mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-13 23:46:05 +00:00

In some cases a symbol might have section index == SHN_XINDEX. This is an escape value indicating that the actual section header index is too large to fit in the containing field. Then the SHT_SYMTAB_SHNDX section is used. It contains the 32bit values that stores section indexes. ELF gABI says that there can be multiple SHT_SYMTAB_SHNDX sections, i.e. for example one for .symtab and one for .dynsym (1) https://groups.google.com/forum/#!topic/generic-abi/-XJAV5d8PRg (2) DT_SYMTAB_SHNDX: http://www.sco.com/developers/gabi/latest/ch5.dynamic.html In this patch I am only supporting a single SHT_SYMTAB_SHNDX associated with a .symtab. This is a more or less common case which is used a few tests I saw in LLVM. I decided not to create the SHT_SYMTAB_SHNDX section as "implicit", but implement is like a kind of regular section for now. i.e. tools do not recreate this section or its content, like they do for symbol table sections, for example. That should allow to write all kind of possible broken test cases for our needs and keep the output closer to requested. Differential revision: https://reviews.llvm.org/D65446 llvm-svn: 368272
1105 lines
39 KiB
C++
1105 lines
39 KiB
C++
//===- yaml2elf - Convert YAML to a ELF object file -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// The ELF component of yaml2obj.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/MC/StringTableBuilder.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/ObjectYAML/ELFYAML.h"
|
|
#include "llvm/ObjectYAML/yaml2obj.h"
|
|
#include "llvm/Support/EndianStream.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/WithColor.h"
|
|
#include "llvm/Support/YAMLTraits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// This class is used to build up a contiguous binary blob while keeping
|
|
// track of an offset in the output (which notionally begins at
|
|
// `InitialOffset`).
|
|
namespace {
|
|
class ContiguousBlobAccumulator {
|
|
const uint64_t InitialOffset;
|
|
SmallVector<char, 128> Buf;
|
|
raw_svector_ostream OS;
|
|
|
|
/// \returns The new offset.
|
|
uint64_t padToAlignment(unsigned Align) {
|
|
if (Align == 0)
|
|
Align = 1;
|
|
uint64_t CurrentOffset = InitialOffset + OS.tell();
|
|
uint64_t AlignedOffset = alignTo(CurrentOffset, Align);
|
|
OS.write_zeros(AlignedOffset - CurrentOffset);
|
|
return AlignedOffset; // == CurrentOffset;
|
|
}
|
|
|
|
public:
|
|
ContiguousBlobAccumulator(uint64_t InitialOffset_)
|
|
: InitialOffset(InitialOffset_), Buf(), OS(Buf) {}
|
|
template <class Integer>
|
|
raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) {
|
|
Offset = padToAlignment(Align);
|
|
return OS;
|
|
}
|
|
void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); }
|
|
};
|
|
|
|
// Used to keep track of section and symbol names, so that in the YAML file
|
|
// sections and symbols can be referenced by name instead of by index.
|
|
class NameToIdxMap {
|
|
StringMap<unsigned> Map;
|
|
|
|
public:
|
|
/// \Returns false if name is already present in the map.
|
|
bool addName(StringRef Name, unsigned Ndx) {
|
|
return Map.insert({Name, Ndx}).second;
|
|
}
|
|
/// \Returns false if name is not present in the map.
|
|
bool lookup(StringRef Name, unsigned &Idx) const {
|
|
auto I = Map.find(Name);
|
|
if (I == Map.end())
|
|
return false;
|
|
Idx = I->getValue();
|
|
return true;
|
|
}
|
|
/// Asserts if name is not present in the map.
|
|
unsigned get(StringRef Name) const {
|
|
unsigned Idx;
|
|
if (lookup(Name, Idx))
|
|
return Idx;
|
|
assert(false && "Expected section not found in index");
|
|
return 0;
|
|
}
|
|
unsigned size() const { return Map.size(); }
|
|
};
|
|
|
|
/// "Single point of truth" for the ELF file construction.
|
|
/// TODO: This class still has a ways to go before it is truly a "single
|
|
/// point of truth".
|
|
template <class ELFT> class ELFState {
|
|
typedef typename ELFT::Ehdr Elf_Ehdr;
|
|
typedef typename ELFT::Phdr Elf_Phdr;
|
|
typedef typename ELFT::Shdr Elf_Shdr;
|
|
typedef typename ELFT::Sym Elf_Sym;
|
|
typedef typename ELFT::Rel Elf_Rel;
|
|
typedef typename ELFT::Rela Elf_Rela;
|
|
typedef typename ELFT::Relr Elf_Relr;
|
|
typedef typename ELFT::Dyn Elf_Dyn;
|
|
|
|
enum class SymtabType { Static, Dynamic };
|
|
|
|
/// The future ".strtab" section.
|
|
StringTableBuilder DotStrtab{StringTableBuilder::ELF};
|
|
|
|
/// The future ".shstrtab" section.
|
|
StringTableBuilder DotShStrtab{StringTableBuilder::ELF};
|
|
|
|
/// The future ".dynstr" section.
|
|
StringTableBuilder DotDynstr{StringTableBuilder::ELF};
|
|
|
|
NameToIdxMap SN2I;
|
|
NameToIdxMap SymN2I;
|
|
ELFYAML::Object &Doc;
|
|
|
|
bool buildSectionIndex();
|
|
bool buildSymbolIndex(ArrayRef<ELFYAML::Symbol> Symbols);
|
|
void initELFHeader(Elf_Ehdr &Header);
|
|
void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders);
|
|
bool initImplicitHeader(ELFState<ELFT> &State, ContiguousBlobAccumulator &CBA,
|
|
Elf_Shdr &Header, StringRef SecName,
|
|
ELFYAML::Section *YAMLSec);
|
|
bool initSectionHeaders(ELFState<ELFT> &State,
|
|
std::vector<Elf_Shdr> &SHeaders,
|
|
ContiguousBlobAccumulator &CBA);
|
|
void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec);
|
|
void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
|
|
StringTableBuilder &STB,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec);
|
|
void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
|
|
std::vector<Elf_Shdr> &SHeaders);
|
|
bool writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::RawContentSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
bool writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::RelocationSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group,
|
|
ContiguousBlobAccumulator &CBA);
|
|
bool writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::SymtabShndxSection &Shndx,
|
|
ContiguousBlobAccumulator &CBA);
|
|
bool writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::SymverSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
bool writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::VerneedSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
bool writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::VerdefSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
bool writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::MipsABIFlags &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
bool writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::DynamicSection &Section,
|
|
ContiguousBlobAccumulator &CBA);
|
|
ELFState(ELFYAML::Object &D);
|
|
|
|
public:
|
|
static int writeELF(raw_ostream &OS, ELFYAML::Object &Doc);
|
|
|
|
private:
|
|
void finalizeStrings();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
template <class T> static size_t arrayDataSize(ArrayRef<T> A) {
|
|
return A.size() * sizeof(T);
|
|
}
|
|
|
|
template <class T> static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) {
|
|
OS.write((const char *)A.data(), arrayDataSize(A));
|
|
}
|
|
|
|
template <class T> static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); }
|
|
|
|
template <class ELFT> ELFState<ELFT>::ELFState(ELFYAML::Object &D) : Doc(D) {
|
|
StringSet<> DocSections;
|
|
for (std::unique_ptr<ELFYAML::Section> &D : Doc.Sections)
|
|
if (!D->Name.empty())
|
|
DocSections.insert(D->Name);
|
|
|
|
// Insert SHT_NULL section implicitly when it is not defined in YAML.
|
|
if (Doc.Sections.empty() || Doc.Sections.front()->Type != ELF::SHT_NULL)
|
|
Doc.Sections.insert(
|
|
Doc.Sections.begin(),
|
|
llvm::make_unique<ELFYAML::Section>(
|
|
ELFYAML::Section::SectionKind::RawContent, /*IsImplicit=*/true));
|
|
|
|
std::vector<StringRef> ImplicitSections = {".symtab", ".strtab", ".shstrtab"};
|
|
if (!Doc.DynamicSymbols.empty())
|
|
ImplicitSections.insert(ImplicitSections.end(), {".dynsym", ".dynstr"});
|
|
|
|
// Insert placeholders for implicit sections that are not
|
|
// defined explicitly in YAML.
|
|
for (StringRef SecName : ImplicitSections) {
|
|
if (DocSections.count(SecName))
|
|
continue;
|
|
|
|
std::unique_ptr<ELFYAML::Section> Sec = llvm::make_unique<ELFYAML::Section>(
|
|
ELFYAML::Section::SectionKind::RawContent, true /*IsImplicit*/);
|
|
Sec->Name = SecName;
|
|
Doc.Sections.push_back(std::move(Sec));
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void ELFState<ELFT>::initELFHeader(Elf_Ehdr &Header) {
|
|
using namespace llvm::ELF;
|
|
zero(Header);
|
|
Header.e_ident[EI_MAG0] = 0x7f;
|
|
Header.e_ident[EI_MAG1] = 'E';
|
|
Header.e_ident[EI_MAG2] = 'L';
|
|
Header.e_ident[EI_MAG3] = 'F';
|
|
Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
|
|
Header.e_ident[EI_DATA] = Doc.Header.Data;
|
|
Header.e_ident[EI_VERSION] = EV_CURRENT;
|
|
Header.e_ident[EI_OSABI] = Doc.Header.OSABI;
|
|
Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion;
|
|
Header.e_type = Doc.Header.Type;
|
|
Header.e_machine = Doc.Header.Machine;
|
|
Header.e_version = EV_CURRENT;
|
|
Header.e_entry = Doc.Header.Entry;
|
|
Header.e_phoff = sizeof(Header);
|
|
Header.e_flags = Doc.Header.Flags;
|
|
Header.e_ehsize = sizeof(Elf_Ehdr);
|
|
Header.e_phentsize = sizeof(Elf_Phdr);
|
|
Header.e_phnum = Doc.ProgramHeaders.size();
|
|
|
|
Header.e_shentsize =
|
|
Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr);
|
|
// Immediately following the ELF header and program headers.
|
|
Header.e_shoff =
|
|
Doc.Header.SHOffset
|
|
? (typename ELFT::uint)(*Doc.Header.SHOffset)
|
|
: sizeof(Header) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size();
|
|
Header.e_shnum =
|
|
Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : Doc.Sections.size();
|
|
Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx
|
|
: SN2I.get(".shstrtab");
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) {
|
|
for (const auto &YamlPhdr : Doc.ProgramHeaders) {
|
|
Elf_Phdr Phdr;
|
|
Phdr.p_type = YamlPhdr.Type;
|
|
Phdr.p_flags = YamlPhdr.Flags;
|
|
Phdr.p_vaddr = YamlPhdr.VAddr;
|
|
Phdr.p_paddr = YamlPhdr.PAddr;
|
|
PHeaders.push_back(Phdr);
|
|
}
|
|
}
|
|
|
|
static bool convertSectionIndex(NameToIdxMap &SN2I, StringRef SecName,
|
|
StringRef IndexSrc, unsigned &IndexDest) {
|
|
if (!SN2I.lookup(IndexSrc, IndexDest) && !to_integer(IndexSrc, IndexDest)) {
|
|
WithColor::error() << "Unknown section referenced: '" << IndexSrc
|
|
<< "' at YAML section '" << SecName << "'.\n";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::initImplicitHeader(ELFState<ELFT> &State,
|
|
ContiguousBlobAccumulator &CBA,
|
|
Elf_Shdr &Header, StringRef SecName,
|
|
ELFYAML::Section *YAMLSec) {
|
|
// Check if the header was already initialized.
|
|
if (Header.sh_offset)
|
|
return false;
|
|
|
|
if (SecName == ".symtab")
|
|
State.initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec);
|
|
else if (SecName == ".strtab")
|
|
State.initStrtabSectionHeader(Header, SecName, State.DotStrtab, CBA,
|
|
YAMLSec);
|
|
else if (SecName == ".shstrtab")
|
|
State.initStrtabSectionHeader(Header, SecName, State.DotShStrtab, CBA,
|
|
YAMLSec);
|
|
|
|
else if (SecName == ".dynsym")
|
|
State.initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec);
|
|
else if (SecName == ".dynstr")
|
|
State.initStrtabSectionHeader(Header, SecName, State.DotDynstr, CBA,
|
|
YAMLSec);
|
|
else
|
|
return false;
|
|
|
|
// Override the sh_offset/sh_size fields if requested.
|
|
if (YAMLSec) {
|
|
if (YAMLSec->ShOffset)
|
|
Header.sh_offset = *YAMLSec->ShOffset;
|
|
if (YAMLSec->ShSize)
|
|
Header.sh_size = *YAMLSec->ShSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static StringRef dropUniqueSuffix(StringRef S) {
|
|
size_t SuffixPos = S.rfind(" [");
|
|
if (SuffixPos == StringRef::npos)
|
|
return S;
|
|
return S.substr(0, SuffixPos);
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::initSectionHeaders(ELFState<ELFT> &State,
|
|
std::vector<Elf_Shdr> &SHeaders,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
// Ensure SHN_UNDEF entry is present. An all-zero section header is a
|
|
// valid SHN_UNDEF entry since SHT_NULL == 0.
|
|
SHeaders.resize(Doc.Sections.size());
|
|
|
|
for (size_t I = 0; I < Doc.Sections.size(); ++I) {
|
|
ELFYAML::Section *Sec = Doc.Sections[I].get();
|
|
if (I == 0 && Sec->IsImplicit)
|
|
continue;
|
|
|
|
// We have a few sections like string or symbol tables that are usually
|
|
// added implicitly to the end. However, if they are explicitly specified
|
|
// in the YAML, we need to write them here. This ensures the file offset
|
|
// remains correct.
|
|
Elf_Shdr &SHeader = SHeaders[I];
|
|
if (initImplicitHeader(State, CBA, SHeader, Sec->Name,
|
|
Sec->IsImplicit ? nullptr : Sec))
|
|
continue;
|
|
|
|
assert(Sec && "It can't be null unless it is an implicit section. But all "
|
|
"implicit sections should already have been handled above.");
|
|
|
|
SHeader.sh_name = DotShStrtab.getOffset(dropUniqueSuffix(Sec->Name));
|
|
SHeader.sh_type = Sec->Type;
|
|
if (Sec->Flags)
|
|
SHeader.sh_flags = *Sec->Flags;
|
|
SHeader.sh_addr = Sec->Address;
|
|
SHeader.sh_addralign = Sec->AddressAlign;
|
|
|
|
if (!Sec->Link.empty()) {
|
|
unsigned Index;
|
|
if (!convertSectionIndex(SN2I, Sec->Name, Sec->Link, Index))
|
|
return false;
|
|
SHeader.sh_link = Index;
|
|
}
|
|
|
|
if (I == 0) {
|
|
if (auto RawSec = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
|
|
// We do not write any content for special SHN_UNDEF section.
|
|
if (RawSec->Size)
|
|
SHeader.sh_size = *RawSec->Size;
|
|
if (RawSec->Info)
|
|
SHeader.sh_info = *RawSec->Info;
|
|
}
|
|
if (Sec->EntSize)
|
|
SHeader.sh_entsize = *Sec->EntSize;
|
|
} else if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else if (auto S = dyn_cast<ELFYAML::SymtabShndxSection>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) {
|
|
SHeader.sh_entsize = 0;
|
|
SHeader.sh_size = S->Size;
|
|
// SHT_NOBITS section does not have content
|
|
// so just to setup the section offset.
|
|
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
} else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
|
|
if (!writeSectionContent(SHeader, *S, CBA))
|
|
return false;
|
|
} else
|
|
llvm_unreachable("Unknown section type");
|
|
|
|
// Override the sh_offset/sh_size fields if requested.
|
|
if (Sec) {
|
|
if (Sec->ShOffset)
|
|
SHeader.sh_offset = *Sec->ShOffset;
|
|
if (Sec->ShSize)
|
|
SHeader.sh_size = *Sec->ShSize;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) {
|
|
for (size_t I = 0; I < Symbols.size(); ++I)
|
|
if (Symbols[I].Binding.value != ELF::STB_LOCAL)
|
|
return I;
|
|
return Symbols.size();
|
|
}
|
|
|
|
static uint64_t writeRawSectionData(raw_ostream &OS,
|
|
const ELFYAML::RawContentSection &RawSec) {
|
|
size_t ContentSize = 0;
|
|
if (RawSec.Content) {
|
|
RawSec.Content->writeAsBinary(OS);
|
|
ContentSize = RawSec.Content->binary_size();
|
|
}
|
|
|
|
if (!RawSec.Size)
|
|
return ContentSize;
|
|
|
|
OS.write_zeros(*RawSec.Size - ContentSize);
|
|
return *RawSec.Size;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static std::vector<typename ELFT::Sym>
|
|
toELFSymbols(NameToIdxMap &SN2I, ArrayRef<ELFYAML::Symbol> Symbols,
|
|
const StringTableBuilder &Strtab) {
|
|
using Elf_Sym = typename ELFT::Sym;
|
|
|
|
std::vector<Elf_Sym> Ret;
|
|
Ret.resize(Symbols.size() + 1);
|
|
|
|
size_t I = 0;
|
|
for (const auto &Sym : Symbols) {
|
|
Elf_Sym &Symbol = Ret[++I];
|
|
|
|
// If NameIndex, which contains the name offset, is explicitly specified, we
|
|
// use it. This is useful for preparing broken objects. Otherwise, we add
|
|
// the specified Name to the string table builder to get its offset.
|
|
if (Sym.NameIndex)
|
|
Symbol.st_name = *Sym.NameIndex;
|
|
else if (!Sym.Name.empty())
|
|
Symbol.st_name = Strtab.getOffset(dropUniqueSuffix(Sym.Name));
|
|
|
|
Symbol.setBindingAndType(Sym.Binding, Sym.Type);
|
|
if (!Sym.Section.empty()) {
|
|
unsigned Index;
|
|
if (!SN2I.lookup(Sym.Section, Index)) {
|
|
WithColor::error() << "Unknown section referenced: '" << Sym.Section
|
|
<< "' by YAML symbol " << Sym.Name << ".\n";
|
|
exit(1);
|
|
}
|
|
Symbol.st_shndx = Index;
|
|
} else if (Sym.Index) {
|
|
Symbol.st_shndx = *Sym.Index;
|
|
}
|
|
// else Symbol.st_shndex == SHN_UNDEF (== 0), since it was zero'd earlier.
|
|
Symbol.st_value = Sym.Value;
|
|
Symbol.st_other = Sym.Other;
|
|
Symbol.st_size = Sym.Size;
|
|
}
|
|
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader,
|
|
SymtabType STType,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec) {
|
|
|
|
bool IsStatic = STType == SymtabType::Static;
|
|
const auto &Symbols = IsStatic ? Doc.Symbols : Doc.DynamicSymbols;
|
|
|
|
ELFYAML::RawContentSection *RawSec =
|
|
dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
|
|
if (RawSec && !Symbols.empty() && (RawSec->Content || RawSec->Size)) {
|
|
if (RawSec->Content)
|
|
WithColor::error() << "Cannot specify both `Content` and " +
|
|
(IsStatic ? Twine("`Symbols`")
|
|
: Twine("`DynamicSymbols`")) +
|
|
" for symbol table section '"
|
|
<< RawSec->Name << "'.\n";
|
|
if (RawSec->Size)
|
|
WithColor::error() << "Cannot specify both `Size` and " +
|
|
(IsStatic ? Twine("`Symbols`")
|
|
: Twine("`DynamicSymbols`")) +
|
|
" for symbol table section '"
|
|
<< RawSec->Name << "'.\n";
|
|
exit(1);
|
|
}
|
|
|
|
zero(SHeader);
|
|
SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym");
|
|
|
|
if (YAMLSec)
|
|
SHeader.sh_type = YAMLSec->Type;
|
|
else
|
|
SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM;
|
|
|
|
if (RawSec && !RawSec->Link.empty()) {
|
|
// If the Link field is explicitly defined in the document,
|
|
// we should use it.
|
|
unsigned Index;
|
|
if (!convertSectionIndex(SN2I, RawSec->Name, RawSec->Link, Index))
|
|
return;
|
|
SHeader.sh_link = Index;
|
|
} else {
|
|
// When we describe the .dynsym section in the document explicitly, it is
|
|
// allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not
|
|
// added implicitly and we should be able to leave the Link zeroed if
|
|
// .dynstr is not defined.
|
|
unsigned Link = 0;
|
|
if (IsStatic)
|
|
Link = SN2I.get(".strtab");
|
|
else
|
|
SN2I.lookup(".dynstr", Link);
|
|
SHeader.sh_link = Link;
|
|
}
|
|
|
|
if (YAMLSec && YAMLSec->Flags)
|
|
SHeader.sh_flags = *YAMLSec->Flags;
|
|
else if (!IsStatic)
|
|
SHeader.sh_flags = ELF::SHF_ALLOC;
|
|
|
|
// If the symbol table section is explicitly described in the YAML
|
|
// then we should set the fields requested.
|
|
SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info)
|
|
: findFirstNonGlobal(Symbols) + 1;
|
|
SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize)
|
|
? (uint64_t)(*YAMLSec->EntSize)
|
|
: sizeof(Elf_Sym);
|
|
SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8;
|
|
SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0;
|
|
|
|
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
if (RawSec && (RawSec->Content || RawSec->Size)) {
|
|
assert(Symbols.empty());
|
|
SHeader.sh_size = writeRawSectionData(OS, *RawSec);
|
|
return;
|
|
}
|
|
|
|
std::vector<Elf_Sym> Syms =
|
|
toELFSymbols<ELFT>(SN2I, Symbols, IsStatic ? DotStrtab : DotDynstr);
|
|
writeArrayData(OS, makeArrayRef(Syms));
|
|
SHeader.sh_size = arrayDataSize(makeArrayRef(Syms));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
|
|
StringTableBuilder &STB,
|
|
ContiguousBlobAccumulator &CBA,
|
|
ELFYAML::Section *YAMLSec) {
|
|
zero(SHeader);
|
|
SHeader.sh_name = DotShStrtab.getOffset(Name);
|
|
SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB;
|
|
SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
|
|
|
|
ELFYAML::RawContentSection *RawSec =
|
|
dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
|
|
|
|
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
if (RawSec && (RawSec->Content || RawSec->Size)) {
|
|
SHeader.sh_size = writeRawSectionData(OS, *RawSec);
|
|
} else {
|
|
STB.write(OS);
|
|
SHeader.sh_size = STB.getSize();
|
|
}
|
|
|
|
if (YAMLSec && YAMLSec->EntSize)
|
|
SHeader.sh_entsize = *YAMLSec->EntSize;
|
|
|
|
if (RawSec && RawSec->Info)
|
|
SHeader.sh_info = *RawSec->Info;
|
|
|
|
if (YAMLSec && YAMLSec->Flags)
|
|
SHeader.sh_flags = *YAMLSec->Flags;
|
|
else if (Name == ".dynstr")
|
|
SHeader.sh_flags = ELF::SHF_ALLOC;
|
|
|
|
// If the section is explicitly described in the YAML
|
|
// then we want to use its section address.
|
|
if (YAMLSec)
|
|
SHeader.sh_addr = YAMLSec->Address;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
|
|
std::vector<Elf_Shdr> &SHeaders) {
|
|
uint32_t PhdrIdx = 0;
|
|
for (auto &YamlPhdr : Doc.ProgramHeaders) {
|
|
Elf_Phdr &PHeader = PHeaders[PhdrIdx++];
|
|
|
|
std::vector<Elf_Shdr *> Sections;
|
|
for (const ELFYAML::SectionName &SecName : YamlPhdr.Sections) {
|
|
unsigned Index;
|
|
if (!SN2I.lookup(SecName.Section, Index)) {
|
|
WithColor::error() << "Unknown section referenced: '" << SecName.Section
|
|
<< "' by program header.\n";
|
|
exit(1);
|
|
}
|
|
Sections.push_back(&SHeaders[Index]);
|
|
}
|
|
|
|
if (YamlPhdr.Offset) {
|
|
PHeader.p_offset = *YamlPhdr.Offset;
|
|
} else {
|
|
if (YamlPhdr.Sections.size())
|
|
PHeader.p_offset = UINT32_MAX;
|
|
else
|
|
PHeader.p_offset = 0;
|
|
|
|
// Find the minimum offset for the program header.
|
|
for (Elf_Shdr *SHeader : Sections)
|
|
PHeader.p_offset = std::min(PHeader.p_offset, SHeader->sh_offset);
|
|
}
|
|
|
|
// Find the maximum offset of the end of a section in order to set p_filesz,
|
|
// if not set explicitly.
|
|
if (YamlPhdr.FileSize) {
|
|
PHeader.p_filesz = *YamlPhdr.FileSize;
|
|
} else {
|
|
PHeader.p_filesz = 0;
|
|
for (Elf_Shdr *SHeader : Sections) {
|
|
uint64_t EndOfSection;
|
|
if (SHeader->sh_type == llvm::ELF::SHT_NOBITS)
|
|
EndOfSection = SHeader->sh_offset;
|
|
else
|
|
EndOfSection = SHeader->sh_offset + SHeader->sh_size;
|
|
uint64_t EndOfSegment = PHeader.p_offset + PHeader.p_filesz;
|
|
EndOfSegment = std::max(EndOfSegment, EndOfSection);
|
|
PHeader.p_filesz = EndOfSegment - PHeader.p_offset;
|
|
}
|
|
}
|
|
|
|
// If not set explicitly, find the memory size by adding the size of
|
|
// sections at the end of the segment. These should be empty (size of zero)
|
|
// and NOBITS sections.
|
|
if (YamlPhdr.MemSize) {
|
|
PHeader.p_memsz = *YamlPhdr.MemSize;
|
|
} else {
|
|
PHeader.p_memsz = PHeader.p_filesz;
|
|
for (Elf_Shdr *SHeader : Sections)
|
|
if (SHeader->sh_offset == PHeader.p_offset + PHeader.p_filesz)
|
|
PHeader.p_memsz += SHeader->sh_size;
|
|
}
|
|
|
|
// Set the alignment of the segment to be the same as the maximum alignment
|
|
// of the sections with the same offset so that by default the segment
|
|
// has a valid and sensible alignment.
|
|
if (YamlPhdr.Align) {
|
|
PHeader.p_align = *YamlPhdr.Align;
|
|
} else {
|
|
PHeader.p_align = 1;
|
|
for (Elf_Shdr *SHeader : Sections)
|
|
if (SHeader->sh_offset == PHeader.p_offset)
|
|
PHeader.p_align = std::max(PHeader.p_align, SHeader->sh_addralign);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
raw_ostream &OS =
|
|
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
SHeader.sh_size = writeRawSectionData(OS, Section);
|
|
|
|
if (Section.EntSize)
|
|
SHeader.sh_entsize = *Section.EntSize;
|
|
else if (Section.Type == llvm::ELF::SHT_RELR)
|
|
SHeader.sh_entsize = sizeof(Elf_Relr);
|
|
else
|
|
SHeader.sh_entsize = 0;
|
|
|
|
if (Section.Info)
|
|
SHeader.sh_info = *Section.Info;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isMips64EL(const ELFYAML::Object &Doc) {
|
|
return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) &&
|
|
Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) &&
|
|
Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
assert((Section.Type == llvm::ELF::SHT_REL ||
|
|
Section.Type == llvm::ELF::SHT_RELA) &&
|
|
"Section type is not SHT_REL nor SHT_RELA");
|
|
|
|
bool IsRela = Section.Type == llvm::ELF::SHT_RELA;
|
|
SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
|
|
SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size();
|
|
|
|
// For relocation section set link to .symtab by default.
|
|
if (Section.Link.empty())
|
|
SHeader.sh_link = SN2I.get(".symtab");
|
|
|
|
unsigned Index = 0;
|
|
if (!Section.RelocatableSec.empty() &&
|
|
!convertSectionIndex(SN2I, Section.Name, Section.RelocatableSec, Index))
|
|
return false;
|
|
SHeader.sh_info = Index;
|
|
|
|
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
|
|
for (const auto &Rel : Section.Relocations) {
|
|
unsigned SymIdx = 0;
|
|
// If a relocation references a symbol, try to look one up in the symbol
|
|
// table. If it is not there, treat the value as a symbol index.
|
|
if (Rel.Symbol && !SymN2I.lookup(*Rel.Symbol, SymIdx) &&
|
|
!to_integer(*Rel.Symbol, SymIdx)) {
|
|
WithColor::error() << "Unknown symbol referenced: '" << *Rel.Symbol
|
|
<< "' at YAML section '" << Section.Name << "'.\n";
|
|
return false;
|
|
}
|
|
|
|
if (IsRela) {
|
|
Elf_Rela REntry;
|
|
zero(REntry);
|
|
REntry.r_offset = Rel.Offset;
|
|
REntry.r_addend = Rel.Addend;
|
|
REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
|
|
OS.write((const char *)&REntry, sizeof(REntry));
|
|
} else {
|
|
Elf_Rel REntry;
|
|
zero(REntry);
|
|
REntry.r_offset = Rel.Offset;
|
|
REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
|
|
OS.write((const char *)&REntry, sizeof(REntry));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(
|
|
Elf_Shdr &SHeader, const ELFYAML::SymtabShndxSection &Shndx,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
raw_ostream &OS =
|
|
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
|
|
for (uint32_t E : Shndx.Entries)
|
|
support::endian::write<uint32_t>(OS, E, ELFT::TargetEndianness);
|
|
|
|
SHeader.sh_entsize = Shndx.EntSize ? (uint64_t)*Shndx.EntSize : 4;
|
|
SHeader.sh_size = Shndx.Entries.size() * SHeader.sh_entsize;
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::Group &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
assert(Section.Type == llvm::ELF::SHT_GROUP &&
|
|
"Section type is not SHT_GROUP");
|
|
|
|
SHeader.sh_entsize = 4;
|
|
SHeader.sh_size = SHeader.sh_entsize * Section.Members.size();
|
|
|
|
unsigned SymIdx;
|
|
if (!SymN2I.lookup(Section.Signature, SymIdx) &&
|
|
!to_integer(Section.Signature, SymIdx)) {
|
|
WithColor::error() << "Unknown symbol referenced: '" << Section.Signature
|
|
<< "' at YAML section '" << Section.Name << "'.\n";
|
|
return false;
|
|
}
|
|
SHeader.sh_info = SymIdx;
|
|
|
|
raw_ostream &OS =
|
|
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
|
|
for (const ELFYAML::SectionOrType &Member : Section.Members) {
|
|
unsigned int SectionIndex = 0;
|
|
if (Member.sectionNameOrType == "GRP_COMDAT")
|
|
SectionIndex = llvm::ELF::GRP_COMDAT;
|
|
else if (!convertSectionIndex(SN2I, Section.Name, Member.sectionNameOrType,
|
|
SectionIndex))
|
|
return false;
|
|
support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::SymverSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
raw_ostream &OS =
|
|
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
for (uint16_t Version : Section.Entries)
|
|
support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness);
|
|
|
|
SHeader.sh_entsize = Section.EntSize ? (uint64_t)*Section.EntSize : 2;
|
|
SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize;
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::VerdefSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
typedef typename ELFT::Verdef Elf_Verdef;
|
|
typedef typename ELFT::Verdaux Elf_Verdaux;
|
|
raw_ostream &OS =
|
|
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
|
|
uint64_t AuxCnt = 0;
|
|
for (size_t I = 0; I < Section.Entries.size(); ++I) {
|
|
const ELFYAML::VerdefEntry &E = Section.Entries[I];
|
|
|
|
Elf_Verdef VerDef;
|
|
VerDef.vd_version = E.Version;
|
|
VerDef.vd_flags = E.Flags;
|
|
VerDef.vd_ndx = E.VersionNdx;
|
|
VerDef.vd_hash = E.Hash;
|
|
VerDef.vd_aux = sizeof(Elf_Verdef);
|
|
VerDef.vd_cnt = E.VerNames.size();
|
|
if (I == Section.Entries.size() - 1)
|
|
VerDef.vd_next = 0;
|
|
else
|
|
VerDef.vd_next =
|
|
sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux);
|
|
OS.write((const char *)&VerDef, sizeof(Elf_Verdef));
|
|
|
|
for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) {
|
|
Elf_Verdaux VernAux;
|
|
VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]);
|
|
if (J == E.VerNames.size() - 1)
|
|
VernAux.vda_next = 0;
|
|
else
|
|
VernAux.vda_next = sizeof(Elf_Verdaux);
|
|
OS.write((const char *)&VernAux, sizeof(Elf_Verdaux));
|
|
}
|
|
}
|
|
|
|
SHeader.sh_size = Section.Entries.size() * sizeof(Elf_Verdef) +
|
|
AuxCnt * sizeof(Elf_Verdaux);
|
|
SHeader.sh_info = Section.Info;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::VerneedSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
typedef typename ELFT::Verneed Elf_Verneed;
|
|
typedef typename ELFT::Vernaux Elf_Vernaux;
|
|
|
|
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
|
|
uint64_t AuxCnt = 0;
|
|
for (size_t I = 0; I < Section.VerneedV.size(); ++I) {
|
|
const ELFYAML::VerneedEntry &VE = Section.VerneedV[I];
|
|
|
|
Elf_Verneed VerNeed;
|
|
VerNeed.vn_version = VE.Version;
|
|
VerNeed.vn_file = DotDynstr.getOffset(VE.File);
|
|
if (I == Section.VerneedV.size() - 1)
|
|
VerNeed.vn_next = 0;
|
|
else
|
|
VerNeed.vn_next =
|
|
sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux);
|
|
VerNeed.vn_cnt = VE.AuxV.size();
|
|
VerNeed.vn_aux = sizeof(Elf_Verneed);
|
|
OS.write((const char *)&VerNeed, sizeof(Elf_Verneed));
|
|
|
|
for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) {
|
|
const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J];
|
|
|
|
Elf_Vernaux VernAux;
|
|
VernAux.vna_hash = VAuxE.Hash;
|
|
VernAux.vna_flags = VAuxE.Flags;
|
|
VernAux.vna_other = VAuxE.Other;
|
|
VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name);
|
|
if (J == VE.AuxV.size() - 1)
|
|
VernAux.vna_next = 0;
|
|
else
|
|
VernAux.vna_next = sizeof(Elf_Vernaux);
|
|
OS.write((const char *)&VernAux, sizeof(Elf_Vernaux));
|
|
}
|
|
}
|
|
|
|
SHeader.sh_size = Section.VerneedV.size() * sizeof(Elf_Verneed) +
|
|
AuxCnt * sizeof(Elf_Vernaux);
|
|
SHeader.sh_info = Section.Info;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::MipsABIFlags &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS &&
|
|
"Section type is not SHT_MIPS_ABIFLAGS");
|
|
|
|
object::Elf_Mips_ABIFlags<ELFT> Flags;
|
|
zero(Flags);
|
|
SHeader.sh_entsize = sizeof(Flags);
|
|
SHeader.sh_size = SHeader.sh_entsize;
|
|
|
|
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
Flags.version = Section.Version;
|
|
Flags.isa_level = Section.ISALevel;
|
|
Flags.isa_rev = Section.ISARevision;
|
|
Flags.gpr_size = Section.GPRSize;
|
|
Flags.cpr1_size = Section.CPR1Size;
|
|
Flags.cpr2_size = Section.CPR2Size;
|
|
Flags.fp_abi = Section.FpABI;
|
|
Flags.isa_ext = Section.ISAExtension;
|
|
Flags.ases = Section.ASEs;
|
|
Flags.flags1 = Section.Flags1;
|
|
Flags.flags2 = Section.Flags2;
|
|
OS.write((const char *)&Flags, sizeof(Flags));
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
|
|
const ELFYAML::DynamicSection &Section,
|
|
ContiguousBlobAccumulator &CBA) {
|
|
typedef typename ELFT::uint uintX_t;
|
|
|
|
assert(Section.Type == llvm::ELF::SHT_DYNAMIC &&
|
|
"Section type is not SHT_DYNAMIC");
|
|
|
|
if (!Section.Entries.empty() && Section.Content) {
|
|
WithColor::error()
|
|
<< "Cannot specify both raw content and explicit entries "
|
|
"for dynamic section '"
|
|
<< Section.Name << "'.\n";
|
|
return false;
|
|
}
|
|
|
|
if (Section.Content)
|
|
SHeader.sh_size = Section.Content->binary_size();
|
|
else
|
|
SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size();
|
|
if (Section.EntSize)
|
|
SHeader.sh_entsize = *Section.EntSize;
|
|
else
|
|
SHeader.sh_entsize = sizeof(Elf_Dyn);
|
|
|
|
raw_ostream &OS =
|
|
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
|
|
for (const ELFYAML::DynamicEntry &DE : Section.Entries) {
|
|
support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness);
|
|
support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness);
|
|
}
|
|
if (Section.Content)
|
|
Section.Content->writeAsBinary(OS);
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT> bool ELFState<ELFT>::buildSectionIndex() {
|
|
for (unsigned I = 0, E = Doc.Sections.size(); I != E; ++I) {
|
|
StringRef Name = Doc.Sections[I]->Name;
|
|
if (Name.empty())
|
|
continue;
|
|
|
|
DotShStrtab.add(dropUniqueSuffix(Name));
|
|
if (!SN2I.addName(Name, I)) {
|
|
WithColor::error() << "Repeated section name: '" << Name
|
|
<< "' at YAML section number " << I << ".\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DotShStrtab.finalize();
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool ELFState<ELFT>::buildSymbolIndex(ArrayRef<ELFYAML::Symbol> Symbols) {
|
|
bool GlobalSymbolSeen = false;
|
|
std::size_t I = 0;
|
|
for (const auto &Sym : Symbols) {
|
|
++I;
|
|
|
|
StringRef Name = Sym.Name;
|
|
if (Sym.Binding.value == ELF::STB_LOCAL && GlobalSymbolSeen) {
|
|
WithColor::error() << "Local symbol '" + Name +
|
|
"' after global in Symbols list.\n";
|
|
return false;
|
|
}
|
|
if (Sym.Binding.value != ELF::STB_LOCAL)
|
|
GlobalSymbolSeen = true;
|
|
|
|
if (!Name.empty() && !SymN2I.addName(Name, I)) {
|
|
WithColor::error() << "Repeated symbol name: '" << Name << "'.\n";
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class ELFT> void ELFState<ELFT>::finalizeStrings() {
|
|
// Add the regular symbol names to .strtab section.
|
|
for (const ELFYAML::Symbol &Sym : Doc.Symbols)
|
|
DotStrtab.add(dropUniqueSuffix(Sym.Name));
|
|
DotStrtab.finalize();
|
|
|
|
// Add the dynamic symbol names to .dynstr section.
|
|
for (const ELFYAML::Symbol &Sym : Doc.DynamicSymbols)
|
|
DotDynstr.add(dropUniqueSuffix(Sym.Name));
|
|
|
|
// SHT_GNU_verdef and SHT_GNU_verneed sections might also
|
|
// add strings to .dynstr section.
|
|
for (const std::unique_ptr<ELFYAML::Section> &Sec : Doc.Sections) {
|
|
if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec.get())) {
|
|
for (const ELFYAML::VerneedEntry &VE : VerNeed->VerneedV) {
|
|
DotDynstr.add(VE.File);
|
|
for (const ELFYAML::VernauxEntry &Aux : VE.AuxV)
|
|
DotDynstr.add(Aux.Name);
|
|
}
|
|
} else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec.get())) {
|
|
for (const ELFYAML::VerdefEntry &E : VerDef->Entries)
|
|
for (StringRef Name : E.VerNames)
|
|
DotDynstr.add(Name);
|
|
}
|
|
}
|
|
|
|
DotDynstr.finalize();
|
|
}
|
|
|
|
template <class ELFT>
|
|
int ELFState<ELFT>::writeELF(raw_ostream &OS, ELFYAML::Object &Doc) {
|
|
ELFState<ELFT> State(Doc);
|
|
|
|
// Finalize .strtab and .dynstr sections. We do that early because want to
|
|
// finalize the string table builders before writing the content of the
|
|
// sections that might want to use them.
|
|
State.finalizeStrings();
|
|
|
|
if (!State.buildSectionIndex())
|
|
return 1;
|
|
|
|
if (!State.buildSymbolIndex(Doc.Symbols))
|
|
return 1;
|
|
|
|
Elf_Ehdr Header;
|
|
State.initELFHeader(Header);
|
|
|
|
// TODO: Flesh out section header support.
|
|
|
|
std::vector<Elf_Phdr> PHeaders;
|
|
State.initProgramHeaders(PHeaders);
|
|
|
|
// XXX: This offset is tightly coupled with the order that we write
|
|
// things to `OS`.
|
|
const size_t SectionContentBeginOffset = Header.e_ehsize +
|
|
Header.e_phentsize * Header.e_phnum +
|
|
Header.e_shentsize * Header.e_shnum;
|
|
ContiguousBlobAccumulator CBA(SectionContentBeginOffset);
|
|
|
|
std::vector<Elf_Shdr> SHeaders;
|
|
if (!State.initSectionHeaders(State, SHeaders, CBA))
|
|
return 1;
|
|
|
|
// Now we can decide segment offsets
|
|
State.setProgramHeaderLayout(PHeaders, SHeaders);
|
|
|
|
OS.write((const char *)&Header, sizeof(Header));
|
|
writeArrayData(OS, makeArrayRef(PHeaders));
|
|
writeArrayData(OS, makeArrayRef(SHeaders));
|
|
CBA.writeBlobToStream(OS);
|
|
return 0;
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace yaml {
|
|
|
|
int yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out) {
|
|
bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
|
|
bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
|
|
if (Is64Bit) {
|
|
if (IsLE)
|
|
return ELFState<object::ELF64LE>::writeELF(Out, Doc);
|
|
return ELFState<object::ELF64BE>::writeELF(Out, Doc);
|
|
}
|
|
if (IsLE)
|
|
return ELFState<object::ELF32LE>::writeELF(Out, Doc);
|
|
return ELFState<object::ELF32BE>::writeELF(Out, Doc);
|
|
}
|
|
|
|
} // namespace yaml
|
|
} // namespace llvm
|