Fraser Cormack d12a8da1de
[libclc] Move min/max/clamp into the CLC builtins library (#114386)
These functions are "shared" between integer and floating-point types,
hence the directory name. They are used in several CLC internal
functions such as __clc_ldexp.

Note that clspv and spirv targets don't want to define these functions,
so pre-processor macros replace calls to __clc_min with regular min, for
example. This means they can use as much of the generic CLC source files
as possible, but where CLC functions would usually call out to an
external __clc_min symbol, they call out to an external min symbol. Then
they opt out of defining __clc_min itself in their CLC builtins library.

Preprocessor definitions for these targets have also been changed
somewhat: what used to be CLC_SPIRV (the 32-bit target) is now
CLC_SPIRV32, and CLC_SPIRV now represents either CLC_SPIRV32 or
CLC_SPIRV64. Same goes for CLC_CLSPV.

There are no differences (measured with llvm-diff) in any of the final
builtins libraries for nvptx, amdgpu, or clspv. Neither are there
differences in the SPIR-V targets' LLVM IR before it's actually lowered
to SPIR-V.
2024-10-31 16:45:37 +00:00
..

libclc

libclc is an open source implementation of the library requirements of the OpenCL C programming language, as specified by the OpenCL 1.1 Specification. The following sections of the specification impose library requirements:

  • 6.1: Supported Data Types
  • 6.2.3: Explicit Conversions
  • 6.2.4.2: Reinterpreting Types Using as_type() and as_typen()
  • 6.9: Preprocessor Directives and Macros
  • 6.11: Built-in Functions
  • 9.3: Double Precision Floating-Point
  • 9.4: 64-bit Atomics
  • 9.5: Writing to 3D image memory objects
  • 9.6: Half Precision Floating-Point

libclc is intended to be used with the Clang compiler's OpenCL frontend.

libclc is designed to be portable and extensible. To this end, it provides generic implementations of most library requirements, allowing the target to override the generic implementation at the granularity of individual functions.

libclc currently supports PTX, AMDGPU, SPIRV and CLSPV targets, but support for more targets is welcome.

Compiling and installing

(in the following instructions you can use make or ninja)

For an in-tree build, Clang must also be built at the same time:

$ cmake <path-to>/llvm-project/llvm/CMakeLists.txt -DLLVM_ENABLE_PROJECTS="libclc;clang" \
    -DCMAKE_BUILD_TYPE=Release -G Ninja
$ ninja

Then install:

$ ninja install

Note you can use the DESTDIR Makefile variable to do staged installs.

$ DESTDIR=/path/for/staged/install ninja install

To build out of tree, or in other words, against an existing LLVM build or install:

$ cmake <path-to>/llvm-project/libclc/CMakeLists.txt -DCMAKE_BUILD_TYPE=Release \
  -G Ninja -DLLVM_DIR=$(<path-to>/llvm-config --cmakedir)
$ ninja

Then install as before.

In both cases this will include all supported targets. You can choose which targets are enabled by passing -DLIBCLC_TARGETS_TO_BUILD to CMake. The default is all.

In both cases, the LLVM used must include the targets you want libclc support for (AMDGPU and NVPTX are enabled in LLVM by default). Apart from SPIRV where you do not need an LLVM target but you do need the llvm-spirv tool available. Either build this in-tree, or place it in the directory pointed to by LLVM_TOOLS_BINARY_DIR.

Website

https://libclc.llvm.org/