mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 18:26:05 +00:00

GCC provides these functions (e.g. __addtf3, etc.) in libgcc on x86_64. Since Clang supports float128, we can also enable the existing code by using float128 for fp_t if either __FLOAT128__ or __SIZEOF_FLOAT128__ is defined instead of only supporting these builtins for platforms with 128-bit IEEE long doubles. This commit defines a new tf_float typedef that matches a float with attribute((mode(TF)) on each given architecture. There are more tests that could be enabled for x86, but to keep the diff smaller, I restricted test changes to ones that started failing as part of this refactoring. This change has been tested on x86 (natively) and aarch64,powerpc64,riscv64 and sparc64 via qemu-user. This supersedes https://reviews.llvm.org/D98261 and should also cover the changes from https://github.com/llvm/llvm-project/pull/68041.
71 lines
2.0 KiB
C
71 lines
2.0 KiB
C
//===-- multc3.c - Implement __multc3 -------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements __multc3 for the compiler_rt library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define QUAD_PRECISION
|
|
#include "fp_lib.h"
|
|
#include "int_lib.h"
|
|
#include "int_math.h"
|
|
|
|
#if defined(CRT_HAS_TF_MODE)
|
|
|
|
// Returns: the product of a + ib and c + id
|
|
|
|
COMPILER_RT_ABI Qcomplex __multc3(fp_t a, fp_t b, fp_t c, fp_t d) {
|
|
fp_t ac = a * c;
|
|
fp_t bd = b * d;
|
|
fp_t ad = a * d;
|
|
fp_t bc = b * c;
|
|
Qcomplex z;
|
|
COMPLEXTF_REAL(z) = ac - bd;
|
|
COMPLEXTF_IMAGINARY(z) = ad + bc;
|
|
if (crt_isnan(COMPLEXTF_REAL(z)) && crt_isnan(COMPLEXTF_IMAGINARY(z))) {
|
|
int recalc = 0;
|
|
if (crt_isinf(a) || crt_isinf(b)) {
|
|
a = crt_copysigntf(crt_isinf(a) ? 1 : 0, a);
|
|
b = crt_copysigntf(crt_isinf(b) ? 1 : 0, b);
|
|
if (crt_isnan(c))
|
|
c = crt_copysigntf(0, c);
|
|
if (crt_isnan(d))
|
|
d = crt_copysigntf(0, d);
|
|
recalc = 1;
|
|
}
|
|
if (crt_isinf(c) || crt_isinf(d)) {
|
|
c = crt_copysigntf(crt_isinf(c) ? 1 : 0, c);
|
|
d = crt_copysigntf(crt_isinf(d) ? 1 : 0, d);
|
|
if (crt_isnan(a))
|
|
a = crt_copysigntf(0, a);
|
|
if (crt_isnan(b))
|
|
b = crt_copysigntf(0, b);
|
|
recalc = 1;
|
|
}
|
|
if (!recalc &&
|
|
(crt_isinf(ac) || crt_isinf(bd) || crt_isinf(ad) || crt_isinf(bc))) {
|
|
if (crt_isnan(a))
|
|
a = crt_copysigntf(0, a);
|
|
if (crt_isnan(b))
|
|
b = crt_copysigntf(0, b);
|
|
if (crt_isnan(c))
|
|
c = crt_copysigntf(0, c);
|
|
if (crt_isnan(d))
|
|
d = crt_copysigntf(0, d);
|
|
recalc = 1;
|
|
}
|
|
if (recalc) {
|
|
COMPLEXTF_REAL(z) = CRT_INFINITY * (a * c - b * d);
|
|
COMPLEXTF_IMAGINARY(z) = CRT_INFINITY * (a * d + b * c);
|
|
}
|
|
}
|
|
return z;
|
|
}
|
|
|
|
#endif
|