mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-28 18:56:06 +00:00

The module currently stores the target triple as a string. This means that any code that wants to actually use the triple first has to instantiate a Triple, which is somewhat expensive. The change in #121652 caused a moderate compile-time regression due to this. While it would be easy enough to work around, I think that architecturally, it makes more sense to store the parsed Triple in the module, so that it can always be directly queried. For this change, I've opted not to add any magic conversions between std::string and Triple for backwards-compatibilty purses, and instead write out needed Triple()s or str()s explicitly. This is because I think a decent number of them should be changed to work on Triple as well, to avoid unnecessary conversions back and forth. The only interesting part in this patch is that the default triple is Triple("") instead of Triple() to preserve existing behavior. The former defaults to using the ELF object format instead of unknown object format. We should fix that as well.
1716 lines
61 KiB
C++
1716 lines
61 KiB
C++
//===- InstrProf.cpp - Instrumented profiling format support --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for clang's instrumentation based PGO and
|
|
// coverage.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Config/config.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/SwapByteOrder.h"
|
|
#include "llvm/Support/VirtualFileSystem.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <system_error>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "instrprof"
|
|
|
|
static cl::opt<bool> StaticFuncFullModulePrefix(
|
|
"static-func-full-module-prefix", cl::init(true), cl::Hidden,
|
|
cl::desc("Use full module build paths in the profile counter names for "
|
|
"static functions."));
|
|
|
|
// This option is tailored to users that have different top-level directory in
|
|
// profile-gen and profile-use compilation. Users need to specific the number
|
|
// of levels to strip. A value larger than the number of directories in the
|
|
// source file will strip all the directory names and only leave the basename.
|
|
//
|
|
// Note current ThinLTO module importing for the indirect-calls assumes
|
|
// the source directory name not being stripped. A non-zero option value here
|
|
// can potentially prevent some inter-module indirect-call-promotions.
|
|
static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
|
|
"static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
|
|
cl::desc("Strip specified level of directory name from source path in "
|
|
"the profile counter name for static functions."));
|
|
|
|
static std::string getInstrProfErrString(instrprof_error Err,
|
|
const std::string &ErrMsg = "") {
|
|
std::string Msg;
|
|
raw_string_ostream OS(Msg);
|
|
|
|
switch (Err) {
|
|
case instrprof_error::success:
|
|
OS << "success";
|
|
break;
|
|
case instrprof_error::eof:
|
|
OS << "end of File";
|
|
break;
|
|
case instrprof_error::unrecognized_format:
|
|
OS << "unrecognized instrumentation profile encoding format";
|
|
break;
|
|
case instrprof_error::bad_magic:
|
|
OS << "invalid instrumentation profile data (bad magic)";
|
|
break;
|
|
case instrprof_error::bad_header:
|
|
OS << "invalid instrumentation profile data (file header is corrupt)";
|
|
break;
|
|
case instrprof_error::unsupported_version:
|
|
OS << "unsupported instrumentation profile format version";
|
|
break;
|
|
case instrprof_error::unsupported_hash_type:
|
|
OS << "unsupported instrumentation profile hash type";
|
|
break;
|
|
case instrprof_error::too_large:
|
|
OS << "too much profile data";
|
|
break;
|
|
case instrprof_error::truncated:
|
|
OS << "truncated profile data";
|
|
break;
|
|
case instrprof_error::malformed:
|
|
OS << "malformed instrumentation profile data";
|
|
break;
|
|
case instrprof_error::missing_correlation_info:
|
|
OS << "debug info/binary for correlation is required";
|
|
break;
|
|
case instrprof_error::unexpected_correlation_info:
|
|
OS << "debug info/binary for correlation is not necessary";
|
|
break;
|
|
case instrprof_error::unable_to_correlate_profile:
|
|
OS << "unable to correlate profile";
|
|
break;
|
|
case instrprof_error::invalid_prof:
|
|
OS << "invalid profile created. Please file a bug "
|
|
"at: " BUG_REPORT_URL
|
|
" and include the profraw files that caused this error.";
|
|
break;
|
|
case instrprof_error::unknown_function:
|
|
OS << "no profile data available for function";
|
|
break;
|
|
case instrprof_error::hash_mismatch:
|
|
OS << "function control flow change detected (hash mismatch)";
|
|
break;
|
|
case instrprof_error::count_mismatch:
|
|
OS << "function basic block count change detected (counter mismatch)";
|
|
break;
|
|
case instrprof_error::bitmap_mismatch:
|
|
OS << "function bitmap size change detected (bitmap size mismatch)";
|
|
break;
|
|
case instrprof_error::counter_overflow:
|
|
OS << "counter overflow";
|
|
break;
|
|
case instrprof_error::value_site_count_mismatch:
|
|
OS << "function value site count change detected (counter mismatch)";
|
|
break;
|
|
case instrprof_error::compress_failed:
|
|
OS << "failed to compress data (zlib)";
|
|
break;
|
|
case instrprof_error::uncompress_failed:
|
|
OS << "failed to uncompress data (zlib)";
|
|
break;
|
|
case instrprof_error::empty_raw_profile:
|
|
OS << "empty raw profile file";
|
|
break;
|
|
case instrprof_error::zlib_unavailable:
|
|
OS << "profile uses zlib compression but the profile reader was built "
|
|
"without zlib support";
|
|
break;
|
|
case instrprof_error::raw_profile_version_mismatch:
|
|
OS << "raw profile version mismatch";
|
|
break;
|
|
case instrprof_error::counter_value_too_large:
|
|
OS << "excessively large counter value suggests corrupted profile data";
|
|
break;
|
|
}
|
|
|
|
// If optional error message is not empty, append it to the message.
|
|
if (!ErrMsg.empty())
|
|
OS << ": " << ErrMsg;
|
|
|
|
return OS.str();
|
|
}
|
|
|
|
namespace {
|
|
|
|
// FIXME: This class is only here to support the transition to llvm::Error. It
|
|
// will be removed once this transition is complete. Clients should prefer to
|
|
// deal with the Error value directly, rather than converting to error_code.
|
|
class InstrProfErrorCategoryType : public std::error_category {
|
|
const char *name() const noexcept override { return "llvm.instrprof"; }
|
|
|
|
std::string message(int IE) const override {
|
|
return getInstrProfErrString(static_cast<instrprof_error>(IE));
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
const std::error_category &llvm::instrprof_category() {
|
|
static InstrProfErrorCategoryType ErrorCategory;
|
|
return ErrorCategory;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const char *InstrProfSectNameCommon[] = {
|
|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
|
|
SectNameCommon,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
|
|
const char *InstrProfSectNameCoff[] = {
|
|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
|
|
SectNameCoff,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
|
|
const char *InstrProfSectNamePrefix[] = {
|
|
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
|
|
Prefix,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
|
|
cl::opt<bool> DoInstrProfNameCompression(
|
|
"enable-name-compression",
|
|
cl::desc("Enable name/filename string compression"), cl::init(true));
|
|
|
|
cl::opt<bool> EnableVTableValueProfiling(
|
|
"enable-vtable-value-profiling", cl::init(false),
|
|
cl::desc("If true, the virtual table address will be instrumented to know "
|
|
"the types of a C++ pointer. The information is used in indirect "
|
|
"call promotion to do selective vtable-based comparison."));
|
|
|
|
cl::opt<bool> EnableVTableProfileUse(
|
|
"enable-vtable-profile-use", cl::init(false),
|
|
cl::desc("If ThinLTO and WPD is enabled and this option is true, vtable "
|
|
"profiles will be used by ICP pass for more efficient indirect "
|
|
"call sequence. If false, type profiles won't be used."));
|
|
|
|
std::string getInstrProfSectionName(InstrProfSectKind IPSK,
|
|
Triple::ObjectFormatType OF,
|
|
bool AddSegmentInfo) {
|
|
std::string SectName;
|
|
|
|
if (OF == Triple::MachO && AddSegmentInfo)
|
|
SectName = InstrProfSectNamePrefix[IPSK];
|
|
|
|
if (OF == Triple::COFF)
|
|
SectName += InstrProfSectNameCoff[IPSK];
|
|
else
|
|
SectName += InstrProfSectNameCommon[IPSK];
|
|
|
|
if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
|
|
SectName += ",regular,live_support";
|
|
|
|
return SectName;
|
|
}
|
|
|
|
std::string InstrProfError::message() const {
|
|
return getInstrProfErrString(Err, Msg);
|
|
}
|
|
|
|
char InstrProfError::ID = 0;
|
|
|
|
std::string getPGOFuncName(StringRef Name, GlobalValue::LinkageTypes Linkage,
|
|
StringRef FileName,
|
|
uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
|
|
// Value names may be prefixed with a binary '1' to indicate
|
|
// that the backend should not modify the symbols due to any platform
|
|
// naming convention. Do not include that '1' in the PGO profile name.
|
|
if (Name[0] == '\1')
|
|
Name = Name.substr(1);
|
|
|
|
std::string NewName = std::string(Name);
|
|
if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
|
|
// For local symbols, prepend the main file name to distinguish them.
|
|
// Do not include the full path in the file name since there's no guarantee
|
|
// that it will stay the same, e.g., if the files are checked out from
|
|
// version control in different locations.
|
|
if (FileName.empty())
|
|
NewName = NewName.insert(0, "<unknown>:");
|
|
else
|
|
NewName = NewName.insert(0, FileName.str() + ":");
|
|
}
|
|
return NewName;
|
|
}
|
|
|
|
// Strip NumPrefix level of directory name from PathNameStr. If the number of
|
|
// directory separators is less than NumPrefix, strip all the directories and
|
|
// leave base file name only.
|
|
static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
|
|
uint32_t Count = NumPrefix;
|
|
uint32_t Pos = 0, LastPos = 0;
|
|
for (const auto &CI : PathNameStr) {
|
|
++Pos;
|
|
if (llvm::sys::path::is_separator(CI)) {
|
|
LastPos = Pos;
|
|
--Count;
|
|
}
|
|
if (Count == 0)
|
|
break;
|
|
}
|
|
return PathNameStr.substr(LastPos);
|
|
}
|
|
|
|
static StringRef getStrippedSourceFileName(const GlobalObject &GO) {
|
|
StringRef FileName(GO.getParent()->getSourceFileName());
|
|
uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
|
|
if (StripLevel < StaticFuncStripDirNamePrefix)
|
|
StripLevel = StaticFuncStripDirNamePrefix;
|
|
if (StripLevel)
|
|
FileName = stripDirPrefix(FileName, StripLevel);
|
|
return FileName;
|
|
}
|
|
|
|
// The PGO name has the format [<filepath>;]<mangled-name> where <filepath>; is
|
|
// provided if linkage is local and is used to discriminate possibly identical
|
|
// mangled names. ";" is used because it is unlikely to be found in either
|
|
// <filepath> or <mangled-name>.
|
|
//
|
|
// Older compilers used getPGOFuncName() which has the format
|
|
// [<filepath>:]<mangled-name>. This caused trouble for Objective-C functions
|
|
// which commonly have :'s in their names. We still need to compute this name to
|
|
// lookup functions from profiles built by older compilers.
|
|
static std::string
|
|
getIRPGONameForGlobalObject(const GlobalObject &GO,
|
|
GlobalValue::LinkageTypes Linkage,
|
|
StringRef FileName) {
|
|
return GlobalValue::getGlobalIdentifier(GO.getName(), Linkage, FileName);
|
|
}
|
|
|
|
static std::optional<std::string> lookupPGONameFromMetadata(MDNode *MD) {
|
|
if (MD != nullptr) {
|
|
StringRef S = cast<MDString>(MD->getOperand(0))->getString();
|
|
return S.str();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
// Returns the PGO object name. This function has some special handling
|
|
// when called in LTO optimization. The following only applies when calling in
|
|
// LTO passes (when \c InLTO is true): LTO's internalization privatizes many
|
|
// global linkage symbols. This happens after value profile annotation, but
|
|
// those internal linkage functions should not have a source prefix.
|
|
// Additionally, for ThinLTO mode, exported internal functions are promoted
|
|
// and renamed. We need to ensure that the original internal PGO name is
|
|
// used when computing the GUID that is compared against the profiled GUIDs.
|
|
// To differentiate compiler generated internal symbols from original ones,
|
|
// PGOFuncName meta data are created and attached to the original internal
|
|
// symbols in the value profile annotation step
|
|
// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
|
|
// data, its original linkage must be non-internal.
|
|
static std::string getIRPGOObjectName(const GlobalObject &GO, bool InLTO,
|
|
MDNode *PGONameMetadata) {
|
|
if (!InLTO) {
|
|
auto FileName = getStrippedSourceFileName(GO);
|
|
return getIRPGONameForGlobalObject(GO, GO.getLinkage(), FileName);
|
|
}
|
|
|
|
// In LTO mode (when InLTO is true), first check if there is a meta data.
|
|
if (auto IRPGOFuncName = lookupPGONameFromMetadata(PGONameMetadata))
|
|
return *IRPGOFuncName;
|
|
|
|
// If there is no meta data, the function must be a global before the value
|
|
// profile annotation pass. Its current linkage may be internal if it is
|
|
// internalized in LTO mode.
|
|
return getIRPGONameForGlobalObject(GO, GlobalValue::ExternalLinkage, "");
|
|
}
|
|
|
|
// Returns the IRPGO function name and does special handling when called
|
|
// in LTO optimization. See the comments of `getIRPGOObjectName` for details.
|
|
std::string getIRPGOFuncName(const Function &F, bool InLTO) {
|
|
return getIRPGOObjectName(F, InLTO, getPGOFuncNameMetadata(F));
|
|
}
|
|
|
|
// Please use getIRPGOFuncName for LLVM IR instrumentation. This function is
|
|
// for front-end (Clang, etc) instrumentation.
|
|
// The implementation is kept for profile matching from older profiles.
|
|
// This is similar to `getIRPGOFuncName` except that this function calls
|
|
// 'getPGOFuncName' to get a name and `getIRPGOFuncName` calls
|
|
// 'getIRPGONameForGlobalObject'. See the difference between two callees in the
|
|
// comments of `getIRPGONameForGlobalObject`.
|
|
std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
|
|
if (!InLTO) {
|
|
auto FileName = getStrippedSourceFileName(F);
|
|
return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
|
|
}
|
|
|
|
// In LTO mode (when InLTO is true), first check if there is a meta data.
|
|
if (auto PGOFuncName = lookupPGONameFromMetadata(getPGOFuncNameMetadata(F)))
|
|
return *PGOFuncName;
|
|
|
|
// If there is no meta data, the function must be a global before the value
|
|
// profile annotation pass. Its current linkage may be internal if it is
|
|
// internalized in LTO mode.
|
|
return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
|
|
}
|
|
|
|
std::string getPGOName(const GlobalVariable &V, bool InLTO) {
|
|
// PGONameMetadata should be set by compiler at profile use time
|
|
// and read by symtab creation to look up symbols corresponding to
|
|
// a MD5 hash.
|
|
return getIRPGOObjectName(V, InLTO, V.getMetadata(getPGONameMetadataName()));
|
|
}
|
|
|
|
// See getIRPGOObjectName() for a discription of the format.
|
|
std::pair<StringRef, StringRef> getParsedIRPGOName(StringRef IRPGOName) {
|
|
auto [FileName, MangledName] = IRPGOName.split(GlobalIdentifierDelimiter);
|
|
if (MangledName.empty())
|
|
return std::make_pair(StringRef(), IRPGOName);
|
|
return std::make_pair(FileName, MangledName);
|
|
}
|
|
|
|
StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
|
|
if (FileName.empty())
|
|
return PGOFuncName;
|
|
// Drop the file name including ':' or ';'. See getIRPGONameForGlobalObject as
|
|
// well.
|
|
if (PGOFuncName.starts_with(FileName))
|
|
PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
|
|
return PGOFuncName;
|
|
}
|
|
|
|
// \p FuncName is the string used as profile lookup key for the function. A
|
|
// symbol is created to hold the name. Return the legalized symbol name.
|
|
std::string getPGOFuncNameVarName(StringRef FuncName,
|
|
GlobalValue::LinkageTypes Linkage) {
|
|
std::string VarName = std::string(getInstrProfNameVarPrefix());
|
|
VarName += FuncName;
|
|
|
|
if (!GlobalValue::isLocalLinkage(Linkage))
|
|
return VarName;
|
|
|
|
// Now fix up illegal chars in local VarName that may upset the assembler.
|
|
const char InvalidChars[] = "-:;<>/\"'";
|
|
size_t FoundPos = VarName.find_first_of(InvalidChars);
|
|
while (FoundPos != std::string::npos) {
|
|
VarName[FoundPos] = '_';
|
|
FoundPos = VarName.find_first_of(InvalidChars, FoundPos + 1);
|
|
}
|
|
return VarName;
|
|
}
|
|
|
|
bool isGPUProfTarget(const Module &M) {
|
|
const Triple &T = M.getTargetTriple();
|
|
return T.isAMDGPU() || T.isNVPTX();
|
|
}
|
|
|
|
void setPGOFuncVisibility(Module &M, GlobalVariable *FuncNameVar) {
|
|
// If the target is a GPU, make the symbol protected so it can
|
|
// be read from the host device
|
|
if (isGPUProfTarget(M))
|
|
FuncNameVar->setVisibility(GlobalValue::ProtectedVisibility);
|
|
// Hide the symbol so that we correctly get a copy for each executable.
|
|
else if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
|
|
FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
|
|
}
|
|
|
|
GlobalVariable *createPGOFuncNameVar(Module &M,
|
|
GlobalValue::LinkageTypes Linkage,
|
|
StringRef PGOFuncName) {
|
|
// Ensure profiling variables on GPU are visible to be read from host
|
|
if (isGPUProfTarget(M))
|
|
Linkage = GlobalValue::ExternalLinkage;
|
|
// We generally want to match the function's linkage, but available_externally
|
|
// and extern_weak both have the wrong semantics, and anything that doesn't
|
|
// need to link across compilation units doesn't need to be visible at all.
|
|
else if (Linkage == GlobalValue::ExternalWeakLinkage)
|
|
Linkage = GlobalValue::LinkOnceAnyLinkage;
|
|
else if (Linkage == GlobalValue::AvailableExternallyLinkage)
|
|
Linkage = GlobalValue::LinkOnceODRLinkage;
|
|
else if (Linkage == GlobalValue::InternalLinkage ||
|
|
Linkage == GlobalValue::ExternalLinkage)
|
|
Linkage = GlobalValue::PrivateLinkage;
|
|
|
|
auto *Value =
|
|
ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
|
|
auto *FuncNameVar =
|
|
new GlobalVariable(M, Value->getType(), true, Linkage, Value,
|
|
getPGOFuncNameVarName(PGOFuncName, Linkage));
|
|
|
|
setPGOFuncVisibility(M, FuncNameVar);
|
|
return FuncNameVar;
|
|
}
|
|
|
|
GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
|
|
return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
|
|
}
|
|
|
|
Error InstrProfSymtab::create(Module &M, bool InLTO, bool AddCanonical) {
|
|
for (Function &F : M) {
|
|
// Function may not have a name: like using asm("") to overwrite the name.
|
|
// Ignore in this case.
|
|
if (!F.hasName())
|
|
continue;
|
|
if (Error E = addFuncWithName(F, getIRPGOFuncName(F, InLTO), AddCanonical))
|
|
return E;
|
|
// Also use getPGOFuncName() so that we can find records from older profiles
|
|
if (Error E = addFuncWithName(F, getPGOFuncName(F, InLTO), AddCanonical))
|
|
return E;
|
|
}
|
|
|
|
SmallVector<MDNode *, 2> Types;
|
|
for (GlobalVariable &G : M.globals()) {
|
|
if (!G.hasName() || !G.hasMetadata(LLVMContext::MD_type))
|
|
continue;
|
|
if (Error E = addVTableWithName(G, getPGOName(G, InLTO)))
|
|
return E;
|
|
}
|
|
|
|
Sorted = false;
|
|
finalizeSymtab();
|
|
return Error::success();
|
|
}
|
|
|
|
Error InstrProfSymtab::addVTableWithName(GlobalVariable &VTable,
|
|
StringRef VTablePGOName) {
|
|
auto NameToGUIDMap = [&](StringRef Name) -> Error {
|
|
if (Error E = addSymbolName(Name))
|
|
return E;
|
|
|
|
bool Inserted = true;
|
|
std::tie(std::ignore, Inserted) =
|
|
MD5VTableMap.try_emplace(GlobalValue::getGUID(Name), &VTable);
|
|
if (!Inserted)
|
|
LLVM_DEBUG(dbgs() << "GUID conflict within one module");
|
|
return Error::success();
|
|
};
|
|
if (Error E = NameToGUIDMap(VTablePGOName))
|
|
return E;
|
|
|
|
StringRef CanonicalName = getCanonicalName(VTablePGOName);
|
|
if (CanonicalName != VTablePGOName)
|
|
return NameToGUIDMap(CanonicalName);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
/// \c NameStrings is a string composed of one of more possibly encoded
|
|
/// sub-strings. The substrings are separated by 0 or more zero bytes. This
|
|
/// method decodes the string and calls `NameCallback` for each substring.
|
|
static Error
|
|
readAndDecodeStrings(StringRef NameStrings,
|
|
std::function<Error(StringRef)> NameCallback) {
|
|
const uint8_t *P = NameStrings.bytes_begin();
|
|
const uint8_t *EndP = NameStrings.bytes_end();
|
|
while (P < EndP) {
|
|
uint32_t N;
|
|
uint64_t UncompressedSize = decodeULEB128(P, &N);
|
|
P += N;
|
|
uint64_t CompressedSize = decodeULEB128(P, &N);
|
|
P += N;
|
|
const bool IsCompressed = (CompressedSize != 0);
|
|
SmallVector<uint8_t, 128> UncompressedNameStrings;
|
|
StringRef NameStrings;
|
|
if (IsCompressed) {
|
|
if (!llvm::compression::zlib::isAvailable())
|
|
return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
|
|
|
|
if (Error E = compression::zlib::decompress(ArrayRef(P, CompressedSize),
|
|
UncompressedNameStrings,
|
|
UncompressedSize)) {
|
|
consumeError(std::move(E));
|
|
return make_error<InstrProfError>(instrprof_error::uncompress_failed);
|
|
}
|
|
P += CompressedSize;
|
|
NameStrings = toStringRef(UncompressedNameStrings);
|
|
} else {
|
|
NameStrings =
|
|
StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
|
|
P += UncompressedSize;
|
|
}
|
|
// Now parse the name strings.
|
|
SmallVector<StringRef, 0> Names;
|
|
NameStrings.split(Names, getInstrProfNameSeparator());
|
|
for (StringRef &Name : Names)
|
|
if (Error E = NameCallback(Name))
|
|
return E;
|
|
|
|
while (P < EndP && *P == 0)
|
|
P++;
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
Error InstrProfSymtab::create(StringRef NameStrings) {
|
|
return readAndDecodeStrings(
|
|
NameStrings,
|
|
std::bind(&InstrProfSymtab::addFuncName, this, std::placeholders::_1));
|
|
}
|
|
|
|
Error InstrProfSymtab::create(StringRef FuncNameStrings,
|
|
StringRef VTableNameStrings) {
|
|
if (Error E = readAndDecodeStrings(FuncNameStrings,
|
|
std::bind(&InstrProfSymtab::addFuncName,
|
|
this, std::placeholders::_1)))
|
|
return E;
|
|
|
|
return readAndDecodeStrings(
|
|
VTableNameStrings,
|
|
std::bind(&InstrProfSymtab::addVTableName, this, std::placeholders::_1));
|
|
}
|
|
|
|
Error InstrProfSymtab::initVTableNamesFromCompressedStrings(
|
|
StringRef CompressedVTableStrings) {
|
|
return readAndDecodeStrings(
|
|
CompressedVTableStrings,
|
|
std::bind(&InstrProfSymtab::addVTableName, this, std::placeholders::_1));
|
|
}
|
|
|
|
StringRef InstrProfSymtab::getCanonicalName(StringRef PGOName) {
|
|
// In ThinLTO, local function may have been promoted to global and have
|
|
// suffix ".llvm." added to the function name. We need to add the
|
|
// stripped function name to the symbol table so that we can find a match
|
|
// from profile.
|
|
//
|
|
// ".__uniq." suffix is used to differentiate internal linkage functions in
|
|
// different modules and should be kept. This is the only suffix with the
|
|
// pattern ".xxx" which is kept before matching, other suffixes similar as
|
|
// ".llvm." will be stripped.
|
|
const std::string UniqSuffix = ".__uniq.";
|
|
size_t Pos = PGOName.find(UniqSuffix);
|
|
if (Pos != StringRef::npos)
|
|
Pos += UniqSuffix.length();
|
|
else
|
|
Pos = 0;
|
|
|
|
// Search '.' after ".__uniq." if ".__uniq." exists, otherwise search '.' from
|
|
// the beginning.
|
|
Pos = PGOName.find('.', Pos);
|
|
if (Pos != StringRef::npos && Pos != 0)
|
|
return PGOName.substr(0, Pos);
|
|
|
|
return PGOName;
|
|
}
|
|
|
|
Error InstrProfSymtab::addFuncWithName(Function &F, StringRef PGOFuncName,
|
|
bool AddCanonical) {
|
|
auto NameToGUIDMap = [&](StringRef Name) -> Error {
|
|
if (Error E = addFuncName(Name))
|
|
return E;
|
|
MD5FuncMap.emplace_back(Function::getGUID(Name), &F);
|
|
return Error::success();
|
|
};
|
|
if (Error E = NameToGUIDMap(PGOFuncName))
|
|
return E;
|
|
|
|
if (!AddCanonical)
|
|
return Error::success();
|
|
|
|
StringRef CanonicalFuncName = getCanonicalName(PGOFuncName);
|
|
if (CanonicalFuncName != PGOFuncName)
|
|
return NameToGUIDMap(CanonicalFuncName);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
uint64_t InstrProfSymtab::getVTableHashFromAddress(uint64_t Address) {
|
|
// Given a runtime address, look up the hash value in the interval map, and
|
|
// fallback to value 0 if a hash value is not found.
|
|
return VTableAddrMap.lookup(Address, 0);
|
|
}
|
|
|
|
uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
|
|
finalizeSymtab();
|
|
auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
|
|
return A.first < Address;
|
|
});
|
|
// Raw function pointer collected by value profiler may be from
|
|
// external functions that are not instrumented. They won't have
|
|
// mapping data to be used by the deserializer. Force the value to
|
|
// be 0 in this case.
|
|
if (It != AddrToMD5Map.end() && It->first == Address)
|
|
return (uint64_t)It->second;
|
|
return 0;
|
|
}
|
|
|
|
void InstrProfSymtab::dumpNames(raw_ostream &OS) const {
|
|
SmallVector<StringRef, 0> Sorted(NameTab.keys());
|
|
llvm::sort(Sorted);
|
|
for (StringRef S : Sorted)
|
|
OS << S << '\n';
|
|
}
|
|
|
|
Error collectGlobalObjectNameStrings(ArrayRef<std::string> NameStrs,
|
|
bool DoCompression, std::string &Result) {
|
|
assert(!NameStrs.empty() && "No name data to emit");
|
|
|
|
uint8_t Header[20], *P = Header;
|
|
std::string UncompressedNameStrings =
|
|
join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
|
|
|
|
assert(StringRef(UncompressedNameStrings)
|
|
.count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
|
|
"PGO name is invalid (contains separator token)");
|
|
|
|
unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
|
|
P += EncLen;
|
|
|
|
auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
|
|
EncLen = encodeULEB128(CompressedLen, P);
|
|
P += EncLen;
|
|
char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
|
|
unsigned HeaderLen = P - &Header[0];
|
|
Result.append(HeaderStr, HeaderLen);
|
|
Result += InputStr;
|
|
return Error::success();
|
|
};
|
|
|
|
if (!DoCompression) {
|
|
return WriteStringToResult(0, UncompressedNameStrings);
|
|
}
|
|
|
|
SmallVector<uint8_t, 128> CompressedNameStrings;
|
|
compression::zlib::compress(arrayRefFromStringRef(UncompressedNameStrings),
|
|
CompressedNameStrings,
|
|
compression::zlib::BestSizeCompression);
|
|
|
|
return WriteStringToResult(CompressedNameStrings.size(),
|
|
toStringRef(CompressedNameStrings));
|
|
}
|
|
|
|
StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
|
|
auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
|
|
StringRef NameStr =
|
|
Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
|
|
return NameStr;
|
|
}
|
|
|
|
Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
|
|
std::string &Result, bool DoCompression) {
|
|
std::vector<std::string> NameStrs;
|
|
for (auto *NameVar : NameVars) {
|
|
NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar)));
|
|
}
|
|
return collectGlobalObjectNameStrings(
|
|
NameStrs, compression::zlib::isAvailable() && DoCompression, Result);
|
|
}
|
|
|
|
Error collectVTableStrings(ArrayRef<GlobalVariable *> VTables,
|
|
std::string &Result, bool DoCompression) {
|
|
std::vector<std::string> VTableNameStrs;
|
|
for (auto *VTable : VTables)
|
|
VTableNameStrs.push_back(getPGOName(*VTable));
|
|
return collectGlobalObjectNameStrings(
|
|
VTableNameStrs, compression::zlib::isAvailable() && DoCompression,
|
|
Result);
|
|
}
|
|
|
|
void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
|
|
uint64_t FuncSum = 0;
|
|
Sum.NumEntries += Counts.size();
|
|
for (uint64_t Count : Counts)
|
|
FuncSum += Count;
|
|
Sum.CountSum += FuncSum;
|
|
|
|
for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
|
|
uint64_t KindSum = 0;
|
|
uint32_t NumValueSites = getNumValueSites(VK);
|
|
for (size_t I = 0; I < NumValueSites; ++I) {
|
|
for (const auto &V : getValueArrayForSite(VK, I))
|
|
KindSum += V.Count;
|
|
}
|
|
Sum.ValueCounts[VK] += KindSum;
|
|
}
|
|
}
|
|
|
|
void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
|
|
uint32_t ValueKind,
|
|
OverlapStats &Overlap,
|
|
OverlapStats &FuncLevelOverlap) {
|
|
this->sortByTargetValues();
|
|
Input.sortByTargetValues();
|
|
double Score = 0.0f, FuncLevelScore = 0.0f;
|
|
auto I = ValueData.begin();
|
|
auto IE = ValueData.end();
|
|
auto J = Input.ValueData.begin();
|
|
auto JE = Input.ValueData.end();
|
|
while (I != IE && J != JE) {
|
|
if (I->Value == J->Value) {
|
|
Score += OverlapStats::score(I->Count, J->Count,
|
|
Overlap.Base.ValueCounts[ValueKind],
|
|
Overlap.Test.ValueCounts[ValueKind]);
|
|
FuncLevelScore += OverlapStats::score(
|
|
I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
|
|
FuncLevelOverlap.Test.ValueCounts[ValueKind]);
|
|
++I;
|
|
} else if (I->Value < J->Value) {
|
|
++I;
|
|
continue;
|
|
}
|
|
++J;
|
|
}
|
|
Overlap.Overlap.ValueCounts[ValueKind] += Score;
|
|
FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
|
|
}
|
|
|
|
// Return false on mismatch.
|
|
void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
|
|
InstrProfRecord &Other,
|
|
OverlapStats &Overlap,
|
|
OverlapStats &FuncLevelOverlap) {
|
|
uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
|
|
assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
|
|
if (!ThisNumValueSites)
|
|
return;
|
|
|
|
std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
|
|
getOrCreateValueSitesForKind(ValueKind);
|
|
MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
|
|
Other.getValueSitesForKind(ValueKind);
|
|
for (uint32_t I = 0; I < ThisNumValueSites; I++)
|
|
ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
|
|
FuncLevelOverlap);
|
|
}
|
|
|
|
void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
|
|
OverlapStats &FuncLevelOverlap,
|
|
uint64_t ValueCutoff) {
|
|
// FuncLevel CountSum for other should already computed and nonzero.
|
|
assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
|
|
accumulateCounts(FuncLevelOverlap.Base);
|
|
bool Mismatch = (Counts.size() != Other.Counts.size());
|
|
|
|
// Check if the value profiles mismatch.
|
|
if (!Mismatch) {
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
|
|
uint32_t ThisNumValueSites = getNumValueSites(Kind);
|
|
uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
|
|
if (ThisNumValueSites != OtherNumValueSites) {
|
|
Mismatch = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (Mismatch) {
|
|
Overlap.addOneMismatch(FuncLevelOverlap.Test);
|
|
return;
|
|
}
|
|
|
|
// Compute overlap for value counts.
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
|
|
overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
|
|
|
|
double Score = 0.0;
|
|
uint64_t MaxCount = 0;
|
|
// Compute overlap for edge counts.
|
|
for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
|
|
Score += OverlapStats::score(Counts[I], Other.Counts[I],
|
|
Overlap.Base.CountSum, Overlap.Test.CountSum);
|
|
MaxCount = std::max(Other.Counts[I], MaxCount);
|
|
}
|
|
Overlap.Overlap.CountSum += Score;
|
|
Overlap.Overlap.NumEntries += 1;
|
|
|
|
if (MaxCount >= ValueCutoff) {
|
|
double FuncScore = 0.0;
|
|
for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
|
|
FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
|
|
FuncLevelOverlap.Base.CountSum,
|
|
FuncLevelOverlap.Test.CountSum);
|
|
FuncLevelOverlap.Overlap.CountSum = FuncScore;
|
|
FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
|
|
FuncLevelOverlap.Valid = true;
|
|
}
|
|
}
|
|
|
|
void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
|
|
uint64_t Weight,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
this->sortByTargetValues();
|
|
Input.sortByTargetValues();
|
|
auto I = ValueData.begin();
|
|
auto IE = ValueData.end();
|
|
std::vector<InstrProfValueData> Merged;
|
|
Merged.reserve(std::max(ValueData.size(), Input.ValueData.size()));
|
|
for (const InstrProfValueData &J : Input.ValueData) {
|
|
while (I != IE && I->Value < J.Value) {
|
|
Merged.push_back(*I);
|
|
++I;
|
|
}
|
|
if (I != IE && I->Value == J.Value) {
|
|
bool Overflowed;
|
|
I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed);
|
|
if (Overflowed)
|
|
Warn(instrprof_error::counter_overflow);
|
|
Merged.push_back(*I);
|
|
++I;
|
|
continue;
|
|
}
|
|
Merged.push_back(J);
|
|
}
|
|
Merged.insert(Merged.end(), I, IE);
|
|
ValueData = std::move(Merged);
|
|
}
|
|
|
|
void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
for (InstrProfValueData &I : ValueData) {
|
|
bool Overflowed;
|
|
I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D;
|
|
if (Overflowed)
|
|
Warn(instrprof_error::counter_overflow);
|
|
}
|
|
}
|
|
|
|
// Merge Value Profile data from Src record to this record for ValueKind.
|
|
// Scale merged value counts by \p Weight.
|
|
void InstrProfRecord::mergeValueProfData(
|
|
uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
|
|
uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
|
|
if (ThisNumValueSites != OtherNumValueSites) {
|
|
Warn(instrprof_error::value_site_count_mismatch);
|
|
return;
|
|
}
|
|
if (!ThisNumValueSites)
|
|
return;
|
|
std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
|
|
getOrCreateValueSitesForKind(ValueKind);
|
|
MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
|
|
Src.getValueSitesForKind(ValueKind);
|
|
for (uint32_t I = 0; I < ThisNumValueSites; I++)
|
|
ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
|
|
}
|
|
|
|
void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
// If the number of counters doesn't match we either have bad data
|
|
// or a hash collision.
|
|
if (Counts.size() != Other.Counts.size()) {
|
|
Warn(instrprof_error::count_mismatch);
|
|
return;
|
|
}
|
|
|
|
// Special handling of the first count as the PseudoCount.
|
|
CountPseudoKind OtherKind = Other.getCountPseudoKind();
|
|
CountPseudoKind ThisKind = getCountPseudoKind();
|
|
if (OtherKind != NotPseudo || ThisKind != NotPseudo) {
|
|
// We don't allow the merge of a profile with pseudo counts and
|
|
// a normal profile (i.e. without pesudo counts).
|
|
// Profile supplimenation should be done after the profile merge.
|
|
if (OtherKind == NotPseudo || ThisKind == NotPseudo) {
|
|
Warn(instrprof_error::count_mismatch);
|
|
return;
|
|
}
|
|
if (OtherKind == PseudoHot || ThisKind == PseudoHot)
|
|
setPseudoCount(PseudoHot);
|
|
else
|
|
setPseudoCount(PseudoWarm);
|
|
return;
|
|
}
|
|
|
|
for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
|
|
bool Overflowed;
|
|
uint64_t Value =
|
|
SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
|
|
if (Value > getInstrMaxCountValue()) {
|
|
Value = getInstrMaxCountValue();
|
|
Overflowed = true;
|
|
}
|
|
Counts[I] = Value;
|
|
if (Overflowed)
|
|
Warn(instrprof_error::counter_overflow);
|
|
}
|
|
|
|
// If the number of bitmap bytes doesn't match we either have bad data
|
|
// or a hash collision.
|
|
if (BitmapBytes.size() != Other.BitmapBytes.size()) {
|
|
Warn(instrprof_error::bitmap_mismatch);
|
|
return;
|
|
}
|
|
|
|
// Bitmap bytes are merged by simply ORing them together.
|
|
for (size_t I = 0, E = Other.BitmapBytes.size(); I < E; ++I) {
|
|
BitmapBytes[I] = Other.BitmapBytes[I] | BitmapBytes[I];
|
|
}
|
|
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
|
|
mergeValueProfData(Kind, Other, Weight, Warn);
|
|
}
|
|
|
|
void InstrProfRecord::scaleValueProfData(
|
|
uint32_t ValueKind, uint64_t N, uint64_t D,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
for (auto &R : getValueSitesForKind(ValueKind))
|
|
R.scale(N, D, Warn);
|
|
}
|
|
|
|
void InstrProfRecord::scale(uint64_t N, uint64_t D,
|
|
function_ref<void(instrprof_error)> Warn) {
|
|
assert(D != 0 && "D cannot be 0");
|
|
for (auto &Count : this->Counts) {
|
|
bool Overflowed;
|
|
Count = SaturatingMultiply(Count, N, &Overflowed) / D;
|
|
if (Count > getInstrMaxCountValue()) {
|
|
Count = getInstrMaxCountValue();
|
|
Overflowed = true;
|
|
}
|
|
if (Overflowed)
|
|
Warn(instrprof_error::counter_overflow);
|
|
}
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
|
|
scaleValueProfData(Kind, N, D, Warn);
|
|
}
|
|
|
|
// Map indirect call target name hash to name string.
|
|
uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
|
|
InstrProfSymtab *SymTab) {
|
|
if (!SymTab)
|
|
return Value;
|
|
|
|
if (ValueKind == IPVK_IndirectCallTarget)
|
|
return SymTab->getFunctionHashFromAddress(Value);
|
|
|
|
if (ValueKind == IPVK_VTableTarget)
|
|
return SymTab->getVTableHashFromAddress(Value);
|
|
|
|
return Value;
|
|
}
|
|
|
|
void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
|
|
ArrayRef<InstrProfValueData> VData,
|
|
InstrProfSymtab *ValueMap) {
|
|
// Remap values.
|
|
std::vector<InstrProfValueData> RemappedVD;
|
|
RemappedVD.reserve(VData.size());
|
|
for (const auto &V : VData) {
|
|
uint64_t NewValue = remapValue(V.Value, ValueKind, ValueMap);
|
|
RemappedVD.push_back({NewValue, V.Count});
|
|
}
|
|
|
|
std::vector<InstrProfValueSiteRecord> &ValueSites =
|
|
getOrCreateValueSitesForKind(ValueKind);
|
|
assert(ValueSites.size() == Site);
|
|
|
|
// Add a new value site with remapped value profiling data.
|
|
ValueSites.emplace_back(std::move(RemappedVD));
|
|
}
|
|
|
|
void TemporalProfTraceTy::createBPFunctionNodes(
|
|
ArrayRef<TemporalProfTraceTy> Traces, std::vector<BPFunctionNode> &Nodes,
|
|
bool RemoveOutlierUNs) {
|
|
using IDT = BPFunctionNode::IDT;
|
|
using UtilityNodeT = BPFunctionNode::UtilityNodeT;
|
|
UtilityNodeT MaxUN = 0;
|
|
DenseMap<IDT, size_t> IdToFirstTimestamp;
|
|
DenseMap<IDT, UtilityNodeT> IdToFirstUN;
|
|
DenseMap<IDT, SmallVector<UtilityNodeT>> IdToUNs;
|
|
// TODO: We need to use the Trace.Weight field to give more weight to more
|
|
// important utilities
|
|
for (auto &Trace : Traces) {
|
|
size_t CutoffTimestamp = 1;
|
|
for (size_t Timestamp = 0; Timestamp < Trace.FunctionNameRefs.size();
|
|
Timestamp++) {
|
|
IDT Id = Trace.FunctionNameRefs[Timestamp];
|
|
auto [It, WasInserted] = IdToFirstTimestamp.try_emplace(Id, Timestamp);
|
|
if (!WasInserted)
|
|
It->getSecond() = std::min<size_t>(It->getSecond(), Timestamp);
|
|
if (Timestamp >= CutoffTimestamp) {
|
|
++MaxUN;
|
|
CutoffTimestamp = 2 * Timestamp;
|
|
}
|
|
IdToFirstUN.try_emplace(Id, MaxUN);
|
|
}
|
|
for (auto &[Id, FirstUN] : IdToFirstUN)
|
|
for (auto UN = FirstUN; UN <= MaxUN; ++UN)
|
|
IdToUNs[Id].push_back(UN);
|
|
++MaxUN;
|
|
IdToFirstUN.clear();
|
|
}
|
|
|
|
if (RemoveOutlierUNs) {
|
|
DenseMap<UtilityNodeT, unsigned> UNFrequency;
|
|
for (auto &[Id, UNs] : IdToUNs)
|
|
for (auto &UN : UNs)
|
|
++UNFrequency[UN];
|
|
// Filter out utility nodes that are too infrequent or too prevalent to make
|
|
// BalancedPartitioning more effective.
|
|
for (auto &[Id, UNs] : IdToUNs)
|
|
llvm::erase_if(UNs, [&](auto &UN) {
|
|
unsigned Freq = UNFrequency[UN];
|
|
return Freq <= 1 || 2 * Freq > IdToUNs.size();
|
|
});
|
|
}
|
|
|
|
for (auto &[Id, UNs] : IdToUNs)
|
|
Nodes.emplace_back(Id, UNs);
|
|
|
|
// Since BalancedPartitioning is sensitive to the initial order, we explicitly
|
|
// order nodes by their earliest timestamp.
|
|
llvm::sort(Nodes, [&](auto &L, auto &R) {
|
|
return std::make_pair(IdToFirstTimestamp[L.Id], L.Id) <
|
|
std::make_pair(IdToFirstTimestamp[R.Id], R.Id);
|
|
});
|
|
}
|
|
|
|
#define INSTR_PROF_COMMON_API_IMPL
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
|
|
/*!
|
|
* ValueProfRecordClosure Interface implementation for InstrProfRecord
|
|
* class. These C wrappers are used as adaptors so that C++ code can be
|
|
* invoked as callbacks.
|
|
*/
|
|
uint32_t getNumValueKindsInstrProf(const void *Record) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
|
|
}
|
|
|
|
uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)
|
|
->getNumValueSites(VKind);
|
|
}
|
|
|
|
uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)
|
|
->getNumValueData(VKind);
|
|
}
|
|
|
|
uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
|
|
uint32_t S) {
|
|
const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
|
|
return IPR->getValueArrayForSite(VK, S).size();
|
|
}
|
|
|
|
void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
|
|
uint32_t K, uint32_t S) {
|
|
const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
|
|
llvm::copy(IPR->getValueArrayForSite(K, S), Dst);
|
|
}
|
|
|
|
ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
|
|
ValueProfData *VD =
|
|
(ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
|
|
memset(VD, 0, TotalSizeInBytes);
|
|
return VD;
|
|
}
|
|
|
|
static ValueProfRecordClosure InstrProfRecordClosure = {
|
|
nullptr,
|
|
getNumValueKindsInstrProf,
|
|
getNumValueSitesInstrProf,
|
|
getNumValueDataInstrProf,
|
|
getNumValueDataForSiteInstrProf,
|
|
nullptr,
|
|
getValueForSiteInstrProf,
|
|
allocValueProfDataInstrProf};
|
|
|
|
// Wrapper implementation using the closure mechanism.
|
|
uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
|
|
auto Closure = InstrProfRecordClosure;
|
|
Closure.Record = &Record;
|
|
return getValueProfDataSize(&Closure);
|
|
}
|
|
|
|
// Wrapper implementation using the closure mechanism.
|
|
std::unique_ptr<ValueProfData>
|
|
ValueProfData::serializeFrom(const InstrProfRecord &Record) {
|
|
InstrProfRecordClosure.Record = &Record;
|
|
|
|
std::unique_ptr<ValueProfData> VPD(
|
|
serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
|
|
return VPD;
|
|
}
|
|
|
|
void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
|
|
InstrProfSymtab *SymTab) {
|
|
Record.reserveSites(Kind, NumValueSites);
|
|
|
|
InstrProfValueData *ValueData = getValueProfRecordValueData(this);
|
|
for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
|
|
uint8_t ValueDataCount = this->SiteCountArray[VSite];
|
|
ArrayRef<InstrProfValueData> VDs(ValueData, ValueDataCount);
|
|
Record.addValueData(Kind, VSite, VDs, SymTab);
|
|
ValueData += ValueDataCount;
|
|
}
|
|
}
|
|
|
|
// For writing/serializing, Old is the host endianness, and New is
|
|
// byte order intended on disk. For Reading/deserialization, Old
|
|
// is the on-disk source endianness, and New is the host endianness.
|
|
void ValueProfRecord::swapBytes(llvm::endianness Old, llvm::endianness New) {
|
|
using namespace support;
|
|
|
|
if (Old == New)
|
|
return;
|
|
|
|
if (llvm::endianness::native != Old) {
|
|
sys::swapByteOrder<uint32_t>(NumValueSites);
|
|
sys::swapByteOrder<uint32_t>(Kind);
|
|
}
|
|
uint32_t ND = getValueProfRecordNumValueData(this);
|
|
InstrProfValueData *VD = getValueProfRecordValueData(this);
|
|
|
|
// No need to swap byte array: SiteCountArrray.
|
|
for (uint32_t I = 0; I < ND; I++) {
|
|
sys::swapByteOrder<uint64_t>(VD[I].Value);
|
|
sys::swapByteOrder<uint64_t>(VD[I].Count);
|
|
}
|
|
if (llvm::endianness::native == Old) {
|
|
sys::swapByteOrder<uint32_t>(NumValueSites);
|
|
sys::swapByteOrder<uint32_t>(Kind);
|
|
}
|
|
}
|
|
|
|
void ValueProfData::deserializeTo(InstrProfRecord &Record,
|
|
InstrProfSymtab *SymTab) {
|
|
if (NumValueKinds == 0)
|
|
return;
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
VR->deserializeTo(Record, SymTab);
|
|
VR = getValueProfRecordNext(VR);
|
|
}
|
|
}
|
|
|
|
static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
|
|
return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
|
|
ValueProfData());
|
|
}
|
|
|
|
Error ValueProfData::checkIntegrity() {
|
|
if (NumValueKinds > IPVK_Last + 1)
|
|
return make_error<InstrProfError>(
|
|
instrprof_error::malformed, "number of value profile kinds is invalid");
|
|
// Total size needs to be multiple of quadword size.
|
|
if (TotalSize % sizeof(uint64_t))
|
|
return make_error<InstrProfError>(
|
|
instrprof_error::malformed, "total size is not multiples of quardword");
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < this->NumValueKinds; K++) {
|
|
if (VR->Kind > IPVK_Last)
|
|
return make_error<InstrProfError>(instrprof_error::malformed,
|
|
"value kind is invalid");
|
|
VR = getValueProfRecordNext(VR);
|
|
if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
|
|
return make_error<InstrProfError>(
|
|
instrprof_error::malformed,
|
|
"value profile address is greater than total size");
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<std::unique_ptr<ValueProfData>>
|
|
ValueProfData::getValueProfData(const unsigned char *D,
|
|
const unsigned char *const BufferEnd,
|
|
llvm::endianness Endianness) {
|
|
using namespace support;
|
|
|
|
if (D + sizeof(ValueProfData) > BufferEnd)
|
|
return make_error<InstrProfError>(instrprof_error::truncated);
|
|
|
|
const unsigned char *Header = D;
|
|
uint32_t TotalSize = endian::readNext<uint32_t>(Header, Endianness);
|
|
|
|
if (D + TotalSize > BufferEnd)
|
|
return make_error<InstrProfError>(instrprof_error::too_large);
|
|
|
|
std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
|
|
memcpy(VPD.get(), D, TotalSize);
|
|
// Byte swap.
|
|
VPD->swapBytesToHost(Endianness);
|
|
|
|
Error E = VPD->checkIntegrity();
|
|
if (E)
|
|
return std::move(E);
|
|
|
|
return std::move(VPD);
|
|
}
|
|
|
|
void ValueProfData::swapBytesToHost(llvm::endianness Endianness) {
|
|
using namespace support;
|
|
|
|
if (Endianness == llvm::endianness::native)
|
|
return;
|
|
|
|
sys::swapByteOrder<uint32_t>(TotalSize);
|
|
sys::swapByteOrder<uint32_t>(NumValueKinds);
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
VR->swapBytes(Endianness, llvm::endianness::native);
|
|
VR = getValueProfRecordNext(VR);
|
|
}
|
|
}
|
|
|
|
void ValueProfData::swapBytesFromHost(llvm::endianness Endianness) {
|
|
using namespace support;
|
|
|
|
if (Endianness == llvm::endianness::native)
|
|
return;
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
ValueProfRecord *NVR = getValueProfRecordNext(VR);
|
|
VR->swapBytes(llvm::endianness::native, Endianness);
|
|
VR = NVR;
|
|
}
|
|
sys::swapByteOrder<uint32_t>(TotalSize);
|
|
sys::swapByteOrder<uint32_t>(NumValueKinds);
|
|
}
|
|
|
|
void annotateValueSite(Module &M, Instruction &Inst,
|
|
const InstrProfRecord &InstrProfR,
|
|
InstrProfValueKind ValueKind, uint32_t SiteIdx,
|
|
uint32_t MaxMDCount) {
|
|
auto VDs = InstrProfR.getValueArrayForSite(ValueKind, SiteIdx);
|
|
if (VDs.empty())
|
|
return;
|
|
uint64_t Sum = 0;
|
|
for (const InstrProfValueData &V : VDs)
|
|
Sum = SaturatingAdd(Sum, V.Count);
|
|
annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
|
|
}
|
|
|
|
void annotateValueSite(Module &M, Instruction &Inst,
|
|
ArrayRef<InstrProfValueData> VDs,
|
|
uint64_t Sum, InstrProfValueKind ValueKind,
|
|
uint32_t MaxMDCount) {
|
|
if (VDs.empty())
|
|
return;
|
|
LLVMContext &Ctx = M.getContext();
|
|
MDBuilder MDHelper(Ctx);
|
|
SmallVector<Metadata *, 3> Vals;
|
|
// Tag
|
|
Vals.push_back(MDHelper.createString("VP"));
|
|
// Value Kind
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
|
|
// Total Count
|
|
Vals.push_back(
|
|
MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
|
|
|
|
// Value Profile Data
|
|
uint32_t MDCount = MaxMDCount;
|
|
for (const auto &VD : VDs) {
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
|
|
if (--MDCount == 0)
|
|
break;
|
|
}
|
|
Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
|
|
}
|
|
|
|
MDNode *mayHaveValueProfileOfKind(const Instruction &Inst,
|
|
InstrProfValueKind ValueKind) {
|
|
MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
|
|
if (!MD)
|
|
return nullptr;
|
|
|
|
if (MD->getNumOperands() < 5)
|
|
return nullptr;
|
|
|
|
MDString *Tag = cast<MDString>(MD->getOperand(0));
|
|
if (!Tag || Tag->getString() != "VP")
|
|
return nullptr;
|
|
|
|
// Now check kind:
|
|
ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
|
|
if (!KindInt)
|
|
return nullptr;
|
|
if (KindInt->getZExtValue() != ValueKind)
|
|
return nullptr;
|
|
|
|
return MD;
|
|
}
|
|
|
|
SmallVector<InstrProfValueData, 4>
|
|
getValueProfDataFromInst(const Instruction &Inst, InstrProfValueKind ValueKind,
|
|
uint32_t MaxNumValueData, uint64_t &TotalC,
|
|
bool GetNoICPValue) {
|
|
// Four inline elements seem to work well in practice. With MaxNumValueData,
|
|
// this array won't grow very big anyway.
|
|
SmallVector<InstrProfValueData, 4> ValueData;
|
|
MDNode *MD = mayHaveValueProfileOfKind(Inst, ValueKind);
|
|
if (!MD)
|
|
return ValueData;
|
|
const unsigned NOps = MD->getNumOperands();
|
|
// Get total count
|
|
ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
|
|
if (!TotalCInt)
|
|
return ValueData;
|
|
TotalC = TotalCInt->getZExtValue();
|
|
|
|
ValueData.reserve((NOps - 3) / 2);
|
|
for (unsigned I = 3; I < NOps; I += 2) {
|
|
if (ValueData.size() >= MaxNumValueData)
|
|
break;
|
|
ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
|
|
ConstantInt *Count =
|
|
mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
|
|
if (!Value || !Count) {
|
|
ValueData.clear();
|
|
return ValueData;
|
|
}
|
|
uint64_t CntValue = Count->getZExtValue();
|
|
if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
|
|
continue;
|
|
InstrProfValueData V;
|
|
V.Value = Value->getZExtValue();
|
|
V.Count = CntValue;
|
|
ValueData.push_back(V);
|
|
}
|
|
return ValueData;
|
|
}
|
|
|
|
MDNode *getPGOFuncNameMetadata(const Function &F) {
|
|
return F.getMetadata(getPGOFuncNameMetadataName());
|
|
}
|
|
|
|
static void createPGONameMetadata(GlobalObject &GO, StringRef MetadataName,
|
|
StringRef PGOName) {
|
|
// Only for internal linkage functions or global variables. The name is not
|
|
// the same as PGO name for these global objects.
|
|
if (GO.getName() == PGOName)
|
|
return;
|
|
|
|
// Don't create duplicated metadata.
|
|
if (GO.getMetadata(MetadataName))
|
|
return;
|
|
|
|
LLVMContext &C = GO.getContext();
|
|
MDNode *N = MDNode::get(C, MDString::get(C, PGOName));
|
|
GO.setMetadata(MetadataName, N);
|
|
}
|
|
|
|
void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
|
|
return createPGONameMetadata(F, getPGOFuncNameMetadataName(), PGOFuncName);
|
|
}
|
|
|
|
void createPGONameMetadata(GlobalObject &GO, StringRef PGOName) {
|
|
return createPGONameMetadata(GO, getPGONameMetadataName(), PGOName);
|
|
}
|
|
|
|
bool needsComdatForCounter(const GlobalObject &GO, const Module &M) {
|
|
if (GO.hasComdat())
|
|
return true;
|
|
|
|
if (!M.getTargetTriple().supportsCOMDAT())
|
|
return false;
|
|
|
|
// See createPGOFuncNameVar for more details. To avoid link errors, profile
|
|
// counters for function with available_externally linkage needs to be changed
|
|
// to linkonce linkage. On ELF based systems, this leads to weak symbols to be
|
|
// created. Without using comdat, duplicate entries won't be removed by the
|
|
// linker leading to increased data segement size and raw profile size. Even
|
|
// worse, since the referenced counter from profile per-function data object
|
|
// will be resolved to the common strong definition, the profile counts for
|
|
// available_externally functions will end up being duplicated in raw profile
|
|
// data. This can result in distorted profile as the counts of those dups
|
|
// will be accumulated by the profile merger.
|
|
GlobalValue::LinkageTypes Linkage = GO.getLinkage();
|
|
if (Linkage != GlobalValue::ExternalWeakLinkage &&
|
|
Linkage != GlobalValue::AvailableExternallyLinkage)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
|
|
bool isIRPGOFlagSet(const Module *M) {
|
|
const GlobalVariable *IRInstrVar =
|
|
M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
|
|
if (!IRInstrVar || IRInstrVar->hasLocalLinkage())
|
|
return false;
|
|
|
|
// For CSPGO+LTO, this variable might be marked as non-prevailing and we only
|
|
// have the decl.
|
|
if (IRInstrVar->isDeclaration())
|
|
return true;
|
|
|
|
// Check if the flag is set.
|
|
if (!IRInstrVar->hasInitializer())
|
|
return false;
|
|
|
|
auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
|
|
if (!InitVal)
|
|
return false;
|
|
return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
|
|
}
|
|
|
|
// Check if we can safely rename this Comdat function.
|
|
bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
|
|
if (F.getName().empty())
|
|
return false;
|
|
if (!needsComdatForCounter(F, *(F.getParent())))
|
|
return false;
|
|
// Unsafe to rename the address-taken function (which can be used in
|
|
// function comparison).
|
|
if (CheckAddressTaken && F.hasAddressTaken())
|
|
return false;
|
|
// Only safe to do if this function may be discarded if it is not used
|
|
// in the compilation unit.
|
|
if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
|
|
return false;
|
|
|
|
// For AvailableExternallyLinkage functions.
|
|
if (!F.hasComdat()) {
|
|
assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
|
|
return true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Create the variable for the profile file name.
|
|
void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
|
|
if (InstrProfileOutput.empty())
|
|
return;
|
|
Constant *ProfileNameConst =
|
|
ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
|
|
GlobalVariable *ProfileNameVar = new GlobalVariable(
|
|
M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
|
|
ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
|
|
ProfileNameVar->setVisibility(GlobalValue::HiddenVisibility);
|
|
Triple TT(M.getTargetTriple());
|
|
if (TT.supportsCOMDAT()) {
|
|
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
|
|
ProfileNameVar->setComdat(M.getOrInsertComdat(
|
|
StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
|
|
}
|
|
}
|
|
|
|
Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
|
|
const std::string &TestFilename,
|
|
bool IsCS) {
|
|
auto GetProfileSum = [IsCS](const std::string &Filename,
|
|
CountSumOrPercent &Sum) -> Error {
|
|
// This function is only used from llvm-profdata that doesn't use any kind
|
|
// of VFS. Just create a default RealFileSystem to read profiles.
|
|
auto FS = vfs::getRealFileSystem();
|
|
auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
|
|
if (Error E = ReaderOrErr.takeError()) {
|
|
return E;
|
|
}
|
|
auto Reader = std::move(ReaderOrErr.get());
|
|
Reader->accumulateCounts(Sum, IsCS);
|
|
return Error::success();
|
|
};
|
|
auto Ret = GetProfileSum(BaseFilename, Base);
|
|
if (Ret)
|
|
return Ret;
|
|
Ret = GetProfileSum(TestFilename, Test);
|
|
if (Ret)
|
|
return Ret;
|
|
this->BaseFilename = &BaseFilename;
|
|
this->TestFilename = &TestFilename;
|
|
Valid = true;
|
|
return Error::success();
|
|
}
|
|
|
|
void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
|
|
Mismatch.NumEntries += 1;
|
|
Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
|
|
for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
|
|
if (Test.ValueCounts[I] >= 1.0f)
|
|
Mismatch.ValueCounts[I] +=
|
|
MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
|
|
}
|
|
}
|
|
|
|
void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
|
|
Unique.NumEntries += 1;
|
|
Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
|
|
for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
|
|
if (Test.ValueCounts[I] >= 1.0f)
|
|
Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
|
|
}
|
|
}
|
|
|
|
void OverlapStats::dump(raw_fd_ostream &OS) const {
|
|
if (!Valid)
|
|
return;
|
|
|
|
const char *EntryName =
|
|
(Level == ProgramLevel ? "functions" : "edge counters");
|
|
if (Level == ProgramLevel) {
|
|
OS << "Profile overlap infomation for base_profile: " << *BaseFilename
|
|
<< " and test_profile: " << *TestFilename << "\nProgram level:\n";
|
|
} else {
|
|
OS << "Function level:\n"
|
|
<< " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
|
|
}
|
|
|
|
OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
|
|
if (Mismatch.NumEntries)
|
|
OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
|
|
<< "\n";
|
|
if (Unique.NumEntries)
|
|
OS << " # of " << EntryName
|
|
<< " only in test_profile: " << Unique.NumEntries << "\n";
|
|
|
|
OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
|
|
<< "\n";
|
|
if (Mismatch.NumEntries)
|
|
OS << " Mismatched count percentage (Edge): "
|
|
<< format("%.3f%%", Mismatch.CountSum * 100) << "\n";
|
|
if (Unique.NumEntries)
|
|
OS << " Percentage of Edge profile only in test_profile: "
|
|
<< format("%.3f%%", Unique.CountSum * 100) << "\n";
|
|
OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum)
|
|
<< "\n"
|
|
<< " Edge profile test count sum: " << format("%.0f", Test.CountSum)
|
|
<< "\n";
|
|
|
|
for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
|
|
if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
|
|
continue;
|
|
char ProfileKindName[20] = {0};
|
|
switch (I) {
|
|
case IPVK_IndirectCallTarget:
|
|
strncpy(ProfileKindName, "IndirectCall", 19);
|
|
break;
|
|
case IPVK_MemOPSize:
|
|
strncpy(ProfileKindName, "MemOP", 19);
|
|
break;
|
|
case IPVK_VTableTarget:
|
|
strncpy(ProfileKindName, "VTable", 19);
|
|
break;
|
|
default:
|
|
snprintf(ProfileKindName, 19, "VP[%d]", I);
|
|
break;
|
|
}
|
|
OS << " " << ProfileKindName
|
|
<< " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
|
|
<< "\n";
|
|
if (Mismatch.NumEntries)
|
|
OS << " Mismatched count percentage (" << ProfileKindName
|
|
<< "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
|
|
if (Unique.NumEntries)
|
|
OS << " Percentage of " << ProfileKindName
|
|
<< " profile only in test_profile: "
|
|
<< format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
|
|
OS << " " << ProfileKindName
|
|
<< " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
|
|
<< "\n"
|
|
<< " " << ProfileKindName
|
|
<< " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
|
|
<< "\n";
|
|
}
|
|
}
|
|
|
|
namespace IndexedInstrProf {
|
|
Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) {
|
|
using namespace support;
|
|
static_assert(std::is_standard_layout_v<Header>,
|
|
"Use standard layout for Header for simplicity");
|
|
Header H;
|
|
|
|
H.Magic = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
|
|
// Check the magic number.
|
|
if (H.Magic != IndexedInstrProf::Magic)
|
|
return make_error<InstrProfError>(instrprof_error::bad_magic);
|
|
|
|
// Read the version.
|
|
H.Version = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
|
|
if (H.getIndexedProfileVersion() >
|
|
IndexedInstrProf::ProfVersion::CurrentVersion)
|
|
return make_error<InstrProfError>(instrprof_error::unsupported_version);
|
|
|
|
static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
|
|
"Please update the reader as needed when a new field is added "
|
|
"or when indexed profile version gets bumped.");
|
|
|
|
Buffer += sizeof(uint64_t); // Skip Header.Unused field.
|
|
H.HashType = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
|
|
H.HashOffset = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
|
|
if (H.getIndexedProfileVersion() >= 8)
|
|
H.MemProfOffset =
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
|
|
if (H.getIndexedProfileVersion() >= 9)
|
|
H.BinaryIdOffset =
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
|
|
// Version 11 is handled by this condition.
|
|
if (H.getIndexedProfileVersion() >= 10)
|
|
H.TemporalProfTracesOffset =
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
|
|
if (H.getIndexedProfileVersion() >= 12)
|
|
H.VTableNamesOffset =
|
|
endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
|
|
return H;
|
|
}
|
|
|
|
uint64_t Header::getIndexedProfileVersion() const {
|
|
return GET_VERSION(Version);
|
|
}
|
|
|
|
size_t Header::size() const {
|
|
switch (getIndexedProfileVersion()) {
|
|
// To retain backward compatibility, new fields must be appended to the end
|
|
// of the header, and byte offset of existing fields shouldn't change when
|
|
// indexed profile version gets incremented.
|
|
static_assert(
|
|
IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
|
|
"Please update the size computation below if a new field has "
|
|
"been added to the header; for a version bump without new "
|
|
"fields, add a case statement to fall through to the latest version.");
|
|
case 12ull:
|
|
return 72;
|
|
case 11ull:
|
|
[[fallthrough]];
|
|
case 10ull:
|
|
return 64;
|
|
case 9ull:
|
|
return 56;
|
|
case 8ull:
|
|
return 48;
|
|
default: // Version7 (when the backwards compatible header was introduced).
|
|
return 40;
|
|
}
|
|
}
|
|
|
|
} // namespace IndexedInstrProf
|
|
|
|
} // end namespace llvm
|