Alexander Richardson d2ce3e9621
[builtins] Support building the 128-bit float functions on ld80 platforms (#68132)
GCC provides these functions (e.g. __addtf3, etc.) in libgcc on x86_64.
Since Clang supports float128, we can also enable the existing code by
using float128 for fp_t if either __FLOAT128__ or __SIZEOF_FLOAT128__ is
defined instead of only supporting these builtins for platforms with
128-bit IEEE long doubles.
This commit defines a new tf_float typedef that matches a float with
attribute((mode(TF)) on each given architecture.

There are more tests that could be enabled for x86, but to keep the diff
smaller, I restricted test changes to ones that started failing as part
of this refactoring.

This change has been tested on x86 (natively) and
aarch64,powerpc64,riscv64 and sparc64 via qemu-user.

This supersedes https://reviews.llvm.org/D98261 and should also cover
the changes from https://github.com/llvm/llvm-project/pull/68041.
2023-10-24 17:32:01 +01:00

71 lines
2.0 KiB
C

//===-- multc3.c - Implement __multc3 -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements __multc3 for the compiler_rt library.
//
//===----------------------------------------------------------------------===//
#define QUAD_PRECISION
#include "fp_lib.h"
#include "int_lib.h"
#include "int_math.h"
#if defined(CRT_HAS_TF_MODE)
// Returns: the product of a + ib and c + id
COMPILER_RT_ABI Qcomplex __multc3(fp_t a, fp_t b, fp_t c, fp_t d) {
fp_t ac = a * c;
fp_t bd = b * d;
fp_t ad = a * d;
fp_t bc = b * c;
Qcomplex z;
COMPLEXTF_REAL(z) = ac - bd;
COMPLEXTF_IMAGINARY(z) = ad + bc;
if (crt_isnan(COMPLEXTF_REAL(z)) && crt_isnan(COMPLEXTF_IMAGINARY(z))) {
int recalc = 0;
if (crt_isinf(a) || crt_isinf(b)) {
a = crt_copysigntf(crt_isinf(a) ? 1 : 0, a);
b = crt_copysigntf(crt_isinf(b) ? 1 : 0, b);
if (crt_isnan(c))
c = crt_copysigntf(0, c);
if (crt_isnan(d))
d = crt_copysigntf(0, d);
recalc = 1;
}
if (crt_isinf(c) || crt_isinf(d)) {
c = crt_copysigntf(crt_isinf(c) ? 1 : 0, c);
d = crt_copysigntf(crt_isinf(d) ? 1 : 0, d);
if (crt_isnan(a))
a = crt_copysigntf(0, a);
if (crt_isnan(b))
b = crt_copysigntf(0, b);
recalc = 1;
}
if (!recalc &&
(crt_isinf(ac) || crt_isinf(bd) || crt_isinf(ad) || crt_isinf(bc))) {
if (crt_isnan(a))
a = crt_copysigntf(0, a);
if (crt_isnan(b))
b = crt_copysigntf(0, b);
if (crt_isnan(c))
c = crt_copysigntf(0, c);
if (crt_isnan(d))
d = crt_copysigntf(0, d);
recalc = 1;
}
if (recalc) {
COMPLEXTF_REAL(z) = CRT_INFINITY * (a * c - b * d);
COMPLEXTF_IMAGINARY(z) = CRT_INFINITY * (a * d + b * c);
}
}
return z;
}
#endif