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt());
if (Value->isFloat())
C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat());
}
}
llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD);
auto Tag = CGM.getCodeGenOpts().DwarfVersion >= 5
? llvm::dwarf::DW_TAG_variable
: llvm::dwarf::DW_TAG_member;
auto Align = getDeclAlignIfRequired(Var, CGM.getContext());
llvm::DIDerivedType *GV = DBuilder.createStaticMemberType(
RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Tag, Align);
StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV);
return GV;
}
void CGDebugInfo::CollectRecordNormalField(
const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit,
SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy,
const RecordDecl *RD) {
StringRef name = field->getName();
QualType type = field->getType();
// Ignore unnamed fields unless they're anonymous structs/unions.
if (name.empty() && !type->isRecordType())
return;
llvm::DIType *FieldType;
if (field->isBitField()) {
llvm::DIDerivedType *BitFieldType;
FieldType = BitFieldType = createBitFieldType(field, RecordTy, RD);
if (llvm::DIType *Separator =
createBitFieldSeparatorIfNeeded(field, BitFieldType, elements, RD))
elements.push_back(Separator);
} else {
auto Align = getDeclAlignIfRequired(field, CGM.getContext());
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(field);
FieldType =
createFieldType(name, type, field->getLocation(), field->getAccess(),
OffsetInBits, Align, tunit, RecordTy, RD, Annotations);
}
elements.push_back(FieldType);
}
void CGDebugInfo::CollectRecordNestedType(
const TypeDecl *TD, SmallVectorImpl<llvm::Metadata *> &elements) {
QualType Ty = CGM.getContext().getTypeDeclType(TD);
// Injected class names are not considered nested records.
if (isa<InjectedClassNameType>(Ty))
return;
SourceLocation Loc = TD->getLocation();
if (llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc)))
elements.push_back(nestedType);
}
void CGDebugInfo::CollectRecordFields(
const RecordDecl *record, llvm::DIFile *tunit,
SmallVectorImpl<llvm::Metadata *> &elements,
llvm::DICompositeType *RecordTy) {
const auto *CXXDecl = dyn_cast<CXXRecordDecl>(record);
if (CXXDecl && CXXDecl->isLambda())
CollectRecordLambdaFields(CXXDecl, elements, RecordTy);
else {
const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record);
// Field number for non-static fields.
unsigned fieldNo = 0;
// Static and non-static members should appear in the same order as
// the corresponding declarations in the source program.
for (const auto *I : record->decls())
if (const auto *V = dyn_cast<VarDecl>(I)) {
if (V->hasAttr<NoDebugAttr>())
continue;
// Skip variable template specializations when emitting CodeView. MSVC
// doesn't emit them.
if (CGM.getCodeGenOpts().EmitCodeView &&
isa<VarTemplateSpecializationDecl>(V))
continue;
if (isa<VarTemplatePartialSpecializationDecl>(V))
continue;
// Reuse the existing static member declaration if one exists
auto MI = StaticDataMemberCache.find(V->getCanonicalDecl());
if (MI != StaticDataMemberCache.end()) {
assert(MI->second &&
"Static data member declaration should still exist");
elements.push_back(MI->second);
} else {
auto Field = CreateRecordStaticField(V, RecordTy, record);
elements.push_back(Field);
}
} else if (const auto *field = dyn_cast<FieldDecl>(I)) {
CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit,
elements, RecordTy, record);
// Bump field number for next field.
++fieldNo;
} else if (CGM.getCodeGenOpts().EmitCodeView) {
// Debug info for nested types is included in the member list only for
// CodeView.
if (const auto *nestedType = dyn_cast<TypeDecl>(I)) {
// MSVC doesn't generate nested type for anonymous struct/union.
if (isa<RecordDecl>(I) &&
cast<RecordDecl>(I)->isAnonymousStructOrUnion())
continue;
if (!nestedType->isImplicit() &&
nestedType->getDeclContext() == record)
CollectRecordNestedType(nestedType, elements);
}
}
}
}
llvm::DISubroutineType *
CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method,
llvm::DIFile *Unit) {
const FunctionProtoType *Func = Method->getType()->getAs<FunctionProtoType>();
if (Method->isStatic())
return cast_or_null<llvm::DISubroutineType>(
getOrCreateType(QualType(Func, 0), Unit));
QualType ThisType;
if (!Method->hasCXXExplicitFunctionObjectParameter())
ThisType = Method->getThisType();
return getOrCreateInstanceMethodType(ThisType, Func, Unit);
}
llvm::DISubroutineType *CGDebugInfo::getOrCreateInstanceMethodType(
QualType ThisPtr, const FunctionProtoType *Func, llvm::DIFile *Unit) {
FunctionProtoType::ExtProtoInfo EPI = Func->getExtProtoInfo();
Qualifiers &Qc = EPI.TypeQuals;
Qc.removeConst();
Qc.removeVolatile();
Qc.removeRestrict();
Qc.removeUnaligned();
// Keep the removed qualifiers in sync with
// CreateQualifiedType(const FunctionPrototype*, DIFile *Unit)
// On a 'real' member function type, these qualifiers are carried on the type
// of the first parameter, not as separate DW_TAG_const_type (etc) decorator
// tags around them. (But, in the raw function types with qualifiers, they have
// to use wrapper types.)
// Add "this" pointer.
const auto *OriginalFunc = cast<llvm::DISubroutineType>(
getOrCreateType(CGM.getContext().getFunctionType(
Func->getReturnType(), Func->getParamTypes(), EPI),
Unit));
llvm::DITypeRefArray Args = OriginalFunc->getTypeArray();
assert(Args.size() && "Invalid number of arguments!");
SmallVector<llvm::Metadata *, 16> Elts;
// First element is always return type. For 'void' functions it is NULL.
Elts.push_back(Args[0]);
const bool HasExplicitObjectParameter = ThisPtr.isNull();
// "this" pointer is always first argument. For explicit "this"
// parameters, it will already be in Args[1].
if (!HasExplicitObjectParameter) {
llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit);
TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
ThisPtrType =
DBuilder.createObjectPointerType(ThisPtrType, /*Implicit=*/true);
Elts.push_back(ThisPtrType);
}
// Copy rest of the arguments.
for (unsigned i = 1, e = Args.size(); i != e; ++i)
Elts.push_back(Args[i]);
// Attach FlagObjectPointer to the explicit "this" parameter.
if (HasExplicitObjectParameter) {
assert(Elts.size() >= 2 && Args.size() >= 2 &&
"Expected at least return type and object parameter.");
Elts[1] = DBuilder.createObjectPointerType(Args[1], /*Implicit=*/false);
}
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
return DBuilder.createSubroutineType(EltTypeArray, OriginalFunc->getFlags(),
getDwarfCC(Func->getCallConv()));
}
/// isFunctionLocalClass - Return true if CXXRecordDecl is defined
/// inside a function.
static bool isFunctionLocalClass(const CXXRecordDecl *RD) {
if (const auto *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext()))
return isFunctionLocalClass(NRD);
if (isa<FunctionDecl>(RD->getDeclContext()))
return true;
return false;
}
llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction(
const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) {
bool IsCtorOrDtor =
isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method);
StringRef MethodName = getFunctionName(Method);
llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit);
// Since a single ctor/dtor corresponds to multiple functions, it doesn't
// make sense to give a single ctor/dtor a linkage name.
StringRef MethodLinkageName;
// FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional
// property to use here. It may've been intended to model "is non-external
// type" but misses cases of non-function-local but non-external classes such
// as those in anonymous namespaces as well as the reverse - external types
// that are function local, such as those in (non-local) inline functions.
if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent()))
MethodLinkageName = CGM.getMangledName(Method);
// Get the location for the method.
llvm::DIFile *MethodDefUnit = nullptr;
unsigned MethodLine = 0;
if (!Method->isImplicit()) {
MethodDefUnit = getOrCreateFile(Method->getLocation());
MethodLine = getLineNumber(Method->getLocation());
}
// Collect virtual method info.
llvm::DIType *ContainingType = nullptr;
unsigned VIndex = 0;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
int ThisAdjustment = 0;
if (VTableContextBase::hasVtableSlot(Method)) {
if (Method->isPureVirtual())
SPFlags |= llvm::DISubprogram::SPFlagPureVirtual;
else
SPFlags |= llvm::DISubprogram::SPFlagVirtual;
if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
// It doesn't make sense to give a virtual destructor a vtable index,
// since a single destructor has two entries in the vtable.
if (!isa<CXXDestructorDecl>(Method))
VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method);
} else {
// Emit MS ABI vftable information. There is only one entry for the
// deleting dtor.
const auto *DD = dyn_cast<CXXDestructorDecl>(Method);
GlobalDecl GD =
DD ? GlobalDecl(DD, Dtor_VectorDeleting) : GlobalDecl(Method);
MethodVFTableLocation ML =
CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
VIndex = ML.Index;
// CodeView only records the vftable offset in the class that introduces
// the virtual method. This is possible because, unlike Itanium, the MS
// C++ ABI does not include all virtual methods from non-primary bases in
// the vtable for the most derived class. For example, if C inherits from
// A and B, C's primary vftable will not include B's virtual methods.
if (Method->size_overridden_methods() == 0)
Flags |= llvm::DINode::FlagIntroducedVirtual;
// The 'this' adjustment accounts for both the virtual and non-virtual
// portions of the adjustment. Presumably the debugger only uses it when
// it knows the dynamic type of an object.
ThisAdjustment = CGM.getCXXABI()
.getVirtualFunctionPrologueThisAdjustment(GD)
.getQuantity();
}
ContainingType = RecordTy;
}
if (Method->getCanonicalDecl()->isDeleted())
SPFlags |= llvm::DISubprogram::SPFlagDeleted;
if (Method->isNoReturn())
Flags |= llvm::DINode::FlagNoReturn;
if (Method->isStatic())
Flags |= llvm::DINode::FlagStaticMember;
if (Method->isImplicit())
Flags |= llvm::DINode::FlagArtificial;
Flags |= getAccessFlag(Method->getAccess(), Method->getParent());
if (const auto *CXXC = dyn_cast<CXXConstructorDecl>(Method)) {
if (CXXC->isExplicit())
Flags |= llvm::DINode::FlagExplicit;
} else if (const auto *CXXC = dyn_cast<CXXConversionDecl>(Method)) {
if (CXXC->isExplicit())
Flags |= llvm::DINode::FlagExplicit;
}
if (Method->hasPrototype())
Flags |= llvm::DINode::FlagPrototyped;
if (Method->getRefQualifier() == RQ_LValue)
Flags |= llvm::DINode::FlagLValueReference;
if (Method->getRefQualifier() == RQ_RValue)
Flags |= llvm::DINode::FlagRValueReference;
if (!Method->isExternallyVisible())
SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
// In this debug mode, emit type info for a class when its constructor type
// info is emitted.
if (DebugKind == llvm::codegenoptions::DebugInfoConstructor)
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
completeUnusedClass(*CD->getParent());
llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit);
llvm::DISubprogram *SP = DBuilder.createMethod(
RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine,
MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags,
TParamsArray.get());
SPCache[Method->getCanonicalDecl()].reset(SP);
return SP;
}
void CGDebugInfo::CollectCXXMemberFunctions(
const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) {
// Since we want more than just the individual member decls if we
// have templated functions iterate over every declaration to gather
// the functions.
for (const auto *I : RD->decls()) {
const auto *Method = dyn_cast<CXXMethodDecl>(I);
// If the member is implicit, don't add it to the member list. This avoids
// the member being added to type units by LLVM, while still allowing it
// to be emitted into the type declaration/reference inside the compile
// unit.
// Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp.
// FIXME: Handle Using(Shadow?)Decls here to create
// DW_TAG_imported_declarations inside the class for base decls brought into
// derived classes. GDB doesn't seem to notice/leverage these when I tried
// it, so I'm not rushing to fix this. (GCC seems to produce them, if
// referenced)
if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>())
continue;
if (Method->getType()->castAs<FunctionProtoType>()->getContainedAutoType())
continue;
// Reuse the existing member function declaration if it exists.
// It may be associated with the declaration of the type & should be
// reused as we're building the definition.
//
// This situation can arise in the vtable-based debug info reduction where
// implicit members are emitted in a non-vtable TU.
auto MI = SPCache.find(Method->getCanonicalDecl());
EltTys.push_back(MI == SPCache.end()
? CreateCXXMemberFunction(Method, Unit, RecordTy)
: static_cast<llvm::Metadata *>(MI->second));
}
}
void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys,
llvm::DIType *RecordTy) {
llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> SeenTypes;
CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes,
llvm::DINode::FlagZero);
// If we are generating CodeView debug info, we also need to emit records for
// indirect virtual base classes.
if (CGM.getCodeGenOpts().EmitCodeView) {
CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes,
llvm::DINode::FlagIndirectVirtualBase);
}
}
void CGDebugInfo::CollectCXXBasesAux(
const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy,
const CXXRecordDecl::base_class_const_range &Bases,
llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> &SeenTypes,
llvm::DINode::DIFlags StartingFlags) {
const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
for (const auto &BI : Bases) {
const auto *Base =
cast<CXXRecordDecl>(BI.getType()->castAs<RecordType>()->getDecl());
if (!SeenTypes.insert(Base).second)
continue;
auto *BaseTy = getOrCreateType(BI.getType(), Unit);
llvm::DINode::DIFlags BFlags = StartingFlags;
uint64_t BaseOffset;
uint32_t VBPtrOffset = 0;
if (BI.isVirtual()) {
if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
// virtual base offset offset is -ve. The code generator emits dwarf
// expression where it expects +ve number.
BaseOffset = 0 - CGM.getItaniumVTableContext()
.getVirtualBaseOffsetOffset(RD, Base)
.getQuantity();
} else {
// In the MS ABI, store the vbtable offset, which is analogous to the
// vbase offset offset in Itanium.
BaseOffset =
4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base);
VBPtrOffset = CGM.getContext()
.getASTRecordLayout(RD)
.getVBPtrOffset()
.getQuantity();
}
BFlags |= llvm::DINode::FlagVirtual;
} else
BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base));
// FIXME: Inconsistent units for BaseOffset. It is in bytes when
// BI->isVirtual() and bits when not.
BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD);
llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset,
VBPtrOffset, BFlags);
EltTys.push_back(DTy);
}
}
llvm::DINodeArray
CGDebugInfo::CollectTemplateParams(std::optional<TemplateArgs> OArgs,
llvm::DIFile *Unit) {
if (!OArgs)
return llvm::DINodeArray();
TemplateArgs &Args = *OArgs;
SmallVector<llvm::Metadata *, 16> TemplateParams;
for (unsigned i = 0, e = Args.Args.size(); i != e; ++i) {
const TemplateArgument &TA = Args.Args[i];
StringRef Name;
const bool defaultParameter = TA.getIsDefaulted();
if (Args.TList)
Name = Args.TList->getParam(i)->getName();
switch (TA.getKind()) {
case TemplateArgument::Type: {
llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit);
TemplateParams.push_back(DBuilder.createTemplateTypeParameter(
TheCU, Name, TTy, defaultParameter));
} break;
case TemplateArgument::Integral: {
llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit);
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter,
llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral())));
} break;
case TemplateArgument::Declaration: {
const ValueDecl *D = TA.getAsDecl();
QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext());
llvm::DIType *TTy = getOrCreateType(T, Unit);
llvm::Constant *V = nullptr;
// Skip retrieve the value if that template parameter has cuda device
// attribute, i.e. that value is not available at the host side.
if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice ||
!D->hasAttr<CUDADeviceAttr>()) {
// Variable pointer template parameters have a value that is the address
// of the variable.
if (const auto *VD = dyn_cast<VarDecl>(D))
V = CGM.GetAddrOfGlobalVar(VD);
// Member function pointers have special support for building them,
// though this is currently unsupported in LLVM CodeGen.
else if (const auto *MD = dyn_cast<CXXMethodDecl>(D);
MD && MD->isImplicitObjectMemberFunction())
V = CGM.getCXXABI().EmitMemberFunctionPointer(MD);
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
V = CGM.GetAddrOfFunction(FD);
// Member data pointers have special handling too to compute the fixed
// offset within the object.
else if (const auto *MPT =
dyn_cast<MemberPointerType>(T.getTypePtr())) {
// These five lines (& possibly the above member function pointer
// handling) might be able to be refactored to use similar code in
// CodeGenModule::getMemberPointerConstant
uint64_t fieldOffset = CGM.getContext().getFieldOffset(D);
CharUnits chars =
CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset);
V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars);
} else if (const auto *GD = dyn_cast<MSGuidDecl>(D)) {
V = CGM.GetAddrOfMSGuidDecl(GD).getPointer();
} else if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
if (T->isRecordType())
V = ConstantEmitter(CGM).emitAbstract(
SourceLocation(), TPO->getValue(), TPO->getType());
else
V = CGM.GetAddrOfTemplateParamObject(TPO).getPointer();
}
assert(V && "Failed to find template parameter pointer");
V = V->stripPointerCasts();
}
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter, cast_or_null<llvm::Constant>(V)));
} break;
case TemplateArgument::NullPtr: {
QualType T = TA.getNullPtrType();
llvm::DIType *TTy = getOrCreateType(T, Unit);
llvm::Constant *V = nullptr;
// Special case member data pointer null values since they're actually -1
// instead of zero.
if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr()))
// But treat member function pointers as simple zero integers because
// it's easier than having a special case in LLVM's CodeGen. If LLVM
// CodeGen grows handling for values of non-null member function
// pointers then perhaps we could remove this special case and rely on
// EmitNullMemberPointer for member function pointers.
if (MPT->isMemberDataPointer())
V = CGM.getCXXABI().EmitNullMemberPointer(MPT);
if (!V)
V = llvm::ConstantInt::get(CGM.Int8Ty, 0);
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter, V));
} break;
case TemplateArgument::StructuralValue: {
QualType T = TA.getStructuralValueType();
llvm::DIType *TTy = getOrCreateType(T, Unit);
llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(
SourceLocation(), TA.getAsStructuralValue(), T);
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter, V));
} break;
case TemplateArgument::Template: {
std::string QualName;
llvm::raw_string_ostream OS(QualName);
TA.getAsTemplate().getAsTemplateDecl()->printQualifiedName(
OS, getPrintingPolicy());
TemplateParams.push_back(DBuilder.createTemplateTemplateParameter(
TheCU, Name, nullptr, QualName, defaultParameter));
break;
}
case TemplateArgument::Pack:
TemplateParams.push_back(DBuilder.createTemplateParameterPack(
TheCU, Name, nullptr,
CollectTemplateParams({{nullptr, TA.getPackAsArray()}}, Unit)));
break;
case TemplateArgument::Expression: {
const Expr *E = TA.getAsExpr();
QualType T = E->getType();
if (E->isGLValue())
T = CGM.getContext().getLValueReferenceType(T);
llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T);
assert(V && "Expression in template argument isn't constant");
llvm::DIType *TTy = getOrCreateType(T, Unit);
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, defaultParameter, V->stripPointerCasts()));
} break;
// And the following should never occur:
case TemplateArgument::TemplateExpansion:
case TemplateArgument::Null:
llvm_unreachable(
"These argument types shouldn't exist in concrete types");
}
}
return DBuilder.getOrCreateArray(TemplateParams);
}
std::optional<CGDebugInfo::TemplateArgs>
CGDebugInfo::GetTemplateArgs(const FunctionDecl *FD) const {
if (FD->getTemplatedKind() ==
FunctionDecl::TK_FunctionTemplateSpecialization) {
const TemplateParameterList *TList = FD->getTemplateSpecializationInfo()
->getTemplate()
->getTemplateParameters();
return {{TList, FD->getTemplateSpecializationArgs()->asArray()}};
}
return std::nullopt;
}
std::optional<CGDebugInfo::TemplateArgs>
CGDebugInfo::GetTemplateArgs(const VarDecl *VD) const {
// Always get the full list of parameters, not just the ones from the
// specialization. A partial specialization may have fewer parameters than
// there are arguments.
auto *TS = dyn_cast<VarTemplateSpecializationDecl>(VD);
if (!TS)
return std::nullopt;
VarTemplateDecl *T = TS->getSpecializedTemplate();
const TemplateParameterList *TList = T->getTemplateParameters();
auto TA = TS->getTemplateArgs().asArray();
return {{TList, TA}};
}
std::optional<CGDebugInfo::TemplateArgs>
CGDebugInfo::GetTemplateArgs(const RecordDecl *RD) const {
if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
// Always get the full list of parameters, not just the ones from the
// specialization. A partial specialization may have fewer parameters than
// there are arguments.
TemplateParameterList *TPList =
TSpecial->getSpecializedTemplate()->getTemplateParameters();
const TemplateArgumentList &TAList = TSpecial->getTemplateArgs();
return {{TPList, TAList.asArray()}};
}
return std::nullopt;
}
llvm::DINodeArray
CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD,
llvm::DIFile *Unit) {
return CollectTemplateParams(GetTemplateArgs(FD), Unit);
}
llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL,
llvm::DIFile *Unit) {
return CollectTemplateParams(GetTemplateArgs(VL), Unit);
}
llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(const RecordDecl *RD,
llvm::DIFile *Unit) {
return CollectTemplateParams(GetTemplateArgs(RD), Unit);
}
llvm::DINodeArray CGDebugInfo::CollectBTFDeclTagAnnotations(const Decl *D) {
if (!D->hasAttr<BTFDeclTagAttr>())
return nullptr;
SmallVector<llvm::Metadata *, 4> Annotations;
for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
llvm::Metadata *Ops[2] = {
llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_decl_tag")),
llvm::MDString::get(CGM.getLLVMContext(), I->getBTFDeclTag())};
Annotations.push_back(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
}
return DBuilder.getOrCreateArray(Annotations);
}
llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) {
if (VTablePtrType)
return VTablePtrType;
ASTContext &Context = CGM.getContext();
/* Function type */
llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit);
llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy);
llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements);
unsigned Size = Context.getTypeSize(Context.VoidPtrTy);
unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace();
std::optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace);
llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType(
SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type");
VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size);
return VTablePtrType;
}
StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) {
// Copy the gdb compatible name on the side and use its reference.
return internString("_vptr$", RD->getNameAsString());
}
StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD,
DynamicInitKind StubKind,
llvm::Function *InitFn) {
// If we're not emitting codeview, use the mangled name. For Itanium, this is
// arbitrary.
if (!CGM.getCodeGenOpts().EmitCodeView ||
StubKind == DynamicInitKind::GlobalArrayDestructor)
return InitFn->getName();
// Print the normal qualified name for the variable, then break off the last
// NNS, and add the appropriate other text. Clang always prints the global
// variable name without template arguments, so we can use rsplit("::") and
// then recombine the pieces.
SmallString<128> QualifiedGV;
StringRef Quals;
StringRef GVName;
{
llvm::raw_svector_ostream OS(QualifiedGV);
VD->printQualifiedName(OS, getPrintingPolicy());
std::tie(Quals, GVName) = OS.str().rsplit("::");
if (GVName.empty())
std::swap(Quals, GVName);
}
SmallString<128> InitName;
llvm::raw_svector_ostream OS(InitName);
if (!Quals.empty())
OS << Quals << "::";
switch (StubKind) {
case DynamicInitKind::NoStub:
case DynamicInitKind::GlobalArrayDestructor:
llvm_unreachable("not an initializer");
case DynamicInitKind::Initializer:
OS << "`dynamic initializer for '";
break;
case DynamicInitKind::AtExit:
OS << "`dynamic atexit destructor for '";
break;
}
OS << GVName;
// Add any template specialization args.
if (const auto *VTpl = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(),
getPrintingPolicy());
}
OS << '\'';
return internString(OS.str());
}
void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys) {
// If this class is not dynamic then there is not any vtable info to collect.
if (!RD->isDynamicClass())
return;
// Don't emit any vtable shape or vptr info if this class doesn't have an
// extendable vfptr. This can happen if the class doesn't have virtual
// methods, or in the MS ABI if those virtual methods only come from virtually
// inherited bases.
const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
if (!RL.hasExtendableVFPtr())
return;
// CodeView needs to know how large the vtable of every dynamic class is, so
// emit a special named pointer type into the element list. The vptr type
// points to this type as well.
llvm::DIType *VPtrTy = nullptr;
bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView &&
CGM.getTarget().getCXXABI().isMicrosoft();
if (NeedVTableShape) {
uint64_t PtrWidth =
CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
const VTableLayout &VFTLayout =
CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero());
unsigned VSlotCount =
VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData;
unsigned VTableWidth = PtrWidth * VSlotCount;
unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace();
std::optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace);
// Create a very wide void* type and insert it directly in the element list.
llvm::DIType *VTableType = DBuilder.createPointerType(
nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type");
EltTys.push_back(VTableType);
// The vptr is a pointer to this special vtable type.
VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth);
}
// If there is a primary base then the artificial vptr member lives there.
if (RL.getPrimaryBase())
return;
if (!VPtrTy)
VPtrTy = getOrCreateVTablePtrType(Unit);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
llvm::DIType *VPtrMember =
DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0,
llvm::DINode::FlagArtificial, VPtrTy);
EltTys.push_back(VPtrMember);
}
llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy,
SourceLocation Loc) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc));
return T;
}
llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D,
SourceLocation Loc) {
return getOrCreateStandaloneType(D, Loc);
}
llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D,
SourceLocation Loc) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
assert(!D.isNull() && "null type");
llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc));
assert(T && "could not create debug info for type");
RetainedTypes.push_back(D.getAsOpaquePtr());
return T;
}
void CGDebugInfo::addHeapAllocSiteMetadata(llvm::CallBase *CI,
QualType AllocatedTy,
SourceLocation Loc) {
if (CGM.getCodeGenOpts().getDebugInfo() <=
llvm::codegenoptions::DebugLineTablesOnly)
return;
llvm::MDNode *node;
if (AllocatedTy->isVoidType())
node = llvm::MDNode::get(CGM.getLLVMContext(), {});
else
node = getOrCreateType(AllocatedTy, getOrCreateFile(Loc));
CI->setMetadata("heapallocsite", node);
}
void CGDebugInfo::completeType(const EnumDecl *ED) {
if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly)
return;
QualType Ty = CGM.getContext().getEnumType(ED);
void *TyPtr = Ty.getAsOpaquePtr();
auto I = TypeCache.find(TyPtr);
if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl())
return;
llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>());
assert(!Res->isForwardDecl());
TypeCache[TyPtr].reset(Res);
}
void CGDebugInfo::completeType(const RecordDecl *RD) {
if (DebugKind > llvm::codegenoptions::LimitedDebugInfo ||
!CGM.getLangOpts().CPlusPlus)
completeRequiredType(RD);
}
/// Return true if the class or any of its methods are marked dllimport.
static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) {
if (RD->hasAttr<DLLImportAttr>())
return true;
for (const CXXMethodDecl *MD : RD->methods())
if (MD->hasAttr<DLLImportAttr>())
return true;
return false;
}
/// Does a type definition exist in an imported clang module?
static bool isDefinedInClangModule(const RecordDecl *RD) {
// Only definitions that where imported from an AST file come from a module.
if (!RD || !RD->isFromASTFile())
return false;
// Anonymous entities cannot be addressed. Treat them as not from module.
if (!RD->isExternallyVisible() && RD->getName().empty())
return false;
if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) {
if (!CXXDecl->isCompleteDefinition())
return false;
// Check wether RD is a template.
auto TemplateKind = CXXDecl->getTemplateSpecializationKind();
if (TemplateKind != TSK_Undeclared) {
// Unfortunately getOwningModule() isn't accurate enough to find the
// owning module of a ClassTemplateSpecializationDecl that is inside a
// namespace spanning multiple modules.
bool Explicit = false;
if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(CXXDecl))
Explicit = TD->isExplicitInstantiationOrSpecialization();
if (!Explicit && CXXDecl->getEnclosingNamespaceContext())
return false;
// This is a template, check the origin of the first member.
if (CXXDecl->field_begin() == CXXDecl->field_end())
return TemplateKind == TSK_ExplicitInstantiationDeclaration;
if (!CXXDecl->field_begin()->isFromASTFile())
return false;
}
}
return true;
}
void CGDebugInfo::completeClassData(const RecordDecl *RD) {
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->isDynamicClass() &&
CGM.getVTableLinkage(CXXRD) ==
llvm::GlobalValue::AvailableExternallyLinkage &&
!isClassOrMethodDLLImport(CXXRD))
return;
if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition()))
return;
completeClass(RD);
}
void CGDebugInfo::completeClass(const RecordDecl *RD) {
if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly)
return;
QualType Ty = CGM.getContext().getRecordType(RD);
void *TyPtr = Ty.getAsOpaquePtr();
auto I = TypeCache.find(TyPtr);
if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl())
return;
// We want the canonical definition of the structure to not
// be the typedef. Since that would lead to circular typedef
// metadata.
auto [Res, PrefRes] = CreateTypeDefinition(Ty->castAs<RecordType>());
assert(!Res->isForwardDecl());
TypeCache[TyPtr].reset(Res);
}
static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I,
CXXRecordDecl::method_iterator End) {
for (CXXMethodDecl *MD : llvm::make_range(I, End))
if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction())
if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() &&
!MD->getMemberSpecializationInfo()->isExplicitSpecialization())
return true;
return false;
}
static bool canUseCtorHoming(const CXXRecordDecl *RD) {
// Constructor homing can be used for classes that cannnot be constructed
// without emitting code for one of their constructors. This is classes that
// don't have trivial or constexpr constructors, or can be created from
// aggregate initialization. Also skip lambda objects because they don't call
// constructors.
// Skip this optimization if the class or any of its methods are marked
// dllimport.
if (isClassOrMethodDLLImport(RD))
return false;
if (RD->isLambda() || RD->isAggregate() ||
RD->hasTrivialDefaultConstructor() ||
RD->hasConstexprNonCopyMoveConstructor())
return false;
for (const CXXConstructorDecl *Ctor : RD->ctors()) {
if (Ctor->isCopyOrMoveConstructor())
continue;
if (!Ctor->isDeleted())
return true;
}
return false;
}
static bool shouldOmitDefinition(llvm::codegenoptions::DebugInfoKind DebugKind,
bool DebugTypeExtRefs, const RecordDecl *RD,
const LangOptions &LangOpts) {
if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition()))
return true;
if (auto *ES = RD->getASTContext().getExternalSource())
if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always)
return true;
// Only emit forward declarations in line tables only to keep debug info size
// small. This only applies to CodeView, since we don't emit types in DWARF
// line tables only.
if (DebugKind == llvm::codegenoptions::DebugLineTablesOnly)
return true;
if (DebugKind > llvm::codegenoptions::LimitedDebugInfo ||
RD->hasAttr<StandaloneDebugAttr>())
return false;
if (!LangOpts.CPlusPlus)
return false;
if (!RD->isCompleteDefinitionRequired())
return true;
const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD);
if (!CXXDecl)
return false;
// Only emit complete debug info for a dynamic class when its vtable is
// emitted. However, Microsoft debuggers don't resolve type information
// across DLL boundaries, so skip this optimization if the class or any of its
// methods are marked dllimport. This isn't a complete solution, since objects
// without any dllimport methods can be used in one DLL and constructed in
// another, but it is the current behavior of LimitedDebugInfo.
if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass() &&
!isClassOrMethodDLLImport(CXXDecl) && !CXXDecl->hasAttr<MSNoVTableAttr>())
return true;
TemplateSpecializationKind Spec = TSK_Undeclared;
if (const auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD))
Spec = SD->getSpecializationKind();
if (Spec == TSK_ExplicitInstantiationDeclaration &&
hasExplicitMemberDefinition(CXXDecl->method_begin(),
CXXDecl->method_end()))
return true;
// In constructor homing mode, only emit complete debug info for a class
// when its constructor is emitted.
if ((DebugKind == llvm::codegenoptions::DebugInfoConstructor) &&
canUseCtorHoming(CXXDecl))
return true;
return false;
}
void CGDebugInfo::completeRequiredType(const RecordDecl *RD) {
if (shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts()))
return;
QualType Ty = CGM.getContext().getRecordType(RD);
llvm::DIType *T = getTypeOrNull(Ty);
if (T && T->isForwardDecl())
completeClassData(RD);
}
llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) {
RecordDecl *RD = Ty->getDecl();
llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0)));
if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD,
CGM.getLangOpts())) {
if (!T)
T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD));
return T;
}
auto [Def, Pref] = CreateTypeDefinition(Ty);
return Pref ? Pref : Def;
}
llvm::DIType *CGDebugInfo::GetPreferredNameType(const CXXRecordDecl *RD,
llvm::DIFile *Unit) {
if (!RD)
return nullptr;
auto const *PNA = RD->getAttr<PreferredNameAttr>();
if (!PNA)
return nullptr;
return getOrCreateType(PNA->getTypedefType(), Unit);
}
std::pair<llvm::DIType *, llvm::DIType *>
CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) {
RecordDecl *RD = Ty->getDecl();
// Get overall information about the record type for the debug info.
llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
// Records and classes and unions can all be recursive. To handle them, we
// first generate a debug descriptor for the struct as a forward declaration.
// Then (if it is a definition) we go through and get debug info for all of
// its members. Finally, we create a descriptor for the complete type (which
// may refer to the forward decl if the struct is recursive) and replace all
// uses of the forward declaration with the final definition.
llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty);
const RecordDecl *D = RD->getDefinition();
if (!D || !D->isCompleteDefinition())
return {FwdDecl, nullptr};
if (const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD))
CollectContainingType(CXXDecl, FwdDecl);
// Push the struct on region stack.
LexicalBlockStack.emplace_back(&*FwdDecl);
RegionMap[Ty->getDecl()].reset(FwdDecl);
// Convert all the elements.
SmallVector<llvm::Metadata *, 16> EltTys;
// what about nested types?
// Note: The split of CXXDecl information here is intentional, the
// gdb tests will depend on a certain ordering at printout. The debug
// information offsets are still correct if we merge them all together
// though.
const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD);
if (CXXDecl) {
CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl);
CollectVTableInfo(CXXDecl, DefUnit, EltTys);
}
// Collect data fields (including static variables and any initializers).
CollectRecordFields(RD, DefUnit, EltTys, FwdDecl);
if (CXXDecl && !CGM.getCodeGenOpts().DebugOmitUnreferencedMethods)
CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl);
LexicalBlockStack.pop_back();
RegionMap.erase(Ty->getDecl());
llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
DBuilder.replaceArrays(FwdDecl, Elements);
if (FwdDecl->isTemporary())
FwdDecl =
llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl));
RegionMap[Ty->getDecl()].reset(FwdDecl);
if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB)
if (auto *PrefDI = GetPreferredNameType(CXXDecl, DefUnit))
return {FwdDecl, PrefDI};
return {FwdDecl, nullptr};
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty,
llvm::DIFile *Unit) {
// Ignore protocols.
return getOrCreateType(Ty->getBaseType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCTypeParamType *Ty,
llvm::DIFile *Unit) {
// Ignore protocols.
SourceLocation Loc = Ty->getDecl()->getLocation();
// Use Typedefs to represent ObjCTypeParamType.
return DBuilder.createTypedef(
getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit),
Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc),
getDeclContextDescriptor(Ty->getDecl()));
}
/// \return true if Getter has the default name for the property PD.
static bool hasDefaultGetterName(const ObjCPropertyDecl *PD,
const ObjCMethodDecl *Getter) {
assert(PD);
if (!Getter)
return true;
assert(Getter->getDeclName().isObjCZeroArgSelector());
return PD->getName() ==
Getter->getDeclName().getObjCSelector().getNameForSlot(0);
}
/// \return true if Setter has the default name for the property PD.
static bool hasDefaultSetterName(const ObjCPropertyDecl *PD,
const ObjCMethodDecl *Setter) {
assert(PD);
if (!Setter)
return true;
assert(Setter->getDeclName().isObjCOneArgSelector());
return SelectorTable::constructSetterName(PD->getName()) ==
Setter->getDeclName().getObjCSelector().getNameForSlot(0);
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty,
llvm::DIFile *Unit) {
ObjCInterfaceDecl *ID = Ty->getDecl();
if (!ID)
return nullptr;
auto RuntimeLang =
static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage());
// Return a forward declaration if this type was imported from a clang module,
// and this is not the compile unit with the implementation of the type (which
// may contain hidden ivars).
if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() &&
!ID->getImplementation())
return DBuilder.createForwardDecl(
llvm::dwarf::DW_TAG_structure_type, ID->getName(),
getDeclContextDescriptor(ID), Unit, 0, RuntimeLang);
// Get overall information about the record type for the debug info.
llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation());
unsigned Line = getLineNumber(ID->getLocation());
// If this is just a forward declaration return a special forward-declaration
// debug type since we won't be able to lay out the entire type.
ObjCInterfaceDecl *Def = ID->getDefinition();
if (!Def || !Def->getImplementation()) {
llvm::DIScope *Mod = getParentModuleOrNull(ID);
llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU,
DefUnit, Line, RuntimeLang);
ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit));
return FwdDecl;
}
return CreateTypeDefinition(Ty, Unit);
}
llvm::DIModule *CGDebugInfo::getOrCreateModuleRef(ASTSourceDescriptor Mod,
bool CreateSkeletonCU) {
// Use the Module pointer as the key into the cache. This is a
// nullptr if the "Module" is a PCH, which is safe because we don't
// support chained PCH debug info, so there can only be a single PCH.
const Module *M = Mod.getModuleOrNull();
auto ModRef = ModuleCache.find(M);
if (ModRef != ModuleCache.end())
return cast<llvm::DIModule>(ModRef->second);
// Macro definitions that were defined with "-D" on the command line.
SmallString<128> ConfigMacros;
{
llvm::raw_svector_ostream OS(ConfigMacros);
const auto &PPOpts = CGM.getPreprocessorOpts();
unsigned I = 0;
// Translate the macro definitions back into a command line.
for (auto &M : PPOpts.Macros) {
if (++I > 1)
OS << " ";
const std::string &Macro = M.first;
bool Undef = M.second;
OS << "\"-" << (Undef ? 'U' : 'D');
for (char c : Macro)
switch (c) {
case '\\':
OS << "\\\\";
break;
case '"':
OS << "\\\"";
break;
default:
OS << c;
}
OS << '\"';
}
}
bool IsRootModule = M ? !M->Parent : true;
// When a module name is specified as -fmodule-name, that module gets a
// clang::Module object, but it won't actually be built or imported; it will
// be textual.
if (CreateSkeletonCU && IsRootModule && Mod.getASTFile().empty() && M)
assert(StringRef(M->Name).starts_with(CGM.getLangOpts().ModuleName) &&
"clang module without ASTFile must be specified by -fmodule-name");
// Return a StringRef to the remapped Path.
auto RemapPath = [this](StringRef Path) -> std::string {
std::string Remapped = remapDIPath(Path);
StringRef Relative(Remapped);
StringRef CompDir = TheCU->getDirectory();
if (Relative.consume_front(CompDir))
Relative.consume_front(llvm::sys::path::get_separator());
return Relative.str();
};
if (CreateSkeletonCU && IsRootModule && !Mod.getASTFile().empty()) {
// PCH files don't have a signature field in the control block,
// but LLVM detects skeleton CUs by looking for a non-zero DWO id.
// We use the lower 64 bits for debug info.
uint64_t Signature = 0;
if (const auto &ModSig = Mod.getSignature())
Signature = ModSig.truncatedValue();
else
Signature = ~1ULL;
llvm::DIBuilder DIB(CGM.getModule());
SmallString<0> PCM;
if (!llvm::sys::path::is_absolute(Mod.getASTFile())) {
if (CGM.getHeaderSearchOpts().ModuleFileHomeIsCwd)
PCM = getCurrentDirname();
else
PCM = Mod.getPath();
}
llvm::sys::path::append(PCM, Mod.getASTFile());
DIB.createCompileUnit(
TheCU->getSourceLanguage(),
// TODO: Support "Source" from external AST providers?
DIB.createFile(Mod.getModuleName(), TheCU->getDirectory()),
TheCU->getProducer(), false, StringRef(), 0, RemapPath(PCM),
llvm::DICompileUnit::FullDebug, Signature);
DIB.finalize();
}
llvm::DIModule *Parent =
IsRootModule ? nullptr
: getOrCreateModuleRef(ASTSourceDescriptor(*M->Parent),
CreateSkeletonCU);
std::string IncludePath = Mod.getPath().str();
llvm::DIModule *DIMod =
DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros,
RemapPath(IncludePath));
ModuleCache[M].reset(DIMod);
return DIMod;
}
llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty,
llvm::DIFile *Unit) {
ObjCInterfaceDecl *ID = Ty->getDecl();
llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation());
unsigned Line = getLineNumber(ID->getLocation());
unsigned RuntimeLang = TheCU->getSourceLanguage();
// Bit size, align and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (ID->getImplementation())
Flags |= llvm::DINode::FlagObjcClassComplete;
llvm::DIScope *Mod = getParentModuleOrNull(ID);
llvm::DICompositeType *RealDecl = DBuilder.createStructType(
Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags,
nullptr, llvm::DINodeArray(), RuntimeLang);
QualType QTy(Ty, 0);
TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl);
// Push the struct on region stack.
LexicalBlockStack.emplace_back(RealDecl);
RegionMap[Ty->getDecl()].reset(RealDecl);
// Convert all the elements.
SmallVector<llvm::Metadata *, 16> EltTys;
ObjCInterfaceDecl *SClass = ID->getSuperClass();
if (SClass) {
llvm::DIType *SClassTy =
getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit);
if (!SClassTy)
return nullptr;
llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0,
llvm::DINode::FlagZero);
EltTys.push_back(InhTag);
}
// Create entries for all of the properties.
auto AddProperty = [&](const ObjCPropertyDecl *PD) {
SourceLocation Loc = PD->getLocation();
llvm::DIFile *PUnit = getOrCreateFile(Loc);
unsigned PLine = getLineNumber(Loc);
ObjCMethodDecl *Getter = PD->getGetterMethodDecl();
ObjCMethodDecl *Setter = PD->getSetterMethodDecl();
llvm::MDNode *PropertyNode = DBuilder.createObjCProperty(
PD->getName(), PUnit, PLine,
hasDefaultGetterName(PD, Getter) ? ""
: getSelectorName(PD->getGetterName()),
hasDefaultSetterName(PD, Setter) ? ""
: getSelectorName(PD->getSetterName()),
PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit));
EltTys.push_back(PropertyNode);
};
{
// Use 'char' for the isClassProperty bit as DenseSet requires space for
// empty/tombstone keys in the data type (and bool is too small for that).
typedef std::pair<char, const IdentifierInfo *> IsClassAndIdent;
/// List of already emitted properties. Two distinct class and instance
/// properties can share the same identifier (but not two instance
/// properties or two class properties).
llvm::DenseSet<IsClassAndIdent> PropertySet;
/// Returns the IsClassAndIdent key for the given property.
auto GetIsClassAndIdent = [](const ObjCPropertyDecl *PD) {
return std::make_pair(PD->isClassProperty(), PD->getIdentifier());
};
for (const ObjCCategoryDecl *ClassExt : ID->known_extensions())
for (auto *PD : ClassExt->properties()) {
PropertySet.insert(GetIsClassAndIdent(PD));
AddProperty(PD);
}
for (const auto *PD : ID->properties()) {
// Don't emit duplicate metadata for properties that were already in a
// class extension.
if (!PropertySet.insert(GetIsClassAndIdent(PD)).second)
continue;
AddProperty(PD);
}
}
const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID);
unsigned FieldNo = 0;
for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field;
Field = Field->getNextIvar(), ++FieldNo) {
llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
if (!FieldTy)
return nullptr;
StringRef FieldName = Field->getName();
// Ignore unnamed fields.
if (FieldName.empty())
continue;
// Get the location for the field.
llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation());
unsigned FieldLine = getLineNumber(Field->getLocation());
QualType FType = Field->getType();
uint64_t FieldSize = 0;
uint32_t FieldAlign = 0;
if (!FType->isIncompleteArrayType()) {
// Bit size, align and offset of the type.
FieldSize = Field->isBitField() ? Field->getBitWidthValue()
: CGM.getContext().getTypeSize(FType);
FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext());
}
uint64_t FieldOffset;
if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
// We don't know the runtime offset of an ivar if we're using the
// non-fragile ABI. For bitfields, use the bit offset into the first
// byte of storage of the bitfield. For other fields, use zero.
if (Field->isBitField()) {
FieldOffset =
CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field);
FieldOffset %= CGM.getContext().getCharWidth();
} else {
FieldOffset = 0;
}
} else {
FieldOffset = RL.getFieldOffset(FieldNo);
}
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (Field->getAccessControl() == ObjCIvarDecl::Protected)
Flags = llvm::DINode::FlagProtected;
else if (Field->getAccessControl() == ObjCIvarDecl::Private)
Flags = llvm::DINode::FlagPrivate;
else if (Field->getAccessControl() == ObjCIvarDecl::Public)
Flags = llvm::DINode::FlagPublic;
if (Field->isBitField())
Flags |= llvm::DINode::FlagBitField;
llvm::MDNode *PropertyNode = nullptr;
if (ObjCImplementationDecl *ImpD = ID->getImplementation()) {
if (ObjCPropertyImplDecl *PImpD =
ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) {
if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) {
SourceLocation Loc = PD->getLocation();
llvm::DIFile *PUnit = getOrCreateFile(Loc);
unsigned PLine = getLineNumber(Loc);
ObjCMethodDecl *Getter = PImpD->getGetterMethodDecl();
ObjCMethodDecl *Setter = PImpD->getSetterMethodDecl();
PropertyNode = DBuilder.createObjCProperty(
PD->getName(), PUnit, PLine,
hasDefaultGetterName(PD, Getter)
? ""
: getSelectorName(PD->getGetterName()),
hasDefaultSetterName(PD, Setter)
? ""
: getSelectorName(PD->getSetterName()),
PD->getPropertyAttributes(),
getOrCreateType(PD->getType(), PUnit));
}
}
}
FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine,
FieldSize, FieldAlign, FieldOffset, Flags,
FieldTy, PropertyNode);
EltTys.push_back(FieldTy);
}
llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
DBuilder.replaceArrays(RealDecl, Elements);
LexicalBlockStack.pop_back();
return RealDecl;
}
llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty,
llvm::DIFile *Unit) {
if (Ty->isExtVectorBoolType()) {
// Boolean ext_vector_type(N) are special because their real element type
// (bits of bit size) is not their Clang element type (_Bool of size byte).
// For now, we pretend the boolean vector were actually a vector of bytes
// (where each byte represents 8 bits of the actual vector).
// FIXME Debug info should actually represent this proper as a vector mask
// type.
auto &Ctx = CGM.getContext();
uint64_t Size = CGM.getContext().getTypeSize(Ty);
uint64_t NumVectorBytes = Size / Ctx.getCharWidth();
// Construct the vector of 'char' type.
QualType CharVecTy =
Ctx.getVectorType(Ctx.CharTy, NumVectorBytes, VectorKind::Generic);
return CreateType(CharVecTy->getAs<VectorType>(), Unit);
}
llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit);
int64_t Count = Ty->getNumElements();
llvm::Metadata *Subscript;
QualType QTy(Ty, 0);
auto SizeExpr = SizeExprCache.find(QTy);
if (SizeExpr != SizeExprCache.end())
Subscript = DBuilder.getOrCreateSubrange(
SizeExpr->getSecond() /*count*/, nullptr /*lowerBound*/,
nullptr /*upperBound*/, nullptr /*stride*/);
else {
auto *CountNode =
llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count ? Count : -1));
Subscript = DBuilder.getOrCreateSubrange(
CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/,
nullptr /*stride*/);
}
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray);
}
llvm::DIType *CGDebugInfo::CreateType(const ConstantMatrixType *Ty,
llvm::DIFile *Unit) {
// FIXME: Create another debug type for matrices
// For the time being, it treats it like a nested ArrayType.
llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit);
uint64_t Size = CGM.getContext().getTypeSize(Ty);
uint32_t Align = getTypeAlignIfRequired(Ty, CGM.getContext());
// Create ranges for both dimensions.
llvm::SmallVector<llvm::Metadata *, 2> Subscripts;
auto *ColumnCountNode =
llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumColumns()));
auto *RowCountNode =
llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumRows()));
Subscripts.push_back(DBuilder.getOrCreateSubrange(
ColumnCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/,
nullptr /*stride*/));
Subscripts.push_back(DBuilder.getOrCreateSubrange(
RowCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/,
nullptr /*stride*/));
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts);
return DBuilder.createArrayType(Size, Align, ElementTy, SubscriptArray);
}
llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) {
uint64_t Size;
uint32_t Align;
// FIXME: make getTypeAlign() aware of VLAs and incomplete array types
if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) {
Size = 0;
Align = getTypeAlignIfRequired(CGM.getContext().getBaseElementType(VAT),
CGM.getContext());
} else if (Ty->isIncompleteArrayType()) {
Size = 0;
if (Ty->getElementType()->isIncompleteType())
Align = 0;
else
Align = getTypeAlignIfRequired(Ty->getElementType(), CGM.getContext());
} else if (Ty->isIncompleteType()) {
Size = 0;
Align = 0;
} else {
// Size and align of the whole array, not the element type.
Size = CGM.getContext().getTypeSize(Ty);
Align = getTypeAlignIfRequired(Ty, CGM.getContext());
}
// Add the dimensions of the array. FIXME: This loses CV qualifiers from
// interior arrays, do we care? Why aren't nested arrays represented the
// obvious/recursive way?
SmallVector<llvm::Metadata *, 8> Subscripts;
QualType EltTy(Ty, 0);
while ((Ty = dyn_cast<ArrayType>(EltTy))) {
// If the number of elements is known, then count is that number. Otherwise,
// it's -1. This allows us to represent a subrange with an array of 0
// elements, like this:
//
// struct foo {
// int x[0];
// };
int64_t Count = -1; // Count == -1 is an unbounded array.
if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty))
Count = CAT->getZExtSize();
else if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) {
if (Expr *Size = VAT->getSizeExpr()) {
Expr::EvalResult Result;
if (Size->EvaluateAsInt(Result, CGM.getContext()))
Count = Result.Val.getInt().getExtValue();
}
}
auto SizeNode = SizeExprCache.find(EltTy);
if (SizeNode != SizeExprCache.end())
Subscripts.push_back(DBuilder.getOrCreateSubrange(
SizeNode->getSecond() /*count*/, nullptr /*lowerBound*/,
nullptr /*upperBound*/, nullptr /*stride*/));
else {
auto *CountNode =
llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned(
llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count));
Subscripts.push_back(DBuilder.getOrCreateSubrange(
CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/,
nullptr /*stride*/));
}
EltTy = Ty->getElementType();
}
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts);
return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit),
SubscriptArray);
}
llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty,
llvm::DIFile *Unit) {
return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty,
Ty->getPointeeType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty,
llvm::DIFile *Unit) {
llvm::dwarf::Tag Tag = llvm::dwarf::DW_TAG_rvalue_reference_type;
// DW_TAG_rvalue_reference_type was introduced in DWARF 4.
if (CGM.getCodeGenOpts().DebugStrictDwarf &&
CGM.getCodeGenOpts().DwarfVersion < 4)
Tag = llvm::dwarf::DW_TAG_reference_type;
return CreatePointerLikeType(Tag, Ty, Ty->getPointeeType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty,
llvm::DIFile *U) {
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
uint64_t Size = 0;
if (!Ty->isIncompleteType()) {
Size = CGM.getContext().getTypeSize(Ty);
// Set the MS inheritance model. There is no flag for the unspecified model.
if (CGM.getTarget().getCXXABI().isMicrosoft()) {
switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) {
case MSInheritanceModel::Single:
Flags |= llvm::DINode::FlagSingleInheritance;
break;
case MSInheritanceModel::Multiple:
Flags |= llvm::DINode::FlagMultipleInheritance;
break;
case MSInheritanceModel::Virtual:
Flags |= llvm::DINode::FlagVirtualInheritance;
break;
case MSInheritanceModel::Unspecified:
break;
}
}
}
llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U);
if (Ty->isMemberDataPointerType())
return DBuilder.createMemberPointerType(
getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0,
Flags);
const FunctionProtoType *FPT =
Ty->getPointeeType()->castAs<FunctionProtoType>();
return DBuilder.createMemberPointerType(
getOrCreateInstanceMethodType(
CXXMethodDecl::getThisType(FPT, Ty->getMostRecentCXXRecordDecl()),
FPT, U),
ClassType, Size, /*Align=*/0, Flags);
}
llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) {
auto *FromTy = getOrCreateType(Ty->getValueType(), U);
return DBuilder.createQualifiedType(llvm::dwarf::DW_TAG_atomic_type, FromTy);
}
llvm::DIType *CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) {
return getOrCreateType(Ty->getElementType(), U);
}
llvm::DIType *CGDebugInfo::CreateType(const HLSLAttributedResourceType *Ty,
llvm::DIFile *U) {
return getOrCreateType(Ty->getWrappedType(), U);
}
llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) {
const EnumDecl *ED = Ty->getDecl();
uint64_t Size = 0;
uint32_t Align = 0;
if (!ED->getTypeForDecl()->isIncompleteType()) {
Size = CGM.getContext().getTypeSize(ED->getTypeForDecl());
Align = getDeclAlignIfRequired(ED, CGM.getContext());
}
SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
bool isImportedFromModule =
DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition();
// If this is just a forward declaration, construct an appropriately
// marked node and just return it.
if (isImportedFromModule || !ED->getDefinition()) {
// Note that it is possible for enums to be created as part of
// their own declcontext. In this case a FwdDecl will be created
// twice. This doesn't cause a problem because both FwdDecls are
// entered into the ReplaceMap: finalize() will replace the first
// FwdDecl with the second and then replace the second with
// complete type.
llvm::DIScope *EDContext = getDeclContextDescriptor(ED);
llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation());
llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0));
unsigned Line = getLineNumber(ED->getLocation());
StringRef EDName = ED->getName();
llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line,
0, Size, Align, llvm::DINode::FlagFwdDecl, Identifier);
ReplaceMap.emplace_back(
std::piecewise_construct, std::make_tuple(Ty),
std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
return RetTy;
}
return CreateTypeDefinition(Ty);
}
llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) {
const EnumDecl *ED = Ty->getDecl();
uint64_t Size = 0;
uint32_t Align = 0;
if (!ED->getTypeForDecl()->isIncompleteType()) {
Size = CGM.getContext().getTypeSize(ED->getTypeForDecl());
Align = getDeclAlignIfRequired(ED, CGM.getContext());
}
SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
SmallVector<llvm::Metadata *, 16> Enumerators;
ED = ED->getDefinition();
assert(ED && "An enumeration definition is required");
for (const auto *Enum : ED->enumerators()) {
Enumerators.push_back(
DBuilder.createEnumerator(Enum->getName(), Enum->getInitVal()));
}
std::optional<EnumExtensibilityAttr::Kind> EnumKind;
if (auto *Attr = ED->getAttr<EnumExtensibilityAttr>())
EnumKind = Attr->getExtensibility();
// Return a CompositeType for the enum itself.
llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators);
llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation());
unsigned Line = getLineNumber(ED->getLocation());
llvm::DIScope *EnumContext = getDeclContextDescriptor(ED);
llvm::DIType *ClassTy = getOrCreateType(ED->getIntegerType(), DefUnit);
return DBuilder.createEnumerationType(
EnumContext, ED->getName(), DefUnit, Line, Size, Align, EltArray, ClassTy,
/*RunTimeLang=*/0, Identifier, ED->isScoped(), EnumKind);
}
llvm::DIMacro *CGDebugInfo::CreateMacro(llvm::DIMacroFile *Parent,
unsigned MType, SourceLocation LineLoc,
StringRef Name, StringRef Value) {
unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc);
return DBuilder.createMacro(Parent, Line, MType, Name, Value);
}
llvm::DIMacroFile *CGDebugInfo::CreateTempMacroFile(llvm::DIMacroFile *Parent,
SourceLocation LineLoc,
SourceLocation FileLoc) {
llvm::DIFile *FName = getOrCreateFile(FileLoc);
unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc);
return DBuilder.createTempMacroFile(Parent, Line, FName);
}
llvm::DILocation *CGDebugInfo::CreateTrapFailureMessageFor(
llvm::DebugLoc TrapLocation, StringRef Category, StringRef FailureMsg) {
// Create a debug location from `TrapLocation` that adds an artificial inline
// frame.
SmallString<64> FuncName(ClangTrapPrefix);
FuncName += "$";
FuncName += Category;
FuncName += "$";
FuncName += FailureMsg;
llvm::DISubprogram *TrapSP =
createInlinedTrapSubprogram(FuncName, TrapLocation->getFile());
return llvm::DILocation::get(CGM.getLLVMContext(), /*Line=*/0, /*Column=*/0,
/*Scope=*/TrapSP, /*InlinedAt=*/TrapLocation);
}
static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) {
Qualifiers Quals;
do {
Qualifiers InnerQuals = T.getLocalQualifiers();
// Qualifiers::operator+() doesn't like it if you add a Qualifier
// that is already there.
Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals);
Quals += InnerQuals;
QualType LastT = T;
switch (T->getTypeClass()) {
default:
return C.getQualifiedType(T.getTypePtr(), Quals);
case Type::TemplateSpecialization: {
const auto *Spec = cast<TemplateSpecializationType>(T);
if (Spec->isTypeAlias())
return C.getQualifiedType(T.getTypePtr(), Quals);
T = Spec->desugar();
break;
}
case Type::TypeOfExpr:
T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType();
break;
case Type::TypeOf:
T = cast<TypeOfType>(T)->getUnmodifiedType();
break;
case Type::Decltype:
T = cast<DecltypeType>(T)->getUnderlyingType();
break;
case Type::UnaryTransform:
T = cast<UnaryTransformType>(T)->getUnderlyingType();
break;
case Type::Attributed:
T = cast<AttributedType>(T)->getEquivalentType();
break;
case Type::BTFTagAttributed:
T = cast<BTFTagAttributedType>(T)->getWrappedType();
break;
case Type::CountAttributed:
T = cast<CountAttributedType>(T)->desugar();
break;
case Type::Elaborated:
T = cast<ElaboratedType>(T)->getNamedType();
break;
case Type::Using:
T = cast<UsingType>(T)->getUnderlyingType();
break;
case Type::Paren:
T = cast<ParenType>(T)->getInnerType();
break;
case Type::MacroQualified:
T = cast<MacroQualifiedType>(T)->getUnderlyingType();
break;
case Type::SubstTemplateTypeParm:
T = cast<SubstTemplateTypeParmType>(T)->getReplacementType();
break;
case Type::Auto:
case Type::DeducedTemplateSpecialization: {
QualType DT = cast<DeducedType>(T)->getDeducedType();
assert(!DT.isNull() && "Undeduced types shouldn't reach here.");
T = DT;
break;
}
case Type::PackIndexing: {
T = cast<PackIndexingType>(T)->getSelectedType();
break;
}
case Type::Adjusted:
case Type::Decayed:
// Decayed and adjusted types use the adjusted type in LLVM and DWARF.
T = cast<AdjustedType>(T)->getAdjustedType();
break;
}
assert(T != LastT && "Type unwrapping failed to unwrap!");
(void)LastT;
} while (true);
}
llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) {
assert(Ty == UnwrapTypeForDebugInfo(Ty, CGM.getContext()));
auto It = TypeCache.find(Ty.getAsOpaquePtr());
if (It != TypeCache.end()) {
// Verify that the debug info still exists.
if (llvm::Metadata *V = It->second)
return cast<llvm::DIType>(V);
}
return nullptr;
}
void CGDebugInfo::completeTemplateDefinition(
const ClassTemplateSpecializationDecl &SD) {
completeUnusedClass(SD);
}
void CGDebugInfo::completeUnusedClass(const CXXRecordDecl &D) {
if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly ||
D.isDynamicClass())
return;
completeClassData(&D);
// In case this type has no member function definitions being emitted, ensure
// it is retained
RetainedTypes.push_back(CGM.getContext().getRecordType(&D).getAsOpaquePtr());
}
llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit) {
if (Ty.isNull())
return nullptr;
llvm::TimeTraceScope TimeScope("DebugType", [&]() {
std::string Name;
llvm::raw_string_ostream OS(Name);
Ty.print(OS, getPrintingPolicy());
return Name;
});
// Unwrap the type as needed for debug information.
Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext());
if (auto *T = getTypeOrNull(Ty))
return T;
llvm::DIType *Res = CreateTypeNode(Ty, Unit);
void *TyPtr = Ty.getAsOpaquePtr();
// And update the type cache.
TypeCache[TyPtr].reset(Res);
return Res;
}
llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) {
// A forward declaration inside a module header does not belong to the module.
if (isa<RecordDecl>(D) && !cast<RecordDecl>(D)->getDefinition())
return nullptr;
if (DebugTypeExtRefs && D->isFromASTFile()) {
// Record a reference to an imported clang module or precompiled header.
auto *Reader = CGM.getContext().getExternalSource();
auto Idx = D->getOwningModuleID();
auto Info = Reader->getSourceDescriptor(Idx);
if (Info)
return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true);
} else if (ClangModuleMap) {
// We are building a clang module or a precompiled header.
//
// TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies
// and it wouldn't be necessary to specify the parent scope
// because the type is already unique by definition (it would look
// like the output of -fno-standalone-debug). On the other hand,
// the parent scope helps a consumer to quickly locate the object
// file where the type's definition is located, so it might be
// best to make this behavior a command line or debugger tuning
// option.
if (Module *M = D->getOwningModule()) {
// This is a (sub-)module.
auto Info = ASTSourceDescriptor(*M);
return getOrCreateModuleRef(Info, /*SkeletonCU=*/false);
} else {
// This the precompiled header being built.
return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false);
}
}
return nullptr;
}
llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit) {
// Handle qualifiers, which recursively handles what they refer to.
if (Ty.hasLocalQualifiers())
return CreateQualifiedType(Ty, Unit);
// Work out details of type.
switch (Ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.inc"
llvm_unreachable("Dependent types cannot show up in debug information");
case Type::ExtVector:
case Type::Vector:
return CreateType(cast<VectorType>(Ty), Unit);
case Type::ConstantMatrix:
return CreateType(cast<ConstantMatrixType>(Ty), Unit);
case Type::ObjCObjectPointer:
return CreateType(cast<ObjCObjectPointerType>(Ty), Unit);
case Type::ObjCObject:
return CreateType(cast<ObjCObjectType>(Ty), Unit);
case Type::ObjCTypeParam:
return CreateType(cast<ObjCTypeParamType>(Ty), Unit);
case Type::ObjCInterface:
return CreateType(cast<ObjCInterfaceType>(Ty), Unit);
case Type::Builtin:
return CreateType(cast<BuiltinType>(Ty));
case Type::Complex:
return CreateType(cast<ComplexType>(Ty));
case Type::Pointer:
return CreateType(cast<PointerType>(Ty), Unit);
case Type::BlockPointer:
return CreateType(cast<BlockPointerType>(Ty), Unit);
case Type::Typedef:
return CreateType(cast<TypedefType>(Ty), Unit);
case Type::Record:
return CreateType(cast<RecordType>(Ty));
case Type::Enum:
return CreateEnumType(cast<EnumType>(Ty));
case Type::FunctionProto:
case Type::FunctionNoProto:
return CreateType(cast<FunctionType>(Ty), Unit);
case Type::ConstantArray:
case Type::VariableArray:
case Type::IncompleteArray:
case Type::ArrayParameter:
return CreateType(cast<ArrayType>(Ty), Unit);
case Type::LValueReference:
return CreateType(cast<LValueReferenceType>(Ty), Unit);
case Type::RValueReference:
return CreateType(cast<RValueReferenceType>(Ty), Unit);
case Type::MemberPointer:
return CreateType(cast<MemberPointerType>(Ty), Unit);
case Type::Atomic:
return CreateType(cast<AtomicType>(Ty), Unit);
case Type::BitInt:
return CreateType(cast<BitIntType>(Ty));
case Type::Pipe:
return CreateType(cast<PipeType>(Ty), Unit);
case Type::TemplateSpecialization:
return CreateType(cast<TemplateSpecializationType>(Ty), Unit);
case Type::HLSLAttributedResource:
return CreateType(cast<HLSLAttributedResourceType>(Ty), Unit);
case Type::CountAttributed:
case Type::Auto:
case Type::Attributed:
case Type::BTFTagAttributed:
case Type::Adjusted:
case Type::Decayed:
case Type::DeducedTemplateSpecialization:
case Type::Elaborated:
case Type::Using:
case Type::Paren:
case Type::MacroQualified:
case Type::SubstTemplateTypeParm:
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::Decltype:
case Type::PackIndexing:
case Type::UnaryTransform:
break;
}
llvm_unreachable("type should have been unwrapped!");
}
llvm::DICompositeType *
CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty) {
QualType QTy(Ty, 0);
auto *T = cast_or_null<llvm::DICompositeType>(getTypeOrNull(QTy));
// We may have cached a forward decl when we could have created
// a non-forward decl. Go ahead and create a non-forward decl
// now.
if (T && !T->isForwardDecl())
return T;
// Otherwise create the type.
llvm::DICompositeType *Res = CreateLimitedType(Ty);
// Propagate members from the declaration to the definition
// CreateType(const RecordType*) will overwrite this with the members in the
// correct order if the full type is needed.
DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray());
// And update the type cache.
TypeCache[QTy.getAsOpaquePtr()].reset(Res);
return Res;
}
// TODO: Currently used for context chains when limiting debug info.
llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) {
RecordDecl *RD = Ty->getDecl();
// Get overall information about the record type for the debug info.
StringRef RDName = getClassName(RD);
const SourceLocation Loc = RD->getLocation();
llvm::DIFile *DefUnit = nullptr;
unsigned Line = 0;
if (Loc.isValid()) {
DefUnit = getOrCreateFile(Loc);
Line = getLineNumber(Loc);
}
llvm::DIScope *RDContext = getDeclContextDescriptor(RD);
// If we ended up creating the type during the context chain construction,
// just return that.
auto *T = cast_or_null<llvm::DICompositeType>(
getTypeOrNull(CGM.getContext().getRecordType(RD)));
if (T && (!T->isForwardDecl() || !RD->getDefinition()))
return T;
// If this is just a forward or incomplete declaration, construct an
// appropriately marked node and just return it.
const RecordDecl *D = RD->getDefinition();
if (!D || !D->isCompleteDefinition())
return getOrCreateRecordFwdDecl(Ty, RDContext);
uint64_t Size = CGM.getContext().getTypeSize(Ty);
// __attribute__((aligned)) can increase or decrease alignment *except* on a
// struct or struct member, where it only increases alignment unless 'packed'
// is also specified. To handle this case, the `getTypeAlignIfRequired` needs
// to be used.
auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
// Explicitly record the calling convention and export symbols for C++
// records.
auto Flags = llvm::DINode::FlagZero;
if (auto CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
if (CGM.getCXXABI().getRecordArgABI(CXXRD) == CGCXXABI::RAA_Indirect)
Flags |= llvm::DINode::FlagTypePassByReference;
else
Flags |= llvm::DINode::FlagTypePassByValue;
// Record if a C++ record is non-trivial type.
if (!CXXRD->isTrivial())
Flags |= llvm::DINode::FlagNonTrivial;
// Record exports it symbols to the containing structure.
if (CXXRD->isAnonymousStructOrUnion())
Flags |= llvm::DINode::FlagExportSymbols;
Flags |= getAccessFlag(CXXRD->getAccess(),
dyn_cast<CXXRecordDecl>(CXXRD->getDeclContext()));
}
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D);
llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType(
getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align,
Flags, Identifier, Annotations);
// Elements of composite types usually have back to the type, creating
// uniquing cycles. Distinct nodes are more efficient.
switch (RealDecl->getTag()) {
default:
llvm_unreachable("invalid composite type tag");
case llvm::dwarf::DW_TAG_array_type:
case llvm::dwarf::DW_TAG_enumeration_type:
// Array elements and most enumeration elements don't have back references,
// so they don't tend to be involved in uniquing cycles and there is some
// chance of merging them when linking together two modules. Only make
// them distinct if they are ODR-uniqued.
if (Identifier.empty())
break;
[[fallthrough]];
case llvm::dwarf::DW_TAG_structure_type:
case llvm::dwarf::DW_TAG_union_type:
case llvm::dwarf::DW_TAG_class_type:
// Immediately resolve to a distinct node.
RealDecl =
llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl));
break;
}
RegionMap[Ty->getDecl()].reset(RealDecl);
TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl);
if (const auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD))
DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(),
CollectCXXTemplateParams(TSpecial, DefUnit));
return RealDecl;
}
void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD,
llvm::DICompositeType *RealDecl) {
// A class's primary base or the class itself contains the vtable.
llvm::DIType *ContainingType = nullptr;
const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) {
// Seek non-virtual primary base root.
while (true) {
const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase);
const CXXRecordDecl *PBT = BRL.getPrimaryBase();
if (PBT && !BRL.isPrimaryBaseVirtual())
PBase = PBT;
else
break;
}
ContainingType = getOrCreateType(QualType(PBase->getTypeForDecl(), 0),
getOrCreateFile(RD->getLocation()));
} else if (RD->isDynamicClass())
ContainingType = RealDecl;
DBuilder.replaceVTableHolder(RealDecl, ContainingType);
}
llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType,
StringRef Name, uint64_t *Offset) {
llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit);
uint64_t FieldSize = CGM.getContext().getTypeSize(FType);
auto FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext());
llvm::DIType *Ty =
DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign,
*Offset, llvm::DINode::FlagZero, FieldTy);
*Offset += FieldSize;
return Ty;
}
void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit,
StringRef &Name,
StringRef &LinkageName,
llvm::DIScope *&FDContext,
llvm::DINodeArray &TParamsArray,
llvm::DINode::DIFlags &Flags) {
const auto *FD = cast<FunctionDecl>(GD.getCanonicalDecl().getDecl());
Name = getFunctionName(FD);
// Use mangled name as linkage name for C/C++ functions.
if (FD->getType()->getAs<FunctionProtoType>())
LinkageName = CGM.getMangledName(GD);
if (FD->hasPrototype())
Flags |= llvm::DINode::FlagPrototyped;
// No need to replicate the linkage name if it isn't different from the
// subprogram name, no need to have it at all unless coverage is enabled or
// debug is set to more than just line tables or extra debug info is needed.
if (LinkageName == Name ||
(CGM.getCodeGenOpts().CoverageNotesFile.empty() &&
CGM.getCodeGenOpts().CoverageDataFile.empty() &&
!CGM.getCodeGenOpts().DebugInfoForProfiling &&
!CGM.getCodeGenOpts().PseudoProbeForProfiling &&
DebugKind <= llvm::codegenoptions::DebugLineTablesOnly))
LinkageName = StringRef();
// Emit the function scope in line tables only mode (if CodeView) to
// differentiate between function names.
if (CGM.getCodeGenOpts().hasReducedDebugInfo() ||
(DebugKind == llvm::codegenoptions::DebugLineTablesOnly &&
CGM.getCodeGenOpts().EmitCodeView)) {
if (const NamespaceDecl *NSDecl =
dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext()))
FDContext = getOrCreateNamespace(NSDecl);
else if (const RecordDecl *RDecl =
dyn_cast_or_null<RecordDecl>(FD->getDeclContext())) {
llvm::DIScope *Mod = getParentModuleOrNull(RDecl);
FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU);
}
}
if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
// Check if it is a noreturn-marked function
if (FD->isNoReturn())
Flags |= llvm::DINode::FlagNoReturn;
// Collect template parameters.
TParamsArray = CollectFunctionTemplateParams(FD, Unit);
}
}
void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit,
unsigned &LineNo, QualType &T,
StringRef &Name, StringRef &LinkageName,
llvm::MDTuple *&TemplateParameters,
llvm::DIScope *&VDContext) {
Unit = getOrCreateFile(VD->getLocation());
LineNo = getLineNumber(VD->getLocation());
setLocation(VD->getLocation());
T = VD->getType();
if (T->isIncompleteArrayType()) {
// CodeGen turns int[] into int[1] so we'll do the same here.
llvm::APInt ConstVal(32, 1);
QualType ET = CGM.getContext().getAsArrayType(T)->getElementType();
T = CGM.getContext().getConstantArrayType(ET, ConstVal, nullptr,
ArraySizeModifier::Normal, 0);
}
Name = VD->getName();
if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) &&
!isa<ObjCMethodDecl>(VD->getDeclContext()))
LinkageName = CGM.getMangledName(VD);
if (LinkageName == Name)
LinkageName = StringRef();
if (isa<VarTemplateSpecializationDecl>(VD)) {
llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VD, &*Unit);
TemplateParameters = parameterNodes.get();
} else {
TemplateParameters = nullptr;
}
// Since we emit declarations (DW_AT_members) for static members, place the
// definition of those static members in the namespace they were declared in
// in the source code (the lexical decl context).
// FIXME: Generalize this for even non-member global variables where the
// declaration and definition may have different lexical decl contexts, once
// we have support for emitting declarations of (non-member) global variables.
const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext()
: VD->getDeclContext();
// When a record type contains an in-line initialization of a static data
// member, and the record type is marked as __declspec(dllexport), an implicit
// definition of the member will be created in the record context. DWARF
// doesn't seem to have a nice way to describe this in a form that consumers
// are likely to understand, so fake the "normal" situation of a definition
// outside the class by putting it in the global scope.
if (DC->isRecord())
DC = CGM.getContext().getTranslationUnitDecl();
llvm::DIScope *Mod = getParentModuleOrNull(VD);
VDContext = getContextDescriptor(cast<Decl>(DC), Mod ? Mod : TheCU);
}
llvm::DISubprogram *CGDebugInfo::getFunctionFwdDeclOrStub(GlobalDecl GD,
bool Stub) {
llvm::DINodeArray TParamsArray;
StringRef Name, LinkageName;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
SourceLocation Loc = GD.getDecl()->getLocation();
llvm::DIFile *Unit = getOrCreateFile(Loc);
llvm::DIScope *DContext = Unit;
unsigned Line = getLineNumber(Loc);
collectFunctionDeclProps(GD, Unit, Name, LinkageName, DContext, TParamsArray,
Flags);
auto *FD = cast<FunctionDecl>(GD.getDecl());
// Build function type.
SmallVector<QualType, 16> ArgTypes;
for (const ParmVarDecl *Parm : FD->parameters())
ArgTypes.push_back(Parm->getType());
CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
QualType FnType = CGM.getContext().getFunctionType(
FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
if (!FD->isExternallyVisible())
SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
if (Stub) {
Flags |= getCallSiteRelatedAttrs();
SPFlags |= llvm::DISubprogram::SPFlagDefinition;
return DBuilder.createFunction(
DContext, Name, LinkageName, Unit, Line,
getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags,
TParamsArray.get(), getFunctionDeclaration(FD));
}
llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl(
DContext, Name, LinkageName, Unit, Line,
getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags,
TParamsArray.get(), getFunctionDeclaration(FD));
const FunctionDecl *CanonDecl = FD->getCanonicalDecl();
FwdDeclReplaceMap.emplace_back(std::piecewise_construct,
std::make_tuple(CanonDecl),
std::make_tuple(SP));
return SP;
}
llvm::DISubprogram *CGDebugInfo::getFunctionForwardDeclaration(GlobalDecl GD) {
return getFunctionFwdDeclOrStub(GD, /* Stub = */ false);
}
llvm::DISubprogram *CGDebugInfo::getFunctionStub(GlobalDecl GD) {
return getFunctionFwdDeclOrStub(GD, /* Stub = */ true);
}
llvm::DIGlobalVariable *
CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) {
QualType T;
StringRef Name, LinkageName;
SourceLocation Loc = VD->getLocation();
llvm::DIFile *Unit = getOrCreateFile(Loc);
llvm::DIScope *DContext = Unit;
unsigned Line = getLineNumber(Loc);
llvm::MDTuple *TemplateParameters = nullptr;
collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, TemplateParameters,
DContext);
auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
auto *GV = DBuilder.createTempGlobalVariableFwdDecl(
DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit),
!VD->isExternallyVisible(), nullptr, TemplateParameters, Align);
FwdDeclReplaceMap.emplace_back(
std::piecewise_construct,
std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())),
std::make_tuple(static_cast<llvm::Metadata *>(GV)));
return GV;
}
llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) {
// We only need a declaration (not a definition) of the type - so use whatever
// we would otherwise do to get a type for a pointee. (forward declarations in
// limited debug info, full definitions (if the type definition is available)
// in unlimited debug info)
if (const auto *TD = dyn_cast<TypeDecl>(D))
return getOrCreateType(CGM.getContext().getTypeDeclType(TD),
getOrCreateFile(TD->getLocation()));
auto I = DeclCache.find(D->getCanonicalDecl());
if (I != DeclCache.end()) {
auto N = I->second;
if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(N))
return GVE->getVariable();
return cast<llvm::DINode>(N);
}
// Search imported declaration cache if it is already defined
// as imported declaration.
auto IE = ImportedDeclCache.find(D->getCanonicalDecl());
if (IE != ImportedDeclCache.end()) {
auto N = IE->second;
if (auto *GVE = dyn_cast_or_null<llvm::DIImportedEntity>(N))
return cast<llvm::DINode>(GVE);
return dyn_cast_or_null<llvm::DINode>(N);
}
// No definition for now. Emit a forward definition that might be
// merged with a potential upcoming definition.
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return getFunctionForwardDeclaration(FD);
else if (const auto *VD = dyn_cast<VarDecl>(D))
return getGlobalVariableForwardDeclaration(VD);
return nullptr;
}
llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) {
if (!D || DebugKind <= llvm::codegenoptions::DebugLineTablesOnly)
return nullptr;
const auto *FD = dyn_cast<FunctionDecl>(D);
if (!FD)
return nullptr;
// Setup context.
auto *S = getDeclContextDescriptor(D);
auto MI = SPCache.find(FD->getCanonicalDecl());
if (MI == SPCache.end()) {
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) {
return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()),
cast<llvm::DICompositeType>(S));
}
}
if (MI != SPCache.end()) {
auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second);
if (SP && !SP->isDefinition())
return SP;
}
for (auto *NextFD : FD->redecls()) {
auto MI = SPCache.find(NextFD->getCanonicalDecl());
if (MI != SPCache.end()) {
auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second);
if (SP && !SP->isDefinition())
return SP;
}
}
return nullptr;
}
llvm::DISubprogram *CGDebugInfo::getObjCMethodDeclaration(
const Decl *D, llvm::DISubroutineType *FnType, unsigned LineNo,
llvm::DINode::DIFlags Flags, llvm::DISubprogram::DISPFlags SPFlags) {
if (!D || DebugKind <= llvm::codegenoptions::DebugLineTablesOnly)
return nullptr;
const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
if (!OMD)
return nullptr;
if (CGM.getCodeGenOpts().DwarfVersion < 5 && !OMD->isDirectMethod())
return nullptr;
if (OMD->isDirectMethod())
SPFlags |= llvm::DISubprogram::SPFlagObjCDirect;
// Starting with DWARF V5 method declarations are emitted as children of
// the interface type.
auto *ID = dyn_cast_or_null<ObjCInterfaceDecl>(D->getDeclContext());
if (!ID)
ID = OMD->getClassInterface();
if (!ID)
return nullptr;
QualType QTy(ID->getTypeForDecl(), 0);
auto It = TypeCache.find(QTy.getAsOpaquePtr());
if (It == TypeCache.end())
return nullptr;
auto *InterfaceType = cast<llvm::DICompositeType>(It->second);
llvm::DISubprogram *FD = DBuilder.createFunction(
InterfaceType, getObjCMethodName(OMD), StringRef(),
InterfaceType->getFile(), LineNo, FnType, LineNo, Flags, SPFlags);
DBuilder.finalizeSubprogram(FD);
ObjCMethodCache[ID].push_back({FD, OMD->isDirectMethod()});
return FD;
}
// getOrCreateFunctionType - Construct type. If it is a c++ method, include
// implicit parameter "this".
llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D,
QualType FnType,
llvm::DIFile *F) {
// In CodeView, we emit the function types in line tables only because the
// only way to distinguish between functions is by display name and type.
if (!D || (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly &&
!CGM.getCodeGenOpts().EmitCodeView))
// Create fake but valid subroutine type. Otherwise -verify would fail, and
// subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields.
return DBuilder.createSubroutineType(DBuilder.getOrCreateTypeArray({}));
if (const auto *Method = dyn_cast<CXXMethodDecl>(D))
return getOrCreateMethodType(Method, F);
const auto *FTy = FnType->getAs<FunctionType>();
CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C;
if (const auto *OMethod = dyn_cast<ObjCMethodDecl>(D)) {
// Add "self" and "_cmd"
SmallVector<llvm::Metadata *, 16> Elts;
// First element is always return type. For 'void' functions it is NULL.
QualType ResultTy = OMethod->getReturnType();
// Replace the instancetype keyword with the actual type.
if (ResultTy == CGM.getContext().getObjCInstanceType())
ResultTy = CGM.getContext().getPointerType(
QualType(OMethod->getClassInterface()->getTypeForDecl(), 0));
Elts.push_back(getOrCreateType(ResultTy, F));
// "self" pointer is always first argument.
QualType SelfDeclTy;
if (auto *SelfDecl = OMethod->getSelfDecl())
SelfDeclTy = SelfDecl->getType();
else if (auto *FPT = dyn_cast<FunctionProtoType>(FnType))
if (FPT->getNumParams() > 1)
SelfDeclTy = FPT->getParamType(0);
if (!SelfDeclTy.isNull())
Elts.push_back(
CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F)));
// "_cmd" pointer is always second argument.
Elts.push_back(DBuilder.createArtificialType(
getOrCreateType(CGM.getContext().getObjCSelType(), F)));
// Get rest of the arguments.
for (const auto *PI : OMethod->parameters())
Elts.push_back(getOrCreateType(PI->getType(), F));
// Variadic methods need a special marker at the end of the type list.
if (OMethod->isVariadic())
Elts.push_back(DBuilder.createUnspecifiedParameter());
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero,
getDwarfCC(CC));
}
// Handle variadic function types; they need an additional
// unspecified parameter.
if (const auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isVariadic()) {
SmallVector<llvm::Metadata *, 16> EltTys;
EltTys.push_back(getOrCreateType(FD->getReturnType(), F));
if (const auto *FPT = dyn_cast<FunctionProtoType>(FnType))
for (QualType ParamType : FPT->param_types())
EltTys.push_back(getOrCreateType(ParamType, F));
EltTys.push_back(DBuilder.createUnspecifiedParameter());
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero,
getDwarfCC(CC));
}
return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F));
}
QualType
CGDebugInfo::getFunctionType(const FunctionDecl *FD, QualType RetTy,
const SmallVectorImpl<const VarDecl *> &Args) {
CallingConv CC = CallingConv::CC_C;
if (FD)
if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
CC = SrcFnTy->getCallConv();
SmallVector<QualType, 16> ArgTypes;
for (const VarDecl *VD : Args)
ArgTypes.push_back(VD->getType());
return CGM.getContext().getFunctionType(RetTy, ArgTypes,
FunctionProtoType::ExtProtoInfo(CC));
}
void CGDebugInfo::emitFunctionStart(GlobalDecl GD, SourceLocation Loc,
SourceLocation ScopeLoc, QualType FnType,
llvm::Function *Fn, bool CurFuncIsThunk) {
StringRef Name;
StringRef LinkageName;
FnBeginRegionCount.push_back(LexicalBlockStack.size());
const Decl *D = GD.getDecl();
bool HasDecl = (D != nullptr);
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
llvm::DIFile *Unit = getOrCreateFile(Loc);
llvm::DIScope *FDContext = Unit;
llvm::DINodeArray TParamsArray;
if (!HasDecl) {
// Use llvm function name.
LinkageName = Fn->getName();
} else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
// If there is a subprogram for this function available then use it.
auto FI = SPCache.find(FD->getCanonicalDecl());
if (FI != SPCache.end()) {
auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second);
if (SP && SP->isDefinition()) {
LexicalBlockStack.emplace_back(SP);
RegionMap[D].reset(SP);
return;
}
}
collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext,
TParamsArray, Flags);
} else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) {
Name = getObjCMethodName(OMD);
Flags |= llvm::DINode::FlagPrototyped;
} else if (isa<VarDecl>(D) &&
GD.getDynamicInitKind() != DynamicInitKind::NoStub) {
// This is a global initializer or atexit destructor for a global variable.
Name = getDynamicInitializerName(cast<VarDecl>(D), GD.getDynamicInitKind(),
Fn);
} else {
Name = Fn->getName();
if (isa<BlockDecl>(D))
LinkageName = Name;
Flags |= llvm::DINode::FlagPrototyped;
}
if (Name.starts_with("\01"))
Name = Name.substr(1);
assert((!D || !isa<VarDecl>(D) ||
GD.getDynamicInitKind() != DynamicInitKind::NoStub) &&
"Unexpected DynamicInitKind !");
if (!HasDecl || D->isImplicit() || D->hasAttr<ArtificialAttr>() ||
isa<VarDecl>(D) || isa<CapturedDecl>(D)) {
Flags |= llvm::DINode::FlagArtificial;
// Artificial functions should not silently reuse CurLoc.
CurLoc = SourceLocation();
}
if (CurFuncIsThunk)
Flags |= llvm::DINode::FlagThunk;
if (Fn->hasLocalLinkage())
SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
llvm::DINode::DIFlags FlagsForDef = Flags | getCallSiteRelatedAttrs();
llvm::DISubprogram::DISPFlags SPFlagsForDef =
SPFlags | llvm::DISubprogram::SPFlagDefinition;
const unsigned LineNo = getLineNumber(Loc.isValid() ? Loc : CurLoc);
unsigned ScopeLine = getLineNumber(ScopeLoc);
llvm::DISubroutineType *DIFnType = getOrCreateFunctionType(D, FnType, Unit);
llvm::DISubprogram *Decl = nullptr;
llvm::DINodeArray Annotations = nullptr;
if (D) {
Decl = isa<ObjCMethodDecl>(D)
? getObjCMethodDeclaration(D, DIFnType, LineNo, Flags, SPFlags)
: getFunctionDeclaration(D);
Annotations = CollectBTFDeclTagAnnotations(D);
}
// FIXME: The function declaration we're constructing here is mostly reusing
// declarations from CXXMethodDecl and not constructing new ones for arbitrary
// FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for
// all subprograms instead of the actual context since subprogram definitions
// are emitted as CU level entities by the backend.
llvm::DISubprogram *SP = DBuilder.createFunction(
FDContext, Name, LinkageName, Unit, LineNo, DIFnType, ScopeLine,
FlagsForDef, SPFlagsForDef, TParamsArray.get(), Decl, nullptr,
Annotations);
Fn->setSubprogram(SP);
// We might get here with a VarDecl in the case we're generating
// code for the initialization of globals. Do not record these decls
// as they will overwrite the actual VarDecl Decl in the cache.
if (HasDecl && isa<FunctionDecl>(D))
DeclCache[D->getCanonicalDecl()].reset(SP);
// Push the function onto the lexical block stack.
LexicalBlockStack.emplace_back(SP);
if (HasDecl)
RegionMap[D].reset(SP);
}
void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc,
QualType FnType, llvm::Function *Fn) {
StringRef Name;
StringRef LinkageName;
const Decl *D = GD.getDecl();
if (!D)
return;
llvm::TimeTraceScope TimeScope("DebugFunction", [&]() {
return GetName(D, true);
});
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DIFile *Unit = getOrCreateFile(Loc);
bool IsDeclForCallSite = Fn ? true : false;
llvm::DIScope *FDContext =
IsDeclForCallSite ? Unit : getDeclContextDescriptor(D);
llvm::DINodeArray TParamsArray;
if (isa<FunctionDecl>(D)) {
// If there is a DISubprogram for this function available then use it.
collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext,
TParamsArray, Flags);
} else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) {
Name = getObjCMethodName(OMD);
Flags |= llvm::DINode::FlagPrototyped;
} else {
llvm_unreachable("not a function or ObjC method");
}
if (!Name.empty() && Name[0] == '\01')
Name = Name.substr(1);
if (D->isImplicit()) {
Flags |= llvm::DINode::FlagArtificial;
// Artificial functions without a location should not silently reuse CurLoc.
if (Loc.isInvalid())
CurLoc = SourceLocation();
}
unsigned LineNo = getLineNumber(Loc);
unsigned ScopeLine = 0;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D);
llvm::DISubroutineType *STy = getOrCreateFunctionType(D, FnType, Unit);
llvm::DISubprogram *SP = DBuilder.createFunction(
FDContext, Name, LinkageName, Unit, LineNo, STy, ScopeLine, Flags,
SPFlags, TParamsArray.get(), nullptr, nullptr, Annotations);
// Preserve btf_decl_tag attributes for parameters of extern functions
// for BPF target. The parameters created in this loop are attached as
// DISubprogram's retainedNodes in the subsequent finalizeSubprogram call.
if (IsDeclForCallSite && CGM.getTarget().getTriple().isBPF()) {
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
llvm::DITypeRefArray ParamTypes = STy->getTypeArray();
unsigned ArgNo = 1;
for (ParmVarDecl *PD : FD->parameters()) {
llvm::DINodeArray ParamAnnotations = CollectBTFDeclTagAnnotations(PD);
DBuilder.createParameterVariable(
SP, PD->getName(), ArgNo, Unit, LineNo, ParamTypes[ArgNo], true,
llvm::DINode::FlagZero, ParamAnnotations);
++ArgNo;
}
}
}
if (IsDeclForCallSite)
Fn->setSubprogram(SP);
DBuilder.finalizeSubprogram(SP);
}
void CGDebugInfo::EmitFuncDeclForCallSite(llvm::CallBase *CallOrInvoke,
QualType CalleeType,
const FunctionDecl *CalleeDecl) {
if (!CallOrInvoke)
return;
auto *Func = CallOrInvoke->getCalledFunction();
if (!Func)
return;
if (Func->getSubprogram())
return;
// Do not emit a declaration subprogram for a function with nodebug
// attribute, or if call site info isn't required.
if (CalleeDecl->hasAttr<NoDebugAttr>() ||
getCallSiteRelatedAttrs() == llvm::DINode::FlagZero)
return;
// If there is no DISubprogram attached to the function being called,
// create the one describing the function in order to have complete
// call site debug info.
if (!CalleeDecl->isStatic() && !CalleeDecl->isInlined())
EmitFunctionDecl(CalleeDecl, CalleeDecl->getLocation(), CalleeType, Func);
}
void CGDebugInfo::EmitInlineFunctionStart(CGBuilderTy &Builder, GlobalDecl GD) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
// If there is a subprogram for this function available then use it.
auto FI = SPCache.find(FD->getCanonicalDecl());
llvm::DISubprogram *SP = nullptr;
if (FI != SPCache.end())
SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second);
if (!SP || !SP->isDefinition())
SP = getFunctionStub(GD);
FnBeginRegionCount.push_back(LexicalBlockStack.size());
LexicalBlockStack.emplace_back(SP);
setInlinedAt(Builder.getCurrentDebugLocation());
EmitLocation(Builder, FD->getLocation());
}
void CGDebugInfo::EmitInlineFunctionEnd(CGBuilderTy &Builder) {
assert(CurInlinedAt && "unbalanced inline scope stack");
EmitFunctionEnd(Builder, nullptr);
setInlinedAt(llvm::DebugLoc(CurInlinedAt).getInlinedAt());
}
void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) {
// Update our current location
setLocation(Loc);
if (CurLoc.isInvalid() || CurLoc.isMacroID() || LexicalBlockStack.empty())
return;
llvm::MDNode *Scope = LexicalBlockStack.back();
Builder.SetCurrentDebugLocation(
llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(CurLoc),
getColumnNumber(CurLoc), Scope, CurInlinedAt));
}
void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) {
llvm::MDNode *Back = nullptr;
if (!LexicalBlockStack.empty())
Back = LexicalBlockStack.back().get();
LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock(
cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc),
getColumnNumber(CurLoc)));
}
void CGDebugInfo::AppendAddressSpaceXDeref(
unsigned AddressSpace, SmallVectorImpl<uint64_t> &Expr) const {
std::optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(AddressSpace);
if (!DWARFAddressSpace)
return;
Expr.push_back(llvm::dwarf::DW_OP_constu);
Expr.push_back(*DWARFAddressSpace);
Expr.push_back(llvm::dwarf::DW_OP_swap);
Expr.push_back(llvm::dwarf::DW_OP_xderef);
}
void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder,
SourceLocation Loc) {
// Set our current location.
setLocation(Loc);
// Emit a line table change for the current location inside the new scope.
Builder.SetCurrentDebugLocation(llvm::DILocation::get(
CGM.getLLVMContext(), getLineNumber(Loc), getColumnNumber(Loc),
LexicalBlockStack.back(), CurInlinedAt));
if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly)
return;
// Create a new lexical block and push it on the stack.
CreateLexicalBlock(Loc);
}
void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder,
SourceLocation Loc) {
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
// Provide an entry in the line table for the end of the block.
EmitLocation(Builder, Loc);
if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly)
return;
LexicalBlockStack.pop_back();
}
void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder, llvm::Function *Fn) {
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
unsigned RCount = FnBeginRegionCount.back();
assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch");
// Pop all regions for this function.
while (LexicalBlockStack.size() != RCount) {
// Provide an entry in the line table for the end of the block.
EmitLocation(Builder, CurLoc);
LexicalBlockStack.pop_back();
}
FnBeginRegionCount.pop_back();
if (Fn && Fn->getSubprogram())
DBuilder.finalizeSubprogram(Fn->getSubprogram());
}
CGDebugInfo::BlockByRefType
CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD,
uint64_t *XOffset) {
SmallVector<llvm::Metadata *, 5> EltTys;
QualType FType;
uint64_t FieldSize, FieldOffset;
uint32_t FieldAlign;
llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
QualType Type = VD->getType();
FieldOffset = 0;
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset));
FType = CGM.getContext().IntTy;
EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset));
bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD);
if (HasCopyAndDispose) {
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(
CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset));
EltTys.push_back(
CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset));
}
bool HasByrefExtendedLayout;
Qualifiers::ObjCLifetime Lifetime;
if (CGM.getContext().getByrefLifetime(Type, Lifetime,
HasByrefExtendedLayout) &&
HasByrefExtendedLayout) {
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(
CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset));
}
CharUnits Align = CGM.getContext().getDeclAlign(VD);
if (Align > CGM.getContext().toCharUnitsFromBits(
CGM.getTarget().getPointerAlign(LangAS::Default))) {
CharUnits FieldOffsetInBytes =
CGM.getContext().toCharUnitsFromBits(FieldOffset);
CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align);
CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes;
if (NumPaddingBytes.isPositive()) {
llvm::APInt pad(32, NumPaddingBytes.getQuantity());
FType = CGM.getContext().getConstantArrayType(
CGM.getContext().CharTy, pad, nullptr, ArraySizeModifier::Normal, 0);
EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset));
}
}
FType = Type;
llvm::DIType *WrappedTy = getOrCreateType(FType, Unit);
FieldSize = CGM.getContext().getTypeSize(FType);
FieldAlign = CGM.getContext().toBits(Align);
*XOffset = FieldOffset;
llvm::DIType *FieldTy = DBuilder.createMemberType(
Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset,
llvm::DINode::FlagZero, WrappedTy);
EltTys.push_back(FieldTy);
FieldOffset += FieldSize;
llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
return {DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0,
llvm::DINode::FlagZero, nullptr, Elements),
WrappedTy};
}
llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const VarDecl *VD,
llvm::Value *Storage,
std::optional<unsigned> ArgNo,
CGBuilderTy &Builder,
const bool UsePointerValue) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
if (VD->hasAttr<NoDebugAttr>())
return nullptr;
const bool VarIsArtificial = IsArtificial(VD);
llvm::DIFile *Unit = nullptr;
if (!VarIsArtificial)
Unit = getOrCreateFile(VD->getLocation());
llvm::DIType *Ty;
uint64_t XOffset = 0;
if (VD->hasAttr<BlocksAttr>())
Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType;
else
Ty = getOrCreateType(VD->getType(), Unit);
// If there is no debug info for this type then do not emit debug info
// for this variable.
if (!Ty)
return nullptr;
// Get location information.
unsigned Line = 0;
unsigned Column = 0;
if (!VarIsArtificial) {
Line = getLineNumber(VD->getLocation());
Column = getColumnNumber(VD->getLocation());
}
SmallVector<uint64_t, 13> Expr;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (VarIsArtificial)
Flags |= llvm::DINode::FlagArtificial;
auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(VD->getType());
AppendAddressSpaceXDeref(AddressSpace, Expr);
// If this is implicit parameter of CXXThis or ObjCSelf kind, then give it an
// object pointer flag.
if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) {
if (IPD->getParameterKind() == ImplicitParamKind::CXXThis ||
IPD->getParameterKind() == ImplicitParamKind::ObjCSelf)
Flags |= llvm::DINode::FlagObjectPointer;
} else if (const auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
if (PVD->isExplicitObjectParameter())
Flags |= llvm::DINode::FlagObjectPointer;
}
// Note: Older versions of clang used to emit byval references with an extra
// DW_OP_deref, because they referenced the IR arg directly instead of
// referencing an alloca. Newer versions of LLVM don't treat allocas
// differently from other function arguments when used in a dbg.declare.
auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
StringRef Name = VD->getName();
if (!Name.empty()) {
// __block vars are stored on the heap if they are captured by a block that
// can escape the local scope.
if (VD->isEscapingByref()) {
// Here, we need an offset *into* the alloca.
CharUnits offset = CharUnits::fromQuantity(32);
Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
// offset of __forwarding field
offset = CGM.getContext().toCharUnitsFromBits(
CGM.getTarget().getPointerWidth(LangAS::Default));
Expr.push_back(offset.getQuantity());
Expr.push_back(llvm::dwarf::DW_OP_deref);
Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
// offset of x field
offset = CGM.getContext().toCharUnitsFromBits(XOffset);
Expr.push_back(offset.getQuantity());
}
} else if (const auto *RT = dyn_cast<RecordType>(VD->getType())) {
// If VD is an anonymous union then Storage represents value for
// all union fields.
const RecordDecl *RD = RT->getDecl();
if (RD->isUnion() && RD->isAnonymousStructOrUnion()) {
// GDB has trouble finding local variables in anonymous unions, so we emit
// artificial local variables for each of the members.
//
// FIXME: Remove this code as soon as GDB supports this.
// The debug info verifier in LLVM operates based on the assumption that a
// variable has the same size as its storage and we had to disable the
// check for artificial variables.
for (const auto *Field : RD->fields()) {
llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
StringRef FieldName = Field->getName();
// Ignore unnamed fields. Do not ignore unnamed records.
if (FieldName.empty() && !isa<RecordType>(Field->getType()))
continue;
// Use VarDecl's Tag, Scope and Line number.
auto FieldAlign = getDeclAlignIfRequired(Field, CGM.getContext());
auto *D = DBuilder.createAutoVariable(
Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize,
Flags | llvm::DINode::FlagArtificial, FieldAlign);
// Insert an llvm.dbg.declare into the current block.
DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
llvm::DILocation::get(CGM.getLLVMContext(), Line,
Column, Scope,
CurInlinedAt),
Builder.GetInsertBlock());
}
}
}
// Clang stores the sret pointer provided by the caller in a static alloca.
// Use DW_OP_deref to tell the debugger to load the pointer and treat it as
// the address of the variable.
if (UsePointerValue) {
assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) &&
"Debug info already contains DW_OP_deref.");
Expr.push_back(llvm::dwarf::DW_OP_deref);
}
// Create the descriptor for the variable.
llvm::DILocalVariable *D = nullptr;
if (ArgNo) {
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(VD);
D = DBuilder.createParameterVariable(Scope, Name, *ArgNo, Unit, Line, Ty,
CGM.getLangOpts().Optimize, Flags,
Annotations);
} else {
// For normal local variable, we will try to find out whether 'VD' is the
// copy parameter of coroutine.
// If yes, we are going to use DIVariable of the origin parameter instead
// of creating the new one.
// If no, it might be a normal alloc, we just create a new one for it.
// Check whether the VD is move parameters.
auto RemapCoroArgToLocalVar = [&]() -> llvm::DILocalVariable * {
// The scope of parameter and move-parameter should be distinct
// DISubprogram.
if (!isa<llvm::DISubprogram>(Scope) || !Scope->isDistinct())
return nullptr;
auto Iter = llvm::find_if(CoroutineParameterMappings, [&](auto &Pair) {
Stmt *StmtPtr = const_cast<Stmt *>(Pair.second);
if (DeclStmt *DeclStmtPtr = dyn_cast<DeclStmt>(StmtPtr)) {
DeclGroupRef DeclGroup = DeclStmtPtr->getDeclGroup();
Decl *Decl = DeclGroup.getSingleDecl();
if (VD == dyn_cast_or_null<VarDecl>(Decl))
return true;
}
return false;
});
if (Iter != CoroutineParameterMappings.end()) {
ParmVarDecl *PD = const_cast<ParmVarDecl *>(Iter->first);
auto Iter2 = llvm::find_if(ParamDbgMappings, [&](auto &DbgPair) {
return DbgPair.first == PD && DbgPair.second->getScope() == Scope;
});
if (Iter2 != ParamDbgMappings.end())
return const_cast<llvm::DILocalVariable *>(Iter2->second);
}
return nullptr;
};
// If we couldn't find a move param DIVariable, create a new one.
D = RemapCoroArgToLocalVar();
// Or we will create a new DIVariable for this Decl if D dose not exists.
if (!D)
D = DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty,
CGM.getLangOpts().Optimize, Flags, Align);
}
// Insert an llvm.dbg.declare into the current block.
DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
llvm::DILocation::get(CGM.getLLVMContext(), Line,
Column, Scope, CurInlinedAt),
Builder.GetInsertBlock());
return D;
}
llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const BindingDecl *BD,
llvm::Value *Storage,
std::optional<unsigned> ArgNo,
CGBuilderTy &Builder,
const bool UsePointerValue) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
if (BD->hasAttr<NoDebugAttr>())
return nullptr;
// Skip the tuple like case, we don't handle that here
if (isa<DeclRefExpr>(BD->getBinding()))
return nullptr;
llvm::DIFile *Unit = getOrCreateFile(BD->getLocation());
llvm::DIType *Ty = getOrCreateType(BD->getType(), Unit);
// If there is no debug info for this type then do not emit debug info
// for this variable.
if (!Ty)
return nullptr;
auto Align = getDeclAlignIfRequired(BD, CGM.getContext());
unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(BD->getType());
SmallVector<uint64_t, 3> Expr;
AppendAddressSpaceXDeref(AddressSpace, Expr);
// Clang stores the sret pointer provided by the caller in a static alloca.
// Use DW_OP_deref to tell the debugger to load the pointer and treat it as
// the address of the variable.
if (UsePointerValue) {
assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) &&
"Debug info already contains DW_OP_deref.");
Expr.push_back(llvm::dwarf::DW_OP_deref);
}
unsigned Line = getLineNumber(BD->getLocation());
unsigned Column = getColumnNumber(BD->getLocation());
StringRef Name = BD->getName();
auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
// Create the descriptor for the variable.
llvm::DILocalVariable *D = DBuilder.createAutoVariable(
Scope, Name, Unit, Line, Ty, CGM.getLangOpts().Optimize,
llvm::DINode::FlagZero, Align);
if (const MemberExpr *ME = dyn_cast<MemberExpr>(BD->getBinding())) {
if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
const unsigned fieldIndex = FD->getFieldIndex();
const clang::CXXRecordDecl *parent =
(const CXXRecordDecl *)FD->getParent();
const ASTRecordLayout &layout =
CGM.getContext().getASTRecordLayout(parent);
const uint64_t fieldOffset = layout.getFieldOffset(fieldIndex);
if (FD->isBitField()) {
const CGRecordLayout &RL =
CGM.getTypes().getCGRecordLayout(FD->getParent());
const CGBitFieldInfo &Info = RL.getBitFieldInfo(FD);
// Use DW_OP_plus_uconst to adjust to the start of the bitfield
// storage.
if (!Info.StorageOffset.isZero()) {
Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
Expr.push_back(Info.StorageOffset.getQuantity());
}
// Use LLVM_extract_bits to extract the appropriate bits from this
// bitfield.
Expr.push_back(Info.IsSigned
? llvm::dwarf::DW_OP_LLVM_extract_bits_sext
: llvm::dwarf::DW_OP_LLVM_extract_bits_zext);
Expr.push_back(Info.Offset);
// If we have an oversized bitfield then the value won't be more than
// the size of the type.
const uint64_t TypeSize = CGM.getContext().getTypeSize(BD->getType());
Expr.push_back(std::min((uint64_t)Info.Size, TypeSize));
} else if (fieldOffset != 0) {
assert(fieldOffset % CGM.getContext().getCharWidth() == 0 &&
"Unexpected non-bitfield with non-byte-aligned offset");
Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
Expr.push_back(
CGM.getContext().toCharUnitsFromBits(fieldOffset).getQuantity());
}
}
} else if (const ArraySubscriptExpr *ASE =
dyn_cast<ArraySubscriptExpr>(BD->getBinding())) {
if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ASE->getIdx())) {
const uint64_t value = IL->getValue().getZExtValue();
const uint64_t typeSize = CGM.getContext().getTypeSize(BD->getType());
if (value != 0) {
Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
Expr.push_back(CGM.getContext()
.toCharUnitsFromBits(value * typeSize)
.getQuantity());
}
}
}
// Insert an llvm.dbg.declare into the current block.
DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
llvm::DILocation::get(CGM.getLLVMContext(), Line,
Column, Scope, CurInlinedAt),
Builder.GetInsertBlock());
return D;
}
llvm::DILocalVariable *
CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage,
CGBuilderTy &Builder,
const bool UsePointerValue) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
if (auto *DD = dyn_cast<DecompositionDecl>(VD)) {
for (BindingDecl *B : DD->flat_bindings())
EmitDeclare(B, Storage, std::nullopt, Builder,
VD->getType()->isReferenceType());
// Don't emit an llvm.dbg.declare for the composite storage as it doesn't
// correspond to a user variable.
return nullptr;
}
return EmitDeclare(VD, Storage, std::nullopt, Builder, UsePointerValue);
}
void CGDebugInfo::EmitLabel(const LabelDecl *D, CGBuilderTy &Builder) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
if (D->hasAttr<NoDebugAttr>())
return;
auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
llvm::DIFile *Unit = getOrCreateFile(D->getLocation());
// Get location information.
unsigned Line = getLineNumber(D->getLocation());
unsigned Column = getColumnNumber(D->getLocation());
StringRef Name = D->getName();
// Create the descriptor for the label.
auto *L =
DBuilder.createLabel(Scope, Name, Unit, Line, CGM.getLangOpts().Optimize);
// Insert an llvm.dbg.label into the current block.
DBuilder.insertLabel(L,
llvm::DILocation::get(CGM.getLLVMContext(), Line, Column,
Scope, CurInlinedAt),
Builder.GetInsertBlock()->end());
}
llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy,
llvm::DIType *Ty) {
llvm::DIType *CachedTy = getTypeOrNull(QualTy);
if (CachedTy)
Ty = CachedTy;
return DBuilder.createObjectPointerType(Ty, /*Implicit=*/true);
}
void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable(
const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder,
const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
if (Builder.GetInsertBlock() == nullptr)
return;
if (VD->hasAttr<NoDebugAttr>())
return;
bool isByRef = VD->hasAttr<BlocksAttr>();
uint64_t XOffset = 0;
llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
llvm::DIType *Ty;
if (isByRef)
Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType;
else
Ty = getOrCreateType(VD->getType(), Unit);
// Self is passed along as an implicit non-arg variable in a
// block. Mark it as the object pointer.
if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD))
if (IPD->getParameterKind() == ImplicitParamKind::ObjCSelf)
Ty = CreateSelfType(VD->getType(), Ty);
// Get location information.
const unsigned Line =
getLineNumber(VD->getLocation().isValid() ? VD->getLocation() : CurLoc);
unsigned Column = getColumnNumber(VD->getLocation());
const llvm::DataLayout &target = CGM.getDataLayout();
CharUnits offset = CharUnits::fromQuantity(
target.getStructLayout(blockInfo.StructureType)
->getElementOffset(blockInfo.getCapture(VD).getIndex()));
SmallVector<uint64_t, 9> addr;
addr.push_back(llvm::dwarf::DW_OP_deref);
addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
addr.push_back(offset.getQuantity());
if (isByRef) {
addr.push_back(llvm::dwarf::DW_OP_deref);
addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
// offset of __forwarding field
offset =
CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0));
addr.push_back(offset.getQuantity());
addr.push_back(llvm::dwarf::DW_OP_deref);
addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
// offset of x field
offset = CGM.getContext().toCharUnitsFromBits(XOffset);
addr.push_back(offset.getQuantity());
}
// Create the descriptor for the variable.
auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
auto *D = DBuilder.createAutoVariable(
cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit,
Line, Ty, false, llvm::DINode::FlagZero, Align);
// Insert an llvm.dbg.declare into the current block.
auto DL = llvm::DILocation::get(CGM.getLLVMContext(), Line, Column,
LexicalBlockStack.back(), CurInlinedAt);
auto *Expr = DBuilder.createExpression(addr);
if (InsertPoint)
DBuilder.insertDeclare(Storage, D, Expr, DL, InsertPoint->getIterator());
else
DBuilder.insertDeclare(Storage, D, Expr, DL, Builder.GetInsertBlock());
}
llvm::DILocalVariable *
CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI,
unsigned ArgNo, CGBuilderTy &Builder,
bool UsePointerValue) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
return EmitDeclare(VD, AI, ArgNo, Builder, UsePointerValue);
}
namespace {
struct BlockLayoutChunk {
uint64_t OffsetInBits;
const BlockDecl::Capture *Capture;
};
bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) {
return l.OffsetInBits < r.OffsetInBits;
}
} // namespace
void CGDebugInfo::collectDefaultFieldsForBlockLiteralDeclare(
const CGBlockInfo &Block, const ASTContext &Context, SourceLocation Loc,
const llvm::StructLayout &BlockLayout, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &Fields) {
// Blocks in OpenCL have unique constraints which make the standard fields
// redundant while requiring size and align fields for enqueue_kernel. See
// initializeForBlockHeader in CGBlocks.cpp
if (CGM.getLangOpts().OpenCL) {
Fields.push_back(createFieldType("__size", Context.IntTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(0),
Unit, Unit));
Fields.push_back(createFieldType("__align", Context.IntTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(1),
Unit, Unit));
} else {
Fields.push_back(createFieldType("__isa", Context.VoidPtrTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(0),
Unit, Unit));
Fields.push_back(createFieldType("__flags", Context.IntTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(1),
Unit, Unit));
Fields.push_back(
createFieldType("__reserved", Context.IntTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(2), Unit, Unit));
auto *FnTy = Block.getBlockExpr()->getFunctionType();
auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar());
Fields.push_back(createFieldType("__FuncPtr", FnPtrType, Loc, AS_public,
BlockLayout.getElementOffsetInBits(3),
Unit, Unit));
Fields.push_back(createFieldType(
"__descriptor",
Context.getPointerType(Block.NeedsCopyDispose
? Context.getBlockDescriptorExtendedType()
: Context.getBlockDescriptorType()),
Loc, AS_public, BlockLayout.getElementOffsetInBits(4), Unit, Unit));
}
}
void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block,
StringRef Name,
unsigned ArgNo,
llvm::AllocaInst *Alloca,
CGBuilderTy &Builder) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
ASTContext &C = CGM.getContext();
const BlockDecl *blockDecl = block.getBlockDecl();
// Collect some general information about the block's location.
SourceLocation loc = blockDecl->getCaretLocation();
llvm::DIFile *tunit = getOrCreateFile(loc);
unsigned line = getLineNumber(loc);
unsigned column = getColumnNumber(loc);
// Build the debug-info type for the block literal.
getDeclContextDescriptor(blockDecl);
const llvm::StructLayout *blockLayout =
CGM.getDataLayout().getStructLayout(block.StructureType);
SmallVector<llvm::Metadata *, 16> fields;
collectDefaultFieldsForBlockLiteralDeclare(block, C, loc, *blockLayout, tunit,
fields);
// We want to sort the captures by offset, not because DWARF
// requires this, but because we're paranoid about debuggers.
SmallVector<BlockLayoutChunk, 8> chunks;
// 'this' capture.
if (blockDecl->capturesCXXThis()) {
BlockLayoutChunk chunk;
chunk.OffsetInBits =
blockLayout->getElementOffsetInBits(block.CXXThisIndex);
chunk.Capture = nullptr;
chunks.push_back(chunk);
}
// Variable captures.
for (const auto &capture : blockDecl->captures()) {
const VarDecl *variable = capture.getVariable();
const CGBlockInfo::Capture &captureInfo = block.getCapture(variable);
// Ignore constant captures.
if (captureInfo.isConstant())
continue;
BlockLayoutChunk chunk;
chunk.OffsetInBits =
blockLayout->getElementOffsetInBits(captureInfo.getIndex());
chunk.Capture = &capture;
chunks.push_back(chunk);
}
// Sort by offset.
llvm::array_pod_sort(chunks.begin(), chunks.end());
for (const BlockLayoutChunk &Chunk : chunks) {
uint64_t offsetInBits = Chunk.OffsetInBits;
const BlockDecl::Capture *capture = Chunk.Capture;
// If we have a null capture, this must be the C++ 'this' capture.
if (!capture) {
QualType type;
if (auto *Method =
cast_or_null<CXXMethodDecl>(blockDecl->getNonClosureContext()))
type = Method->getThisType();
else if (auto *RDecl = dyn_cast<CXXRecordDecl>(blockDecl->getParent()))
type = QualType(RDecl->getTypeForDecl(), 0);
else
llvm_unreachable("unexpected block declcontext");
fields.push_back(createFieldType("this", type, loc, AS_public,
offsetInBits, tunit, tunit));
continue;
}
const VarDecl *variable = capture->getVariable();
StringRef name = variable->getName();
llvm::DIType *fieldType;
if (capture->isByRef()) {
TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy);
auto Align = PtrInfo.isAlignRequired() ? PtrInfo.Align : 0;
// FIXME: This recomputes the layout of the BlockByRefWrapper.
uint64_t xoffset;
fieldType =
EmitTypeForVarWithBlocksAttr(variable, &xoffset).BlockByRefWrapper;
fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width);
fieldType = DBuilder.createMemberType(tunit, name, tunit, line,
PtrInfo.Width, Align, offsetInBits,
llvm::DINode::FlagZero, fieldType);
} else {
auto Align = getDeclAlignIfRequired(variable, CGM.getContext());
fieldType = createFieldType(name, variable->getType(), loc, AS_public,
offsetInBits, Align, tunit, tunit);
}
fields.push_back(fieldType);
}
SmallString<36> typeName;
llvm::raw_svector_ostream(typeName)
<< "__block_literal_" << CGM.getUniqueBlockCount();
llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields);
llvm::DIType *type =
DBuilder.createStructType(tunit, typeName.str(), tunit, line,
CGM.getContext().toBits(block.BlockSize), 0,
llvm::DINode::FlagZero, nullptr, fieldsArray);
type = DBuilder.createPointerType(type, CGM.PointerWidthInBits);
// Get overall information about the block.
llvm::DINode::DIFlags flags = llvm::DINode::FlagArtificial;
auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back());
// Create the descriptor for the parameter.
auto *debugVar = DBuilder.createParameterVariable(
scope, Name, ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags);
// Insert an llvm.dbg.declare into the current block.
DBuilder.insertDeclare(Alloca, debugVar, DBuilder.createExpression(),
llvm::DILocation::get(CGM.getLLVMContext(), line,
column, scope, CurInlinedAt),
Builder.GetInsertBlock());
}
llvm::DIDerivedType *
CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) {
if (!D || !D->isStaticDataMember())
return nullptr;
auto MI = StaticDataMemberCache.find(D->getCanonicalDecl());
if (MI != StaticDataMemberCache.end()) {
assert(MI->second && "Static data member declaration should still exist");
return MI->second;
}
// If the member wasn't found in the cache, lazily construct and add it to the
// type (used when a limited form of the type is emitted).
auto DC = D->getDeclContext();
auto *Ctxt = cast<llvm::DICompositeType>(getDeclContextDescriptor(D));
return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC));
}
llvm::DIGlobalVariableExpression *CGDebugInfo::CollectAnonRecordDecls(
const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo,
StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) {
llvm::DIGlobalVariableExpression *GVE = nullptr;
for (const auto *Field : RD->fields()) {
llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
StringRef FieldName = Field->getName();
// Ignore unnamed fields, but recurse into anonymous records.
if (FieldName.empty()) {
if (const auto *RT = dyn_cast<RecordType>(Field->getType()))
GVE = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName,
Var, DContext);
continue;
}
// Use VarDecl's Tag, Scope and Line number.
GVE = DBuilder.createGlobalVariableExpression(
DContext, FieldName, LinkageName, Unit, LineNo, FieldTy,
Var->hasLocalLinkage());
Var->addDebugInfo(GVE);
}
return GVE;
}
static bool ReferencesAnonymousEntity(ArrayRef<TemplateArgument> Args);
static bool ReferencesAnonymousEntity(RecordType *RT) {
// Unnamed classes/lambdas can't be reconstituted due to a lack of column
// info we produce in the DWARF, so we can't get Clang's full name back.
// But so long as it's not one of those, it doesn't matter if some sub-type
// of the record (a template parameter) can't be reconstituted - because the
// un-reconstitutable type itself will carry its own name.
const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
if (!RD)
return false;
if (!RD->getIdentifier())
return true;
auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD);
if (!TSpecial)
return false;
return ReferencesAnonymousEntity(TSpecial->getTemplateArgs().asArray());
}
static bool ReferencesAnonymousEntity(ArrayRef<TemplateArgument> Args) {
return llvm::any_of(Args, [&](const TemplateArgument &TA) {
switch (TA.getKind()) {
case TemplateArgument::Pack:
return ReferencesAnonymousEntity(TA.getPackAsArray());
case TemplateArgument::Type: {
struct ReferencesAnonymous
: public RecursiveASTVisitor<ReferencesAnonymous> {
bool RefAnon = false;
bool VisitRecordType(RecordType *RT) {
if (ReferencesAnonymousEntity(RT)) {
RefAnon = true;
return false;
}
return true;
}
};
ReferencesAnonymous RT;
RT.TraverseType(TA.getAsType());
if (RT.RefAnon)
return true;
break;
}
default:
break;
}
return false;
});
}
namespace {
struct ReconstitutableType : public RecursiveASTVisitor<ReconstitutableType> {
bool Reconstitutable = true;
bool VisitVectorType(VectorType *FT) {
Reconstitutable = false;
return false;
}
bool VisitAtomicType(AtomicType *FT) {
Reconstitutable = false;
return false;
}
bool VisitType(Type *T) {
// _BitInt(N) isn't reconstitutable because the bit width isn't encoded in
// the DWARF, only the byte width.
if (T->isBitIntType()) {
Reconstitutable = false;
return false;
}
return true;
}
bool TraverseEnumType(EnumType *ET) {
// Unnamed enums can't be reconstituted due to a lack of column info we
// produce in the DWARF, so we can't get Clang's full name back.
if (const auto *ED = dyn_cast<EnumDecl>(ET->getDecl())) {
if (!ED->getIdentifier()) {
Reconstitutable = false;
return false;
}
if (!ED->isExternallyVisible()) {
Reconstitutable = false;
return false;
}
}
return true;
}
bool VisitFunctionProtoType(FunctionProtoType *FT) {
// noexcept is not encoded in DWARF, so the reversi
Reconstitutable &= !isNoexceptExceptionSpec(FT->getExceptionSpecType());
Reconstitutable &= !FT->getNoReturnAttr();
return Reconstitutable;
}
bool VisitRecordType(RecordType *RT) {
if (ReferencesAnonymousEntity(RT)) {
Reconstitutable = false;
return false;
}
return true;
}
};
} // anonymous namespace
// Test whether a type name could be rebuilt from emitted debug info.
static bool IsReconstitutableType(QualType QT) {
ReconstitutableType T;
T.TraverseType(QT);
return T.Reconstitutable;
}
bool CGDebugInfo::HasReconstitutableArgs(
ArrayRef<TemplateArgument> Args) const {
return llvm::all_of(Args, [&](const TemplateArgument &TA) {
switch (TA.getKind()) {
case TemplateArgument::Template:
// Easy to reconstitute - the value of the parameter in the debug
// info is the string name of the template. The template name
// itself won't benefit from any name rebuilding, but that's a
// representational limitation - maybe DWARF could be
// changed/improved to use some more structural representation.
return true;
case TemplateArgument::Declaration:
// Reference and pointer non-type template parameters point to
// variables, functions, etc and their value is, at best (for
// variables) represented as an address - not a reference to the
// DWARF describing the variable/function/etc. This makes it hard,
// possibly impossible to rebuild the original name - looking up
// the address in the executable file's symbol table would be
// needed.
return false;
case TemplateArgument::NullPtr:
// These could be rebuilt, but figured they're close enough to the
// declaration case, and not worth rebuilding.
return false;
case TemplateArgument::Pack:
// A pack is invalid if any of the elements of the pack are
// invalid.
return HasReconstitutableArgs(TA.getPackAsArray());
case TemplateArgument::Integral:
// Larger integers get encoded as DWARF blocks which are a bit
// harder to parse back into a large integer, etc - so punting on
// this for now. Re-parsing the integers back into APInt is
// probably feasible some day.
return TA.getAsIntegral().getBitWidth() <= 64 &&
IsReconstitutableType(TA.getIntegralType());
case TemplateArgument::StructuralValue:
return false;
case TemplateArgument::Type:
return IsReconstitutableType(TA.getAsType());
case TemplateArgument::Expression:
return IsReconstitutableType(TA.getAsExpr()->getType());
default:
llvm_unreachable("Other, unresolved, template arguments should "
"not be seen here");
}
});
}
std::string CGDebugInfo::GetName(const Decl *D, bool Qualified) const {
std::string Name;
llvm::raw_string_ostream OS(Name);
const NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND)
return Name;
llvm::codegenoptions::DebugTemplateNamesKind TemplateNamesKind =
CGM.getCodeGenOpts().getDebugSimpleTemplateNames();
if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
TemplateNamesKind = llvm::codegenoptions::DebugTemplateNamesKind::Full;
std::optional<TemplateArgs> Args;
bool IsOperatorOverload = false; // isa<CXXConversionDecl>(ND);
if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
Args = GetTemplateArgs(RD);
} else if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
Args = GetTemplateArgs(FD);
auto NameKind = ND->getDeclName().getNameKind();
IsOperatorOverload |=
NameKind == DeclarationName::CXXOperatorName ||
NameKind == DeclarationName::CXXConversionFunctionName;
} else if (auto *VD = dyn_cast<VarDecl>(ND)) {
Args = GetTemplateArgs(VD);
}
// A conversion operator presents complications/ambiguity if there's a
// conversion to class template that is itself a template, eg:
// template<typename T>
// operator ns::t1<T, int>();
// This should be named, eg: "operator ns::t1<float, int><float>"
// (ignoring clang bug that means this is currently "operator t1<float>")
// but if the arguments were stripped, the consumer couldn't differentiate
// whether the template argument list for the conversion type was the
// function's argument list (& no reconstitution was needed) or not.
// This could be handled if reconstitutable names had a separate attribute
// annotating them as such - this would remove the ambiguity.
//
// Alternatively the template argument list could be parsed enough to check
// whether there's one list or two, then compare that with the DWARF
// description of the return type and the template argument lists to determine
// how many lists there should be and if one is missing it could be assumed(?)
// to be the function's template argument list & then be rebuilt.
//
// Other operator overloads that aren't conversion operators could be
// reconstituted but would require a bit more nuance about detecting the
// difference between these different operators during that rebuilding.
bool Reconstitutable =
Args && HasReconstitutableArgs(Args->Args) && !IsOperatorOverload;
PrintingPolicy PP = getPrintingPolicy();
if (TemplateNamesKind == llvm::codegenoptions::DebugTemplateNamesKind::Full ||
!Reconstitutable) {
ND->getNameForDiagnostic(OS, PP, Qualified);
} else {
bool Mangled = TemplateNamesKind ==
llvm::codegenoptions::DebugTemplateNamesKind::Mangled;
// check if it's a template
if (Mangled)
OS << "_STN|";
OS << ND->getDeclName();
std::string EncodedOriginalName;
llvm::raw_string_ostream EncodedOriginalNameOS(EncodedOriginalName);
EncodedOriginalNameOS << ND->getDeclName();
if (Mangled) {
OS << "|";
printTemplateArgumentList(OS, Args->Args, PP);
printTemplateArgumentList(EncodedOriginalNameOS, Args->Args, PP);
#ifndef NDEBUG
std::string CanonicalOriginalName;
llvm::raw_string_ostream OriginalOS(CanonicalOriginalName);
ND->getNameForDiagnostic(OriginalOS, PP, Qualified);
assert(EncodedOriginalName == CanonicalOriginalName);
#endif
}
}
return Name;
}
void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var,
const VarDecl *D) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
if (D->hasAttr<NoDebugAttr>())
return;
llvm::TimeTraceScope TimeScope("DebugGlobalVariable", [&]() {
return GetName(D, true);
});
// If we already created a DIGlobalVariable for this declaration, just attach
// it to the llvm::GlobalVariable.
auto Cached = DeclCache.find(D->getCanonicalDecl());
if (Cached != DeclCache.end())
return Var->addDebugInfo(
cast<llvm::DIGlobalVariableExpression>(Cached->second));
// Create global variable debug descriptor.
llvm::DIFile *Unit = nullptr;
llvm::DIScope *DContext = nullptr;
unsigned LineNo;
StringRef DeclName, LinkageName;
QualType T;
llvm::MDTuple *TemplateParameters = nullptr;
collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName,
TemplateParameters, DContext);
// Attempt to store one global variable for the declaration - even if we
// emit a lot of fields.
llvm::DIGlobalVariableExpression *GVE = nullptr;
// If this is an anonymous union then we'll want to emit a global
// variable for each member of the anonymous union so that it's possible
// to find the name of any field in the union.
if (T->isUnionType() && DeclName.empty()) {
const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
assert(RD->isAnonymousStructOrUnion() &&
"unnamed non-anonymous struct or union?");
GVE = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext);
} else {
auto Align = getDeclAlignIfRequired(D, CGM.getContext());
SmallVector<uint64_t, 4> Expr;
unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(D->getType());
if (CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) {
if (D->hasAttr<CUDASharedAttr>())
AddressSpace =
CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared);
else if (D->hasAttr<CUDAConstantAttr>())
AddressSpace =
CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
}
AppendAddressSpaceXDeref(AddressSpace, Expr);
llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D);
GVE = DBuilder.createGlobalVariableExpression(
DContext, DeclName, LinkageName, Unit, LineNo, getOrCreateType(T, Unit),
Var->hasLocalLinkage(), true,
Expr.empty() ? nullptr : DBuilder.createExpression(Expr),
getOrCreateStaticDataMemberDeclarationOrNull(D), TemplateParameters,
Align, Annotations);
Var->addDebugInfo(GVE);
}
DeclCache[D->getCanonicalDecl()].reset(GVE);
}
void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, const APValue &Init) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
if (VD->hasAttr<NoDebugAttr>())
return;
llvm::TimeTraceScope TimeScope("DebugConstGlobalVariable", [&]() {
return GetName(VD, true);
});
auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
// Create the descriptor for the variable.
llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
StringRef Name = VD->getName();
llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit);
if (const auto *ECD = dyn_cast<EnumConstantDecl>(VD)) {
const auto *ED = cast<EnumDecl>(ECD->getDeclContext());
assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?");
if (CGM.getCodeGenOpts().EmitCodeView) {
// If CodeView, emit enums as global variables, unless they are defined
// inside a class. We do this because MSVC doesn't emit S_CONSTANTs for
// enums in classes, and because it is difficult to attach this scope
// information to the global variable.
if (isa<RecordDecl>(ED->getDeclContext()))
return;
} else {
// If not CodeView, emit DW_TAG_enumeration_type if necessary. For
// example: for "enum { ZERO };", a DW_TAG_enumeration_type is created the
// first time `ZERO` is referenced in a function.
llvm::DIType *EDTy =
getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit);
assert (EDTy->getTag() == llvm::dwarf::DW_TAG_enumeration_type);
(void)EDTy;
return;
}
}
// Do not emit separate definitions for function local consts.
if (isa<FunctionDecl>(VD->getDeclContext()))
return;
VD = cast<ValueDecl>(VD->getCanonicalDecl());
auto *VarD = dyn_cast<VarDecl>(VD);
if (VarD && VarD->isStaticDataMember()) {
auto *RD = cast<RecordDecl>(VarD->getDeclContext());
getDeclContextDescriptor(VarD);
// Ensure that the type is retained even though it's otherwise unreferenced.
//
// FIXME: This is probably unnecessary, since Ty should reference RD
// through its scope.
RetainedTypes.push_back(
CGM.getContext().getRecordType(RD).getAsOpaquePtr());
return;
}
llvm::DIScope *DContext = getDeclContextDescriptor(VD);
auto &GV = DeclCache[VD];
if (GV)
return;
llvm::DIExpression *InitExpr = createConstantValueExpression(VD, Init);
llvm::MDTuple *TemplateParameters = nullptr;
if (isa<VarTemplateSpecializationDecl>(VD))
if (VarD) {
llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VarD, &*Unit);
TemplateParameters = parameterNodes.get();
}
GV.reset(DBuilder.createGlobalVariableExpression(
DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty,
true, true, InitExpr, getOrCreateStaticDataMemberDeclarationOrNull(VarD),
TemplateParameters, Align));
}
void CGDebugInfo::EmitExternalVariable(llvm::GlobalVariable *Var,
const VarDecl *D) {
assert(CGM.getCodeGenOpts().hasReducedDebugInfo());
if (D->hasAttr<NoDebugAttr>())
return;
auto Align = getDeclAlignIfRequired(D, CGM.getContext());
llvm::DIFile *Unit = getOrCreateFile(D->getLocation());
StringRef Name = D->getName();
llvm::DIType *Ty = getOrCreateType(D->getType(), Unit);
llvm::DIScope *DContext = getDeclContextDescriptor(D);
llvm::DIGlobalVariableExpression *GVE =
DBuilder.createGlobalVariableExpression(
DContext, Name, StringRef(), Unit, getLineNumber(D->getLocation()),
Ty, false, false, nullptr, nullptr, nullptr, Align);
Var->addDebugInfo(GVE);
}
void CGDebugInfo::EmitPseudoVariable(CGBuilderTy &Builder,
llvm::Instruction *Value, QualType Ty) {
// Only when -g2 or above is specified, debug info for variables will be
// generated.
if (CGM.getCodeGenOpts().getDebugInfo() <=
llvm::codegenoptions::DebugLineTablesOnly)
return;
llvm::DILocation *DIL = Value->getDebugLoc().get();
if (!DIL)
return;
llvm::DIFile *Unit = DIL->getFile();
llvm::DIType *Type = getOrCreateType(Ty, Unit);
// Check if Value is already a declared variable and has debug info, in this
// case we have nothing to do. Clang emits a declared variable as alloca, and
// it is loaded upon use, so we identify such pattern here.
if (llvm::LoadInst *Load = dyn_cast<llvm::LoadInst>(Value)) {
llvm::Value *Var = Load->getPointerOperand();
// There can be implicit type cast applied on a variable if it is an opaque
// ptr, in this case its debug info may not match the actual type of object
// being used as in the next instruction, so we will need to emit a pseudo
// variable for type-casted value.
auto DeclareTypeMatches = [&](auto *DbgDeclare) {
return DbgDeclare->getVariable()->getType() == Type;
};
if (any_of(llvm::findDbgDeclares(Var), DeclareTypeMatches) ||
any_of(llvm::findDVRDeclares(Var), DeclareTypeMatches))
return;
}
llvm::DILocalVariable *D =
DBuilder.createAutoVariable(LexicalBlockStack.back(), "", nullptr, 0,
Type, false, llvm::DINode::FlagArtificial);
if (auto InsertPoint = Value->getInsertionPointAfterDef()) {
DBuilder.insertDbgValueIntrinsic(Value, D, DBuilder.createExpression(), DIL,
*InsertPoint);
}
}
void CGDebugInfo::EmitGlobalAlias(const llvm::GlobalValue *GV,
const GlobalDecl GD) {
assert(GV);
if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
return;
const auto *D = cast<ValueDecl>(GD.getDecl());
if (D->hasAttr<NoDebugAttr>())
return;
auto AliaseeDecl = CGM.getMangledNameDecl(GV->getName());
llvm::DINode *DI;
if (!AliaseeDecl)
// FIXME: Aliasee not declared yet - possibly declared later
// For example,
//
// 1 extern int newname __attribute__((alias("oldname")));
// 2 int oldname = 1;
//
// No debug info would be generated for 'newname' in this case.
//
// Fix compiler to generate "newname" as imported_declaration
// pointing to the DIE of "oldname".
return;
if (!(DI = getDeclarationOrDefinition(
AliaseeDecl.getCanonicalDecl().getDecl())))
return;
llvm::DIScope *DContext = getDeclContextDescriptor(D);
auto Loc = D->getLocation();
llvm::DIImportedEntity *ImportDI = DBuilder.createImportedDeclaration(
DContext, DI, getOrCreateFile(Loc), getLineNumber(Loc), D->getName());
// Record this DIE in the cache for nested declaration reference.
ImportedDeclCache[GD.getCanonicalDecl().getDecl()].reset(ImportDI);
}
void CGDebugInfo::AddStringLiteralDebugInfo(llvm::GlobalVariable *GV,
const StringLiteral *S) {
SourceLocation Loc = S->getStrTokenLoc(0);
PresumedLoc PLoc = CGM.getContext().getSourceManager().getPresumedLoc(Loc);
if (!PLoc.isValid())
return;
llvm::DIFile *File = getOrCreateFile(Loc);
llvm::DIGlobalVariableExpression *Debug =
DBuilder.createGlobalVariableExpression(
nullptr, StringRef(), StringRef(), getOrCreateFile(Loc),
getLineNumber(Loc), getOrCreateType(S->getType(), File), true);
GV->addDebugInfo(Debug);
}
llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) {
if (!LexicalBlockStack.empty())
return LexicalBlockStack.back();
llvm::DIScope *Mod = getParentModuleOrNull(D);
return getContextDescriptor(D, Mod ? Mod : TheCU);
}
void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) {
if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
return;
const NamespaceDecl *NSDecl = UD.getNominatedNamespace();
if (!NSDecl->isAnonymousNamespace() ||
CGM.getCodeGenOpts().DebugExplicitImport) {
auto Loc = UD.getLocation();
if (!Loc.isValid())
Loc = CurLoc;
DBuilder.createImportedModule(
getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())),
getOrCreateNamespace(NSDecl), getOrCreateFile(Loc), getLineNumber(Loc));
}
}
void CGDebugInfo::EmitUsingShadowDecl(const UsingShadowDecl &USD) {
if (llvm::DINode *Target =
getDeclarationOrDefinition(USD.getUnderlyingDecl())) {
auto Loc = USD.getLocation();
DBuilder.createImportedDeclaration(
getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target,
getOrCreateFile(Loc), getLineNumber(Loc));
}
}
void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) {
if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
return;
assert(UD.shadow_size() &&
"We shouldn't be codegening an invalid UsingDecl containing no decls");
for (const auto *USD : UD.shadows()) {
// FIXME: Skip functions with undeduced auto return type for now since we
// don't currently have the plumbing for separate declarations & definitions
// of free functions and mismatched types (auto in the declaration, concrete
// return type in the definition)
if (const auto *FD = dyn_cast<FunctionDecl>(USD->getUnderlyingDecl()))
if (const auto *AT = FD->getType()
->castAs<FunctionProtoType>()
->getContainedAutoType())
if (AT->getDeducedType().isNull())
continue;
EmitUsingShadowDecl(*USD);
// Emitting one decl is sufficient - debuggers can detect that this is an
// overloaded name & provide lookup for all the overloads.
break;
}
}
void CGDebugInfo::EmitUsingEnumDecl(const UsingEnumDecl &UD) {
if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
return;
assert(UD.shadow_size() &&
"We shouldn't be codegening an invalid UsingEnumDecl"
" containing no decls");
for (const auto *USD : UD.shadows())
EmitUsingShadowDecl(*USD);
}
void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) {
if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB)
return;
if (Module *M = ID.getImportedModule()) {
auto Info = ASTSourceDescriptor(*M);
auto Loc = ID.getLocation();
DBuilder.createImportedDeclaration(
getCurrentContextDescriptor(cast<Decl>(ID.getDeclContext())),
getOrCreateModuleRef(Info, DebugTypeExtRefs), getOrCreateFile(Loc),
getLineNumber(Loc));
}
}
llvm::DIImportedEntity *
CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) {
if (!CGM.getCodeGenOpts().hasReducedDebugInfo())
return nullptr;
auto &VH = NamespaceAliasCache[&NA];
if (VH)
return cast<llvm::DIImportedEntity>(VH);
llvm::DIImportedEntity *R;
auto Loc = NA.getLocation();
if (const auto *Underlying =
dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace()))
// This could cache & dedup here rather than relying on metadata deduping.
R = DBuilder.createImportedDeclaration(
getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())),
EmitNamespaceAlias(*Underlying), getOrCreateFile(Loc),
getLineNumber(Loc), NA.getName());
else
R = DBuilder.createImportedDeclaration(
getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())),
getOrCreateNamespace(cast<NamespaceDecl>(NA.getAliasedNamespace())),
getOrCreateFile(Loc), getLineNumber(Loc), NA.getName());
VH.reset(R);
return R;
}
llvm::DINamespace *
CGDebugInfo::getOrCreateNamespace(const NamespaceDecl *NSDecl) {
// Don't canonicalize the NamespaceDecl here: The DINamespace will be uniqued
// if necessary, and this way multiple declarations of the same namespace in
// different parent modules stay distinct.
auto I = NamespaceCache.find(NSDecl);
if (I != NamespaceCache.end())
return cast<llvm::DINamespace>(I->second);
llvm::DIScope *Context = getDeclContextDescriptor(NSDecl);
// Don't trust the context if it is a DIModule (see comment above).
llvm::DINamespace *NS =
DBuilder.createNameSpace(Context, NSDecl->getName(), NSDecl->isInline());
NamespaceCache[NSDecl].reset(NS);
return NS;
}
void CGDebugInfo::setDwoId(uint64_t Signature) {
assert(TheCU && "no main compile unit");
TheCU->setDWOId(Signature);
}
void CGDebugInfo::finalize() {
// Creating types might create further types - invalidating the current
// element and the size(), so don't cache/reference them.
for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) {
ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i];
llvm::DIType *Ty = E.Type->getDecl()->getDefinition()
? CreateTypeDefinition(E.Type, E.Unit)
: E.Decl;
DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty);
}
// Add methods to interface.
for (const auto &P : ObjCMethodCache) {
if (P.second.empty())
continue;
QualType QTy(P.first->getTypeForDecl(), 0);
auto It = TypeCache.find(QTy.getAsOpaquePtr());
assert(It != TypeCache.end());
llvm::DICompositeType *InterfaceDecl =
cast<llvm::DICompositeType>(It->second);
auto CurElts = InterfaceDecl->getElements();
SmallVector<llvm::Metadata *, 16> EltTys(CurElts.begin(), CurElts.end());
// For DWARF v4 or earlier, only add objc_direct methods.
for (auto &SubprogramDirect : P.second)
if (CGM.getCodeGenOpts().DwarfVersion >= 5 || SubprogramDirect.getInt())
EltTys.push_back(SubprogramDirect.getPointer());
llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
DBuilder.replaceArrays(InterfaceDecl, Elements);
}
for (const auto &P : ReplaceMap) {
assert(P.second);
auto *Ty = cast<llvm::DIType>(P.second);
assert(Ty->isForwardDecl());
auto It = TypeCache.find(P.first);
assert(It != TypeCache.end());
assert(It->second);
DBuilder.replaceTemporary(llvm::TempDIType(Ty),
cast<llvm::DIType>(It->second));
}
for (const auto &P : FwdDeclReplaceMap) {
assert(P.second);
llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(P.second));
llvm::Metadata *Repl;
auto It = DeclCache.find(P.first);
// If there has been no definition for the declaration, call RAUW
// with ourselves, that will destroy the temporary MDNode and
// replace it with a standard one, avoiding leaking memory.
if (It == DeclCache.end())
Repl = P.second;
else
Repl = It->second;
if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(Repl))
Repl = GVE->getVariable();
DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl));
}
// We keep our own list of retained types, because we need to look
// up the final type in the type cache.
for (auto &RT : RetainedTypes)
if (auto MD = TypeCache[RT])
DBuilder.retainType(cast<llvm::DIType>(MD));
DBuilder.finalize();
}
// Don't ignore in case of explicit cast where it is referenced indirectly.
void CGDebugInfo::EmitExplicitCastType(QualType Ty) {
if (CGM.getCodeGenOpts().hasReducedDebugInfo())
if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile()))
DBuilder.retainType(DieTy);
}
void CGDebugInfo::EmitAndRetainType(QualType Ty) {
if (CGM.getCodeGenOpts().hasMaybeUnusedDebugInfo())
if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile()))
DBuilder.retainType(DieTy);
}
llvm::DebugLoc CGDebugInfo::SourceLocToDebugLoc(SourceLocation Loc) {
if (LexicalBlockStack.empty())
return llvm::DebugLoc();
llvm::MDNode *Scope = LexicalBlockStack.back();
return llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(Loc),
getColumnNumber(Loc), Scope);
}
llvm::DINode::DIFlags CGDebugInfo::getCallSiteRelatedAttrs() const {
// Call site-related attributes are only useful in optimized programs, and
// when there's a possibility of debugging backtraces.
if (!CGM.getLangOpts().Optimize ||
DebugKind == llvm::codegenoptions::NoDebugInfo ||
DebugKind == llvm::codegenoptions::LocTrackingOnly)
return llvm::DINode::FlagZero;
// Call site-related attributes are available in DWARF v5. Some debuggers,
// while not fully DWARF v5-compliant, may accept these attributes as if they
// were part of DWARF v4.
bool SupportsDWARFv4Ext =
CGM.getCodeGenOpts().DwarfVersion == 4 &&
(CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB ||
CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::GDB);
if (!SupportsDWARFv4Ext && CGM.getCodeGenOpts().DwarfVersion < 5)
return llvm::DINode::FlagZero;
return llvm::DINode::FlagAllCallsDescribed;
}
llvm::DIExpression *
CGDebugInfo::createConstantValueExpression(const clang::ValueDecl *VD,
const APValue &Val) {
// FIXME: Add a representation for integer constants wider than 64 bits.
if (CGM.getContext().getTypeSize(VD->getType()) > 64)
return nullptr;
if (Val.isFloat())
return DBuilder.createConstantValueExpression(
Val.getFloat().bitcastToAPInt().getZExtValue());
if (!Val.isInt())
return nullptr;
llvm::APSInt const &ValInt = Val.getInt();
std::optional<uint64_t> ValIntOpt;
if (ValInt.isUnsigned())
ValIntOpt = ValInt.tryZExtValue();
else if (auto tmp = ValInt.trySExtValue())
// Transform a signed optional to unsigned optional. When cpp 23 comes,
// use std::optional::transform
ValIntOpt = static_cast<uint64_t>(*tmp);
if (ValIntOpt)
return DBuilder.createConstantValueExpression(ValIntOpt.value());
return nullptr;
}