llvm-project/clang/lib/Sema/SemaOpenACC.cpp
erichkeane 6263de90df [OpenACC] Implement 'modifier-list' sema/AST
OpenACC 3.3-NEXT has changed the way tags for copy, copyin, copyout, and
create clauses are specified, and end up adding a few extras, and
permits them as a list.  This patch encodes these as bitmask enum so
they can be stored succinctly, but still diagnose reasonably.
2025-04-04 12:32:33 -07:00

2243 lines
84 KiB
C++

//===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC constructs, and things
/// that are not clause specific.
///
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaOpenACC.h"
#include "clang/AST/DeclOpenACC.h"
#include "clang/AST/StmtOpenACC.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
using namespace clang;
namespace {
bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K,
SourceLocation StartLoc, bool IsStmt) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, both invalid and unimplemented don't really need to
// do anything.
break;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Atomic:
if (!IsStmt)
return S.Diag(StartLoc, diag::err_acc_construct_appertainment) << K;
break;
}
return false;
}
void CollectActiveReductionClauses(
llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses,
ArrayRef<OpenACCClause *> CurClauses) {
for (auto *CurClause : CurClauses) {
if (auto *RedClause = dyn_cast<OpenACCReductionClause>(CurClause);
RedClause && !RedClause->getVarList().empty())
ActiveClauses.push_back(RedClause);
}
}
// Depth needs to be preserved for all associated statements that aren't
// supposed to modify the compute/combined/loop construct information.
bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) {
switch (DK) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
return false;
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Atomic:
return true;
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Routine:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
llvm_unreachable("Doesn't have an associated stmt");
case OpenACCDirectiveKind::Invalid:
llvm_unreachable("Unhandled directive kind?");
}
llvm_unreachable("Unhandled directive kind?");
}
} // namespace
SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {}
SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII(
SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses)
: SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo),
DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel),
OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc),
OldLoopVectorClauseLoc(S.LoopVectorClauseLoc),
OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo),
ActiveReductionClauses(S.ActiveReductionClauses),
LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DirKind)) {
// Compute constructs end up taking their 'loop'.
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// Implement the 'unless within a nested compute region' part.
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
SemaRef.LoopWithoutSeqInfo = {};
} else if (DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(), DirKind};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
} else if (DirKind == OpenACCDirectiveKind::Loop) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (SemaRef.getActiveComputeConstructInfo().Kind ==
OpenACCDirectiveKind::Kernels &&
UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(),
OpenACCDirectiveKind::Kernels};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
}
}
void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// Reset this checking for loops that aren't covered in a RAII object.
SemaRef.LoopInfo.CurLevelHasLoopAlready = false;
SemaRef.CollapseInfo.CollapseDepthSatisfied = true;
SemaRef.TileInfo.TileDepthSatisfied = true;
// We make sure to take an optional list of uninstantiated clauses, so that
// we can check to make sure we don't 'double diagnose' in the event that
// the value of 'N' was not dependent in a template. We also ensure during
// Sema that there is only 1 collapse on each construct, so we can count on
// the fact that if both find a 'collapse', that they are the same one.
auto *CollapseClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCCollapseClause>);
auto *UnInstCollapseClauseItr =
llvm::find_if(UnInstClauses, llvm::IsaPred<OpenACCCollapseClause>);
if (Clauses.end() == CollapseClauseItr)
return;
OpenACCCollapseClause *CollapseClause =
cast<OpenACCCollapseClause>(*CollapseClauseItr);
SemaRef.CollapseInfo.ActiveCollapse = CollapseClause;
Expr *LoopCount = CollapseClause->getLoopCount();
// If the loop count is still instantiation dependent, setting the depth
// counter isn't necessary, so return here.
if (!LoopCount || LoopCount->isInstantiationDependent())
return;
// Suppress diagnostics if we've done a 'transform' where the previous version
// wasn't dependent, meaning we already diagnosed it.
if (UnInstCollapseClauseItr != UnInstClauses.end() &&
!cast<OpenACCCollapseClause>(*UnInstCollapseClauseItr)
->getLoopCount()
->isInstantiationDependent())
return;
SemaRef.CollapseInfo.CollapseDepthSatisfied = false;
SemaRef.CollapseInfo.CurCollapseCount =
cast<ConstantExpr>(LoopCount)->getResultAsAPSInt();
SemaRef.CollapseInfo.DirectiveKind = DirKind;
}
void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// We don't diagnose if this is during instantiation, since the only thing we
// care about is the number of arguments, which we can figure out without
// instantiation, so we don't want to double-diagnose.
if (UnInstClauses.size() > 0)
return;
auto *TileClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCTileClause>);
if (Clauses.end() == TileClauseItr)
return;
OpenACCTileClause *TileClause = cast<OpenACCTileClause>(*TileClauseItr);
SemaRef.TileInfo.ActiveTile = TileClause;
SemaRef.TileInfo.TileDepthSatisfied = false;
SemaRef.TileInfo.CurTileCount =
static_cast<unsigned>(TileClause->getSizeExprs().size());
SemaRef.TileInfo.DirectiveKind = DirKind;
}
SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() {
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels ||
DirKind == OpenACCDirectiveKind::Loop ||
DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo;
SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel;
SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc;
SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc;
SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo;
SemaRef.ActiveReductionClauses.swap(ActiveReductionClauses);
} else if (DirKind == OpenACCDirectiveKind::Data ||
DirKind == OpenACCDirectiveKind::HostData) {
// Intentionally doesn't reset the Loop, Compute Construct, or reduction
// effects.
}
}
void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K,
SourceLocation DirLoc) {
// Start an evaluation context to parse the clause arguments on.
SemaRef.PushExpressionEvaluationContext(
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
// There is nothing do do here as all we have at this point is the name of the
// construct itself.
}
ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK,
OpenACCClauseKind CK, SourceLocation Loc,
Expr *IntExpr) {
assert(((DK != OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK != OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid)) &&
"Only one of directive or clause kind should be provided");
class IntExprConverter : public Sema::ICEConvertDiagnoser {
OpenACCDirectiveKind DirectiveKind;
OpenACCClauseKind ClauseKind;
Expr *IntExpr;
// gets the index into the diagnostics so we can use this for clauses,
// directives, and sub array.s
unsigned getDiagKind() const {
if (ClauseKind != OpenACCClauseKind::Invalid)
return 0;
if (DirectiveKind != OpenACCDirectiveKind::Invalid)
return 1;
return 2;
}
public:
IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *IntExpr)
: ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false,
/*Suppress=*/false,
/*SuppressConversion=*/true),
DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {}
bool match(QualType T) override {
// OpenACC spec just calls this 'integer expression' as having an
// 'integer type', so fall back on C99's 'integer type'.
return T->isIntegerType();
}
SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_requires_integer)
<< getDiagKind() << ClauseKind << DirectiveKind << T;
}
SemaBase::SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_incomplete_class_type)
<< T << IntExpr->getSourceRange();
}
SemaBase::SemaDiagnosticBuilder
diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
return S.Diag(Loc, diag::err_acc_int_expr_explicit_conversion)
<< T << ConvTy;
}
SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S,
CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_multiple_conversions) << T;
}
SemaBase::SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseConversion(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} IntExprDiagnoser(DK, CK, IntExpr);
if (!IntExpr)
return ExprError();
ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion(
Loc, IntExpr, IntExprDiagnoser);
if (IntExprResult.isInvalid())
return ExprError();
IntExpr = IntExprResult.get();
if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType())
return ExprError();
// TODO OpenACC: Do we want to perform usual unary conversions here? When
// doing codegen we might find that is necessary, but skip it for now.
return IntExpr;
}
bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind,
Expr *VarExpr) {
// We already know that VarExpr is a proper reference to a variable, so we
// should be able to just take the type of the expression to get the type of
// the referenced variable.
// We've already seen an error, don't diagnose anything else.
if (!VarExpr || VarExpr->containsErrors())
return false;
if (isa<ArraySectionExpr>(VarExpr->IgnoreParenImpCasts()) ||
VarExpr->hasPlaceholderType(BuiltinType::ArraySection)) {
Diag(VarExpr->getExprLoc(), diag::err_array_section_use) << /*OpenACC=*/0;
Diag(VarExpr->getExprLoc(), diag::note_acc_expected_pointer_var);
return true;
}
QualType Ty = VarExpr->getType();
Ty = Ty.getNonReferenceType().getUnqualifiedType();
// Nothing we can do if this is a dependent type.
if (Ty->isDependentType())
return false;
if (!Ty->isPointerType())
return Diag(VarExpr->getExprLoc(), diag::err_acc_var_not_pointer_type)
<< ClauseKind << Ty;
return false;
}
ExprResult SemaOpenACC::ActOnCacheVar(Expr *VarExpr) {
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
if (!isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_cache);
return ExprError();
}
// It isn't clear what 'simple array element or simple subarray' means, so we
// will just allow arbitrary depth.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return VarExpr;
}
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl())) {
return VarExpr;
}
}
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(CurVarExpr))
return VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_cache);
return ExprError();
}
ExprResult SemaOpenACC::ActOnVar(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *VarExpr) {
// This has unique enough restrictions that we should split it to a separate
// function.
if (DK == OpenACCDirectiveKind::Cache)
return ActOnCacheVar(VarExpr);
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// 'use_device' doesn't allow array subscript or array sections.
// OpenACC3.3 2.8:
// A 'var' in a 'use_device' clause must be the name of a variable or array.
// OpenACC3.3 2.13:
// A 'var' in a 'declare' directive must be a variable or array name.
if ((CK == OpenACCClauseKind::UseDevice ||
DK == OpenACCDirectiveKind::Declare) &&
isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< (DK == OpenACCDirectiveKind::Declare);
return ExprError();
}
// Sub-arrays/subscript-exprs are fine as long as the base is a
// VarExpr/MemberExpr. So strip all of those off.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return VarExpr;
}
// If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a
// reduction clause must be a scalar variable name, an aggregate variable
// name, an array element, or a subarray.
// If CK is a 'use_device', this also isn't valid, as it isn't the name of a
// variable or array, if not done as a member expr.
// A MemberExpr that references a Field is valid for other clauses.
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl())) {
if (DK == OpenACCDirectiveKind::Declare ||
CK == OpenACCClauseKind::Reduction ||
CK == OpenACCClauseKind::UseDevice) {
// We can allow 'member expr' if the 'this' is implicit in the case of
// declare, reduction, and use_device.
const auto *This = dyn_cast<CXXThisExpr>(ME->getBase());
if (This && This->isImplicit())
return VarExpr;
} else {
return VarExpr;
}
}
}
// Referring to 'this' is ok for the most part, but for 'use_device'/'declare'
// doesn't fall into 'variable or array name'
if (CK != OpenACCClauseKind::UseDevice &&
DK != OpenACCDirectiveKind::Declare && isa<CXXThisExpr>(CurVarExpr))
return VarExpr;
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr>(CurVarExpr) ||
(CK != OpenACCClauseKind::Reduction &&
isa<CXXDependentScopeMemberExpr>(CurVarExpr)))
return VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
if (DK == OpenACCDirectiveKind::Declare)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< /*declare*/ 1;
else if (CK == OpenACCClauseKind::UseDevice)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< /*use_device*/ 0;
else
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref)
<< (CK != OpenACCClauseKind::Reduction);
return ExprError();
}
ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLoc,
Expr *Length,
SourceLocation RBLoc) {
ASTContext &Context = getASTContext();
// Handle placeholders.
if (Base->hasPlaceholderType() &&
!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(LowerBound);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
LowerBound = Result.get();
}
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Length);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Length = Result.get();
}
// Check the 'base' value, it must be an array or pointer type, and not to/of
// a function type.
QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base);
QualType ResultTy;
if (!Base->isTypeDependent()) {
if (OriginalBaseTy->isAnyPointerType()) {
ResultTy = OriginalBaseTy->getPointeeType();
} else if (OriginalBaseTy->isArrayType()) {
ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType();
} else {
return ExprError(
Diag(Base->getExprLoc(), diag::err_acc_typecheck_subarray_value)
<< Base->getSourceRange());
}
if (ResultTy->isFunctionType()) {
Diag(Base->getExprLoc(), diag::err_acc_subarray_function_type)
<< ResultTy << Base->getSourceRange();
return ExprError();
}
if (SemaRef.RequireCompleteType(Base->getExprLoc(), ResultTy,
diag::err_acc_subarray_incomplete_type,
Base))
return ExprError();
if (!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
}
auto GetRecovery = [&](Expr *E, QualType Ty) {
ExprResult Recovery =
SemaRef.CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), E, Ty);
return Recovery.isUsable() ? Recovery.get() : nullptr;
};
// Ensure both of the expressions are int-exprs.
if (LowerBound && !LowerBound->isTypeDependent()) {
ExprResult LBRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
LowerBound->getExprLoc(), LowerBound);
if (LBRes.isUsable())
LBRes = SemaRef.DefaultLvalueConversion(LBRes.get());
LowerBound =
LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy);
}
if (Length && !Length->isTypeDependent()) {
ExprResult LenRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
Length->getExprLoc(), Length);
if (LenRes.isUsable())
LenRes = SemaRef.DefaultLvalueConversion(LenRes.get());
Length =
LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy);
}
// Length is required if the base type is not an array of known bounds.
if (!Length && (OriginalBaseTy.isNull() ||
(!OriginalBaseTy->isDependentType() &&
!OriginalBaseTy->isConstantArrayType() &&
!OriginalBaseTy->isDependentSizedArrayType()))) {
bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType();
Diag(ColonLoc, diag::err_acc_subarray_no_length) << IsArray;
// Fill in a dummy 'length' so that when we instantiate this we don't
// double-diagnose here.
ExprResult Recovery = SemaRef.CreateRecoveryExpr(
ColonLoc, SourceLocation(), ArrayRef<Expr *>(), Context.IntTy);
Length = Recovery.isUsable() ? Recovery.get() : nullptr;
}
// Check the values of each of the arguments, they cannot be negative(we
// assume), and if the array bound is known, must be within range. As we do
// so, do our best to continue with evaluation, we can set the
// value/expression to nullptr/nullopt if they are invalid, and treat them as
// not present for the rest of evaluation.
// We don't have to check for dependence, because the dependent size is
// represented as a different AST node.
std::optional<llvm::APSInt> BaseSize;
if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) {
const auto *ArrayTy = Context.getAsConstantArrayType(OriginalBaseTy);
BaseSize = ArrayTy->getSize();
}
auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> {
if (!E || E->isInstantiationDependent())
return std::nullopt;
Expr::EvalResult Res;
if (!E->EvaluateAsInt(Res, Context))
return std::nullopt;
return Res.Val.getInt();
};
std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound);
std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length);
// Check lower bound for negative or out of range.
if (LowerBoundValue.has_value()) {
if (LowerBoundValue->isNegative()) {
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_negative)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LowerBoundValue, *BaseSize) >= 0) {
// Lower bound (start index) must be less than the size of the array.
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
}
}
// Check length for negative or out of range.
if (LengthValue.has_value()) {
if (LengthValue->isNegative()) {
Diag(Length->getExprLoc(), diag::err_acc_subarray_negative)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LengthValue, *BaseSize) > 0) {
// Length must be lessthan or EQUAL to the size of the array.
Diag(Length->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
}
// Adding two APSInts requires matching sign, so extract that here.
auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt {
if (LHS.isSigned() == RHS.isSigned())
return LHS + RHS;
unsigned Width = std::max(LHS.getBitWidth(), RHS.getBitWidth()) + 1;
return llvm::APSInt(LHS.sext(Width) + RHS.sext(Width), /*Signed=*/true);
};
// If we know all 3 values, we can diagnose that the total value would be out
// of range.
if (BaseSize.has_value() && LowerBoundValue.has_value() &&
LengthValue.has_value() &&
llvm::APSInt::compareValues(AddAPSInt(*LowerBoundValue, *LengthValue),
*BaseSize) > 0) {
Diag(Base->getExprLoc(),
diag::err_acc_subarray_base_plus_length_out_of_range)
<< toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
// If any part of the expression is dependent, return a dependent sub-array.
QualType ArrayExprTy = Context.ArraySectionTy;
if (Base->isTypeDependent() ||
(LowerBound && LowerBound->isInstantiationDependent()) ||
(Length && Length->isInstantiationDependent()))
ArrayExprTy = Context.DependentTy;
return new (Context)
ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue,
OK_Ordinary, ColonLoc, RBLoc);
}
void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc,
ForStmtBeginChecker &C) {
assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?");
// Enable the while/do-while checking.
LoopInfo.TopLevelLoopSeen = true;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
C.check();
// OpenACC 3.3 2.9.1:
// Each associated loop, except the innermost, must contain exactly one loop
// or loop nest.
// This checks for more than 1 loop at the current level, the
// 'depth'-satisifed checking manages the 'not zero' case.
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "No collapse object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
} else {
--(*CollapseInfo.CurCollapseCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*CollapseInfo.CurCollapseCount == 0)
CollapseInfo.CollapseDepthSatisfied = true;
}
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
C.check();
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "No tile object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
} else {
TileInfo.CurTileCount = *TileInfo.CurTileCount - 1;
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*TileInfo.CurTileCount == 0)
TileInfo.TileDepthSatisfied = true;
}
}
// Set this to 'false' for the body of this loop, so that the next level
// checks independently.
LoopInfo.CurLevelHasLoopAlready = false;
}
namespace {
bool isValidLoopVariableType(QualType LoopVarTy) {
// Just skip if it is dependent, it could be any of the below.
if (LoopVarTy->isDependentType())
return true;
// The loop variable must be of integer,
if (LoopVarTy->isIntegerType())
return true;
// C/C++ pointer,
if (LoopVarTy->isPointerType())
return true;
// or C++ random-access iterator type.
if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) {
// Note: Only do CXXRecordDecl because RecordDecl can't be a random access
// iterator type!
// We could either do a lot of work to see if this matches
// random-access-iterator, but it seems that just checking that the
// 'iterator_category' typedef is more than sufficient. If programmers are
// willing to lie about this, we can let them.
for (const auto *TD :
llvm::make_filter_range(RD->decls(), llvm::IsaPred<TypedefNameDecl>)) {
const auto *TDND = cast<TypedefNameDecl>(TD)->getCanonicalDecl();
if (TDND->getName() != "iterator_category")
continue;
// If there is no type for this decl, return false.
if (TDND->getUnderlyingType().isNull())
return false;
const CXXRecordDecl *ItrCategoryDecl =
TDND->getUnderlyingType()->getAsCXXRecordDecl();
// If the category isn't a record decl, it isn't the tag type.
if (!ItrCategoryDecl)
return false;
auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) {
if (RD->getName() != "random_access_iterator_tag")
return false;
// Checks just for std::random_access_iterator_tag.
return RD->getEnclosingNamespaceContext()->isStdNamespace();
};
if (IsRandomAccessIteratorTag(ItrCategoryDecl))
return true;
// We can also support types inherited from the
// random_access_iterator_tag.
for (CXXBaseSpecifier BS : ItrCategoryDecl->bases()) {
if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl()))
return true;
}
return false;
}
}
return false;
}
} // namespace
void SemaOpenACC::ForStmtBeginChecker::check() {
if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid)
return;
if (AlreadyChecked)
return;
AlreadyChecked = true;
// OpenACC3.3 2.1:
// A loop associated with a loop construct that does not have a seq clause
// must be written to meet all the following conditions:
// - The loop variable must be of integer, C/C++ pointer, or C++ random-access
// iterator type.
// - The loop variable must monotonically increase or decrease in the
// direction of its termination condition.
// - The loop trip count must be computable in constant time when entering the
// loop construct.
//
// For a C++ range-based for loop, the loop variable
// identified by the above conditions is the internal iterator, such as a
// pointer, that the compiler generates to iterate the range. it is not the
// variable declared by the for loop.
if (IsRangeFor) {
// If the range-for is being instantiated and didn't change, don't
// re-diagnose.
if (!RangeFor.has_value())
return;
// For a range-for, we can assume everything is 'corect' other than the type
// of the iterator, so check that.
const DeclStmt *RangeStmt = (*RangeFor)->getBeginStmt();
// In some dependent contexts, the autogenerated range statement doesn't get
// included until instantiation, so skip for now.
if (!RangeStmt)
return;
const ValueDecl *InitVar = cast<ValueDecl>(RangeStmt->getSingleDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
if (!isValidLoopVariableType(VarType)) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return;
}
// Else we are in normal 'ForStmt', so we can diagnose everything.
// We only have to check cond/inc if they have changed, but 'init' needs to
// just suppress its diagnostics if it hasn't changed.
const ValueDecl *InitVar = checkInit();
if (Cond.has_value())
checkCond();
if (Inc.has_value())
checkInc(InitVar);
}
const ValueDecl *SemaOpenACC::ForStmtBeginChecker::checkInit() {
if (!Init) {
if (InitChanged) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
}
auto DiagLoopVar = [&]() {
if (InitChanged) {
SemaRef.Diag(Init->getBeginLoc(), diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(Init))
Init = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(Init))
Init = E->IgnoreParenImpCasts();
const ValueDecl *InitVar = nullptr;
if (const auto *BO = dyn_cast<BinaryOperator>(Init)) {
// Allow assignment operator here.
if (!BO->isAssignmentOp())
return DiagLoopVar();
const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS))
InitVar = DRE->getDecl();
} else if (const auto *DS = dyn_cast<DeclStmt>(Init)) {
// Allow T t = <whatever>
if (!DS->isSingleDecl())
return DiagLoopVar();
InitVar = dyn_cast<ValueDecl>(DS->getSingleDecl());
// Ensure we have an initializer, unless this is a record/dependent type.
if (InitVar) {
if (!isa<VarDecl>(InitVar))
return DiagLoopVar();
if (!InitVar->getType()->isRecordType() &&
!InitVar->getType()->isDependentType() &&
!cast<VarDecl>(InitVar)->hasInit())
return DiagLoopVar();
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(Init)) {
// Allow assignment operator call.
if (CE->getOperator() != OO_Equal)
return DiagLoopVar();
const Expr *LHS = CE->getArg(0)->IgnoreParenImpCasts();
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
InitVar = DRE->getDecl();
} else if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
InitVar = ME->getMemberDecl();
}
}
if (!InitVar)
return DiagLoopVar();
InitVar = cast<ValueDecl>(InitVar->getCanonicalDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
// Since we have one, all we need to do is ensure it is the right type.
if (!isValidLoopVariableType(VarType)) {
if (InitChanged) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return nullptr;
}
return InitVar;
}
void SemaOpenACC::ForStmtBeginChecker::checkCond() {
if (!*Cond) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_terminating_condition)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
// Nothing else to do here. we could probably do some additional work to look
// into the termination condition, but that error-prone. For now, we don't
// implement anything other than 'there is a termination condition', and if
// codegen/MLIR comes up with some necessary restrictions, we can implement
// them here.
}
void SemaOpenACC::ForStmtBeginChecker::checkInc(const ValueDecl *Init) {
if (!*Inc) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
}
auto DiagIncVar = [this] {
SemaRef.Diag((*Inc)->getBeginLoc(), diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc, diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(*Inc))
Inc = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(*Inc))
Inc = E->IgnoreParenImpCasts();
auto getDeclFromExpr = [](const Expr *E) -> const ValueDecl * {
E = E->IgnoreParenImpCasts();
if (const auto *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
E = E->IgnoreParenImpCasts();
if (!E)
return nullptr;
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<ValueDecl>(DRE->getDecl());
if (const auto *ME = dyn_cast<MemberExpr>(E))
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return ME->getMemberDecl();
return nullptr;
};
const ValueDecl *IncVar = nullptr;
// Here we enforce the monotonically increase/decrease:
if (const auto *UO = dyn_cast<UnaryOperator>(*Inc)) {
// Allow increment/decrement ops.
if (!UO->isIncrementDecrementOp())
return DiagIncVar();
IncVar = getDeclFromExpr(UO->getSubExpr());
} else if (const auto *BO = dyn_cast<BinaryOperator>(*Inc)) {
switch (BO->getOpcode()) {
default:
return DiagIncVar();
case BO_AddAssign:
case BO_SubAssign:
case BO_MulAssign:
case BO_DivAssign:
case BO_Assign:
// += -= *= /= should all be fine here, this should be all of the
// 'monotonical' compound-assign ops.
// Assignment we just give up on, we could do better, and ensure that it
// is a binary/operator expr doing more work, but that seems like a lot
// of work for an error prone check.
break;
}
IncVar = getDeclFromExpr(BO->getLHS());
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(*Inc)) {
switch (CE->getOperator()) {
default:
return DiagIncVar();
case OO_PlusPlus:
case OO_MinusMinus:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_SlashEqual:
case OO_Equal:
// += -= *= /= should all be fine here, this should be all of the
// 'monotonical' compound-assign ops.
// Assignment we just give up on, we could do better, and ensure that it
// is a binary/operator expr doing more work, but that seems like a lot
// of work for an error prone check.
break;
}
IncVar = getDeclFromExpr(CE->getArg(0));
} else if (const auto *ME = dyn_cast<CXXMemberCallExpr>(*Inc)) {
IncVar = getDeclFromExpr(ME->getImplicitObjectArgument());
// We can't really do much for member expressions, other than hope they are
// doing the right thing, so give up here.
}
if (!IncVar)
return DiagIncVar();
// InitVar shouldn't be null unless there was an error, so don't diagnose if
// that is the case. Else we should ensure that it refers to the loop
// value.
if (Init && IncVar->getCanonicalDecl() != Init->getCanonicalDecl())
return DiagIncVar();
return;
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst,
const Stmt *First, const Stmt *OldSecond,
const Stmt *Second, const Stmt *OldThird,
const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
std::optional<const Stmt *> S;
if (OldSecond == Second)
S = std::nullopt;
else
S = Second;
std::optional<const Stmt *> T;
if (OldThird == Third)
S = std::nullopt;
else
S = Third;
bool InitChanged = false;
if (OldFirst != First) {
InitChanged = true;
// VarDecls are always rebuild because they are dependent, so we can do a
// little work to suppress some of the double checking based on whether the
// type is instantiation dependent.
QualType OldVDTy;
QualType NewVDTy;
if (const auto *DS = dyn_cast<DeclStmt>(OldFirst))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
OldVDTy = VD->getType();
if (const auto *DS = dyn_cast<DeclStmt>(First))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
NewVDTy = VD->getType();
if (!OldVDTy.isNull() && !NewVDTy.isNull())
InitChanged = OldVDTy->isInstantiationDependentType() !=
NewVDTy->isInstantiationDependentType();
}
ForStmtBeginChecker FSBC{*this, ForLoc, First, InitChanged, S, T};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First,
const Stmt *Second, const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, First, /*InitChanged=*/true,
Second, Third};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *OldRangeFor,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC)
return;
std::optional<const CXXForRangeStmt *> RF;
if (OldRangeFor == RangeFor)
RF = std::nullopt;
else
RF = cast<CXXForRangeStmt>(RangeFor);
ForStmtBeginChecker FSBC{*this, ForLoc, RF};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, cast<CXXForRangeStmt>(RangeFor)};
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
namespace {
SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) {
// We should diagnose on anything except `CompoundStmt`, `NullStmt`,
// `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and
// `DoStmt`, as those are caught as a violation elsewhere.
// For `CompoundStmt` we need to search inside of it.
if (!CurStmt ||
isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>(
CurStmt))
return SourceLocation{};
// Any other construct is an error anyway, so it has already been diagnosed.
if (isa<OpenACCConstructStmt>(CurStmt))
return SourceLocation{};
// Search inside the compound statement, this allows for arbitrary nesting
// of compound statements, as long as there isn't any code inside.
if (const auto *CS = dyn_cast<CompoundStmt>(CurStmt)) {
for (const auto *ChildStmt : CS->children()) {
SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(ChildStmt);
if (ChildStmtLoc.isValid())
return ChildStmtLoc;
}
// Empty/not invalid compound statements are legal.
return SourceLocation{};
}
return CurStmt->getBeginLoc();
}
} // namespace
void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) {
if (!getLangOpts().OpenACC)
return;
// Set this to 'true' so if we find another one at this level we can diagnose.
LoopInfo.CurLevelHasLoopAlready = true;
if (!Body.isUsable())
return;
bool IsActiveCollapse = CollapseInfo.CurCollapseCount &&
*CollapseInfo.CurCollapseCount > 0 &&
!CollapseInfo.ActiveCollapse->hasForce();
bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0;
if (IsActiveCollapse || IsActiveTile) {
SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(Body.get());
if (OtherStmtLoc.isValid() && IsActiveCollapse) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind;
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (OtherStmtLoc.isValid() && IsActiveTile) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Tile << TileInfo.DirectiveKind;
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
}
}
namespace {
// Get a list of clause Kinds for diagnosing a list, joined by a commas and an
// 'or'.
std::string GetListOfClauses(llvm::ArrayRef<OpenACCClauseKind> Clauses) {
assert(!Clauses.empty() && "empty clause list not supported");
std::string Output;
llvm::raw_string_ostream OS{Output};
if (Clauses.size() == 1) {
OS << '\'' << Clauses[0] << '\'';
return Output;
}
llvm::ArrayRef<OpenACCClauseKind> AllButLast{Clauses.begin(),
Clauses.end() - 1};
llvm::interleave(
AllButLast, [&](OpenACCClauseKind K) { OS << '\'' << K << '\''; },
[&] { OS << ", "; });
OS << " or \'" << Clauses.back() << '\'';
return Output;
}
// Helper that should mirror ActOnRoutineName to get the FunctionDecl out for
// magic-static checking.
FunctionDecl *getFunctionFromRoutineName(Expr *RoutineName) {
if (!RoutineName)
return nullptr;
RoutineName = RoutineName->IgnoreParenImpCasts();
if (isa<RecoveryExpr>(RoutineName)) {
// There is nothing we can do here, this isn't a function we can count on.
return nullptr;
} else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(
RoutineName)) {
// The lookup is dependent, so we'll have to figure this out later.
return nullptr;
} else if (auto *DRE = dyn_cast<DeclRefExpr>(RoutineName)) {
ValueDecl *VD = DRE->getDecl();
if (auto *FD = dyn_cast<FunctionDecl>(VD))
return FD;
// Allow lambdas.
if (auto *VarD = dyn_cast<VarDecl>(VD)) {
QualType VarDTy = VarD->getType();
if (!VarDTy.isNull()) {
if (auto *RD = VarDTy->getAsCXXRecordDecl()) {
if (RD->isGenericLambda())
return nullptr;
if (RD->isLambda())
return RD->getLambdaCallOperator();
} else if (VarDTy->isDependentType()) {
// We don't really know what this is going to be.
return nullptr;
}
}
return nullptr;
} else if (isa<OverloadExpr>(RoutineName)) {
return nullptr;
}
}
return nullptr;
}
} // namespace
ExprResult SemaOpenACC::ActOnRoutineName(Expr *RoutineName) {
assert(RoutineName && "Routine name cannot be null here");
RoutineName = RoutineName->IgnoreParenImpCasts();
if (isa<RecoveryExpr>(RoutineName)) {
// This has already been diagnosed, so we can skip it.
return ExprError();
} else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(
RoutineName)) {
// These are dependent and we can't really check them, so delay until
// instantiation.
return RoutineName;
} else if (const auto *DRE = dyn_cast<DeclRefExpr>(RoutineName)) {
const ValueDecl *VD = DRE->getDecl();
if (isa<FunctionDecl>(VD))
return RoutineName;
// Allow lambdas.
if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
QualType VarDTy = VarD->getType();
if (!VarDTy.isNull()) {
if (const auto *RD = VarDTy->getAsCXXRecordDecl()) {
if (RD->isGenericLambda()) {
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_overload_set)
<< RoutineName;
return ExprError();
}
if (RD->isLambda())
return RoutineName;
} else if (VarDTy->isDependentType()) {
// If this is a dependent variable, it might be a lambda. So we just
// accept this and catch it next time.
return RoutineName;
}
}
}
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_not_func)
<< RoutineName;
return ExprError();
} else if (isa<OverloadExpr>(RoutineName)) {
// This happens in function templates, even when the template arguments are
// fully specified. We could possibly do some sort of matching to make sure
// that this is looked up/deduced, but GCC does not do this, so there
// doesn't seem to be a good reason for us to do it either.
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_overload_set)
<< RoutineName;
return ExprError();
}
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_not_func)
<< RoutineName;
return ExprError();
}
void SemaOpenACC::ActOnVariableDeclarator(VarDecl *VD) {
if (!VD->isStaticLocal() || !getLangOpts().OpenACC)
return;
// This cast should be safe, since a static-local can only happen in a
// function declaration.
auto *ContextDecl = cast<FunctionDecl>(getCurContext());
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
for (const auto *A : ContextDecl->attrs()) {
if (isa<OpenACCRoutineDeclAttr, OpenACCRoutineAnnotAttr>(A)) {
Diag(VD->getBeginLoc(), diag::err_acc_magic_static_in_routine);
Diag(A->getLocation(), diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return;
}
}
MagicStaticLocs.insert({ContextDecl->getCanonicalDecl(), VD->getBeginLoc()});
}
void SemaOpenACC::CheckLastRoutineDeclNameConflict(const NamedDecl *ND) {
// OpenACC 3.3 A.3.4
// When a procedure with that name is in scope and it is not the same
// procedure as the immediately following procedure declaration or
// definition, the resolution of the name can be confusing. Implementations
// should then issue a compile-time warning diagnostic even though the
// application is conforming.
// If we haven't created one, also can't diagnose.
if (!LastRoutineDecl)
return;
// If the currently created function doesn't have a name, we can't diagnose on
// a match.
if (!ND->getDeclName().isIdentifier())
return;
// If the two are in different decl contexts, it doesn't make sense to
// diagnose.
if (LastRoutineDecl->getDeclContext() != ND->getLexicalDeclContext())
return;
// If we don't have a referenced thing yet, we can't diagnose.
FunctionDecl *RoutineTarget =
getFunctionFromRoutineName(LastRoutineDecl->getFunctionReference());
if (!RoutineTarget)
return;
// If the Routine target doesn't have a name, we can't diagnose.
if (!RoutineTarget->getDeclName().isIdentifier())
return;
// Of course don't diagnose if the names don't match.
if (ND->getName() != RoutineTarget->getName())
return;
long NDLine = SemaRef.SourceMgr.getSpellingLineNumber(ND->getBeginLoc());
long LastLine =
SemaRef.SourceMgr.getSpellingLineNumber(LastRoutineDecl->getBeginLoc());
// Do some line-number math to make sure they are within a line of eachother.
// Comments or newlines can be inserted to clarify intent.
if (NDLine - LastLine > 1)
return;
// Don't warn if it actually DOES apply to this function via redecls.
if (ND->getCanonicalDecl() == RoutineTarget->getCanonicalDecl())
return;
Diag(LastRoutineDecl->getFunctionReference()->getBeginLoc(),
diag::warn_acc_confusing_routine_name);
Diag(RoutineTarget->getBeginLoc(), diag::note_previous_decl) << ND;
}
void SemaOpenACC::ActOnVariableInit(VarDecl *VD, QualType InitType) {
if (!VD || !getLangOpts().OpenACC || InitType.isNull())
return;
// To avoid double-diagnostic, just diagnose this during instantiation. We'll
// get 1 warning per instantiation, but this permits us to be more sensible
// for cases where the lookup is confusing.
if (VD->getLexicalDeclContext()->isDependentContext())
return;
const auto *RD = InitType->getAsCXXRecordDecl();
// If this isn't a lambda, no sense in diagnosing.
if (!RD || !RD->isLambda())
return;
CheckLastRoutineDeclNameConflict(VD);
}
void SemaOpenACC::ActOnFunctionDeclarator(FunctionDecl *FD) {
if (!FD || !getLangOpts().OpenACC)
return;
CheckLastRoutineDeclNameConflict(FD);
}
bool SemaOpenACC::ActOnStartStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
// Declaration directives an appear in a statement location, so call into that
// function here.
if (K == OpenACCDirectiveKind::Declare || K == OpenACCDirectiveKind::Routine)
return ActOnStartDeclDirective(K, StartLoc, Clauses);
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
// OpenACC 3.3 2.9.1:
// Intervening code must not contain other OpenACC directives or calls to API
// routines.
//
// ALL constructs are ill-formed if there is an active 'collapse'
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse << K;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile << K;
assert(TileInfo.ActiveTile && "Tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
// OpenACC3.3 2.6.5: At least one copy, copyin, copyout, create, no_create,
// present, deviceptr, attach, or default clause must appear on a 'data'
// construct.
if (K == OpenACCDirectiveKind::Data &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyClause, OpenACCCopyInClause,
OpenACCCopyOutClause, OpenACCCreateClause,
OpenACCNoCreateClause, OpenACCPresentClause,
OpenACCDevicePtrClause, OpenACCAttachClause,
OpenACCDefaultClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses(
{OpenACCClauseKind::Copy, OpenACCClauseKind::CopyIn,
OpenACCClauseKind::CopyOut, OpenACCClauseKind::Create,
OpenACCClauseKind::NoCreate, OpenACCClauseKind::Present,
OpenACCClauseKind::DevicePtr, OpenACCClauseKind::Attach,
OpenACCClauseKind::Default});
// OpenACC3.3 2.6.6: At least one copyin, create, or attach clause must appear
// on an enter data directive.
if (K == OpenACCDirectiveKind::EnterData &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyInClause, OpenACCCreateClause,
OpenACCAttachClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({
OpenACCClauseKind::CopyIn,
OpenACCClauseKind::Create,
OpenACCClauseKind::Attach,
});
// OpenACC3.3 2.6.6: At least one copyout, delete, or detach clause must
// appear on an exit data directive.
if (K == OpenACCDirectiveKind::ExitData &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCCopyOutClause, OpenACCDeleteClause,
OpenACCDetachClause>) == Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({
OpenACCClauseKind::CopyOut,
OpenACCClauseKind::Delete,
OpenACCClauseKind::Detach,
});
// OpenACC3.3 2.8: At least 'one use_device' clause must appear.
if (K == OpenACCDirectiveKind::HostData &&
llvm::find_if(Clauses, llvm::IsaPred<OpenACCUseDeviceClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K << GetListOfClauses({OpenACCClauseKind::UseDevice});
// OpenACC3.3 2.14.3: At least one default_async, device_num, or device_type
// clause must appear.
if (K == OpenACCDirectiveKind::Set &&
llvm::find_if(
Clauses,
llvm::IsaPred<OpenACCDefaultAsyncClause, OpenACCDeviceNumClause,
OpenACCDeviceTypeClause, OpenACCIfClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({OpenACCClauseKind::DefaultAsync,
OpenACCClauseKind::DeviceNum,
OpenACCClauseKind::DeviceType,
OpenACCClauseKind::If});
// OpenACC3.3 2.14.4: At least one self, host, or device clause must appear on
// an update directive.
if (K == OpenACCDirectiveKind::Update &&
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSelfClause, OpenACCHostClause,
OpenACCDeviceClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({OpenACCClauseKind::Self,
OpenACCClauseKind::Host,
OpenACCClauseKind::Device});
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/true);
}
StmtResult SemaOpenACC::ActOnEndStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs,
OpenACCAtomicKind AtomicKind, SourceLocation RParenLoc,
SourceLocation EndLoc, ArrayRef<OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
case OpenACCDirectiveKind::Invalid:
return StmtError();
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels: {
return OpenACCComputeConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop: {
return OpenACCCombinedConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Loop: {
return OpenACCLoopConstruct::Create(
getASTContext(), ActiveComputeConstructInfo.Kind, StartLoc, DirLoc,
EndLoc, Clauses, AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Data: {
return OpenACCDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::EnterData: {
return OpenACCEnterDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::ExitData: {
return OpenACCExitDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::HostData: {
return OpenACCHostDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Wait: {
return OpenACCWaitConstruct::Create(
getASTContext(), StartLoc, DirLoc, LParenLoc, Exprs.front(), MiscLoc,
Exprs.drop_front(), RParenLoc, EndLoc, Clauses);
}
case OpenACCDirectiveKind::Init: {
return OpenACCInitConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Shutdown: {
return OpenACCShutdownConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Set: {
return OpenACCSetConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Update: {
return OpenACCUpdateConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Atomic: {
return OpenACCAtomicConstruct::Create(
getASTContext(), StartLoc, DirLoc, AtomicKind, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Cache: {
assert(Clauses.empty() && "Cache doesn't allow clauses");
return OpenACCCacheConstruct::Create(getASTContext(), StartLoc, DirLoc,
LParenLoc, MiscLoc, Exprs, RParenLoc,
EndLoc);
}
case OpenACCDirectiveKind::Routine:
llvm_unreachable("routine shouldn't handled here");
case OpenACCDirectiveKind::Declare: {
// Declare and routine arei declaration directives, but can be used here as
// long as we wrap it in a DeclStmt. So make sure we do that here.
DeclGroupRef DR = ActOnEndDeclDirective(K, StartLoc, DirLoc, LParenLoc,
RParenLoc, EndLoc, Clauses);
return SemaRef.ActOnDeclStmt(DeclGroupPtrTy::make(DR), StartLoc, EndLoc);
}
}
llvm_unreachable("Unhandled case in directive handling?");
}
StmtResult SemaOpenACC::ActOnAssociatedStmt(
SourceLocation DirectiveLoc, OpenACCDirectiveKind K,
OpenACCAtomicKind AtKind, ArrayRef<const OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
default:
llvm_unreachable("Unimplemented associated statement application");
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Cache:
llvm_unreachable(
"these don't have associated statements, so shouldn't get here");
case OpenACCDirectiveKind::Atomic:
return CheckAtomicAssociatedStmt(DirectiveLoc, AtKind, AssocStmt);
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
// There really isn't any checking here that could happen. As long as we
// have a statement to associate, this should be fine.
// OpenACC 3.3 Section 6:
// Structured Block: in C or C++, an executable statement, possibly
// compound, with a single entry at the top and a single exit at the
// bottom.
// FIXME: Should we reject DeclStmt's here? The standard isn't clear, and
// an interpretation of it is to allow this and treat the initializer as
// the 'structured block'.
return AssocStmt;
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
if (!AssocStmt.isUsable())
return StmtError();
if (!isa<CXXForRangeStmt, ForStmt>(AssocStmt.get())) {
Diag(AssocStmt.get()->getBeginLoc(), diag::err_acc_loop_not_for_loop)
<< K;
Diag(DirectiveLoc, diag::note_acc_construct_here) << K;
return StmtError();
}
if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) {
if (!CollapseInfo.CollapseDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (!TileInfo.TileDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "Collapse count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
return StmtError();
}
return AssocStmt.get();
}
llvm_unreachable("Invalid associated statement application");
}
bool SemaOpenACC::ActOnStartDeclDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
// OpenCC3.3 2.1 (line 889)
// A program must not depend on the order of evaluation of expressions in
// clause arguments or on any side effects of the evaluations.
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
if (K == OpenACCDirectiveKind::Routine &&
llvm::find_if(Clauses,
llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause,
OpenACCVectorClause, OpenACCSeqClause>) ==
Clauses.end())
return Diag(StartLoc, diag::err_acc_construct_one_clause_of)
<< K
<< GetListOfClauses({
OpenACCClauseKind::Gang,
OpenACCClauseKind::Worker,
OpenACCClauseKind::Vector,
OpenACCClauseKind::Seq,
});
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/false);
}
DeclGroupRef SemaOpenACC::ActOnEndDeclDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation RParenLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
return DeclGroupRef{};
case OpenACCDirectiveKind::Declare: {
// OpenACC3.3 2.13: At least one clause must appear on a declare directive.
if (Clauses.empty()) {
Diag(EndLoc, diag::err_acc_declare_required_clauses);
// No reason to add this to the AST, as we would just end up trying to
// instantiate this, which would double-diagnose here, which we wouldn't
// want to do.
return DeclGroupRef{};
}
auto *DeclareDecl = OpenACCDeclareDecl::Create(
getASTContext(), getCurContext(), StartLoc, DirLoc, EndLoc, Clauses);
DeclareDecl->setAccess(AS_public);
getCurContext()->addDecl(DeclareDecl);
return DeclGroupRef{DeclareDecl};
}
case OpenACCDirectiveKind::Routine:
llvm_unreachable("routine shouldn't be handled here");
}
llvm_unreachable("unhandled case in directive handling?");
}
namespace {
// Given the decl on the next line, figure out if it is one that is acceptable
// to `routine`, or looks like the sort of decl we should be diagnosing against.
FunctionDecl *LegalizeNextParsedDecl(Decl *D) {
if (!D)
return nullptr;
// Functions are per-fact acceptable as-is.
if (auto *FD = dyn_cast<FunctionDecl>(D))
return FD;
// Function templates are functions, so attach to the templated decl.
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D))
return FTD->getTemplatedDecl();
if (auto *FD = dyn_cast<FieldDecl>(D)) {
auto *RD =
FD->getType().isNull() ? nullptr : FD->getType()->getAsCXXRecordDecl();
if (RD && RD->isGenericLambda())
return RD->getDependentLambdaCallOperator()->getTemplatedDecl();
if (RD && RD->isLambda())
return RD->getLambdaCallOperator();
}
// VarDecl we can look at the init instead of the type of the variable, this
// makes us more tolerant of the 'auto' deduced type.
if (auto *VD = dyn_cast<VarDecl>(D)) {
Expr *Init = VD->getInit();
if (!Init || Init->getType().isNull())
return nullptr;
const auto *RD = Init->getType()->getAsCXXRecordDecl();
if (RD && RD->isGenericLambda())
return RD->getDependentLambdaCallOperator()->getTemplatedDecl();
if (RD && RD->isLambda())
return RD->getLambdaCallOperator();
// FIXME: We could try harder in the case where this is a dependent thing
// that ends up being a lambda (that is, the init is an unresolved lookup
// expr), but we can't attach to the call/lookup expr. If we instead try to
// attach to the VarDecl, when we go to instantiate it, attributes are
// instantiated before the init, so we can't actually see the type at any
// point where it would be relevant/able to be checked. We could perhaps do
// some sort of 'after-init' instantiation/checking here, but that doesn't
// seem valuable for a situation that other compilers don't handle.
}
return nullptr;
}
void CreateRoutineDeclAttr(SemaOpenACC &SemaRef, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> Clauses,
ValueDecl *AddTo) {
OpenACCRoutineDeclAttr *A =
OpenACCRoutineDeclAttr::Create(SemaRef.getASTContext(), DirLoc);
A->Clauses.assign(Clauses.begin(), Clauses.end());
AddTo->addAttr(A);
}
} // namespace
// Variant that adds attributes, because this is the unnamed case.
void SemaOpenACC::CheckRoutineDecl(SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> Clauses,
Decl *NextParsedDecl) {
FunctionDecl *NextParsedFDecl = LegalizeNextParsedDecl(NextParsedDecl);
if (!NextParsedFDecl) {
// If we don't have a valid 'next thing', just diagnose.
SemaRef.Diag(DirLoc, diag::err_acc_decl_for_routine);
return;
}
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
if (auto Itr = MagicStaticLocs.find(NextParsedFDecl->getCanonicalDecl());
Itr != MagicStaticLocs.end()) {
Diag(Itr->second, diag::err_acc_magic_static_in_routine);
Diag(DirLoc, diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return;
}
auto BindItr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCBindClause>);
for (auto *A : NextParsedFDecl->attrs()) {
// OpenACC 3.3 2.15:
// If a procedure has a bind clause on both the declaration and definition
// than they both must bind to the same name.
if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(A)) {
auto OtherBindItr =
llvm::find_if(RA->Clauses, llvm::IsaPred<OpenACCBindClause>);
if (OtherBindItr != RA->Clauses.end() &&
(*cast<OpenACCBindClause>(*BindItr)) !=
(*cast<OpenACCBindClause>(*OtherBindItr))) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_unnamed_bind);
Diag((*OtherBindItr)->getEndLoc(), diag::note_acc_previous_clause_here);
return;
}
}
// OpenACC 3.3 2.15:
// A bind clause may not bind to a routine name that has a visible bind
// clause.
// We take the combo of these two 2.15 restrictions to mean that the
// 'declaration'/'definition' quote is an exception to this. So we're going
// to disallow mixing of the two types entirely.
if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(A);
RA && RA->getRange().getEnd().isValid()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag(RA->getRange().getEnd(), diag::note_acc_previous_clause_here);
return;
}
}
CreateRoutineDeclAttr(*this, DirLoc, Clauses, NextParsedFDecl);
}
// Variant that adds a decl, because this is the named case.
OpenACCRoutineDecl *SemaOpenACC::CheckRoutineDecl(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *FuncRef, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc) {
assert(LParenLoc.isValid());
if (FunctionDecl *FD = getFunctionFromRoutineName(FuncRef)) {
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
if (auto Itr = MagicStaticLocs.find(FD->getCanonicalDecl());
Itr != MagicStaticLocs.end()) {
Diag(Itr->second, diag::err_acc_magic_static_in_routine);
Diag(DirLoc, diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return nullptr;
}
// OpenACC 3.3 2.15:
// A bind clause may not bind to a routine name that has a visible bind
// clause.
auto BindItr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCBindClause>);
SourceLocation BindLoc;
if (BindItr != Clauses.end()) {
BindLoc = (*BindItr)->getBeginLoc();
// Since this is adding a 'named' routine, we aren't allowed to combine
// with ANY other visible bind clause. Error if we see either.
for (auto *A : FD->attrs()) {
if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(A)) {
auto OtherBindItr =
llvm::find_if(RA->Clauses, llvm::IsaPred<OpenACCBindClause>);
if (OtherBindItr != RA->Clauses.end()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag((*OtherBindItr)->getEndLoc(),
diag::note_acc_previous_clause_here);
return nullptr;
}
}
if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(A);
RA && RA->getRange().getEnd().isValid()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag(RA->getRange().getEnd(), diag::note_acc_previous_clause_here);
return nullptr;
}
}
}
// Set the end-range to the 'bind' clause here, so we can look it up
// later.
auto *RAA = OpenACCRoutineAnnotAttr::CreateImplicit(getASTContext(),
{DirLoc, BindLoc});
FD->addAttr(RAA);
// In case we are referencing not the 'latest' version, make sure we add
// the attribute to all declarations.
while (FD != FD->getMostRecentDecl()) {
FD = FD->getMostRecentDecl();
FD->addAttr(RAA);
}
}
LastRoutineDecl = OpenACCRoutineDecl::Create(
getASTContext(), getCurContext(), StartLoc, DirLoc, LParenLoc, FuncRef,
RParenLoc, EndLoc, Clauses);
LastRoutineDecl->setAccess(AS_public);
getCurContext()->addDecl(LastRoutineDecl);
return LastRoutineDecl;
}
DeclGroupRef SemaOpenACC::ActOnEndRoutineDeclDirective(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *ReferencedFunc, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc,
DeclGroupPtrTy NextDecl) {
assert((!ReferencedFunc || !NextDecl) &&
"Only one of these should be filled");
if (LParenLoc.isInvalid()) {
Decl *NextLineDecl = nullptr;
if (NextDecl && NextDecl.get().isSingleDecl())
NextLineDecl = NextDecl.get().getSingleDecl();
CheckRoutineDecl(DirLoc, Clauses, NextLineDecl);
return NextDecl.get();
}
return DeclGroupRef{CheckRoutineDecl(
StartLoc, DirLoc, LParenLoc, ReferencedFunc, RParenLoc, Clauses, EndLoc)};
}
StmtResult SemaOpenACC::ActOnEndRoutineStmtDirective(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *ReferencedFunc, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc,
Stmt *NextStmt) {
assert((!ReferencedFunc || !NextStmt) &&
"Only one of these should be filled");
if (LParenLoc.isInvalid()) {
Decl *NextLineDecl = nullptr;
if (NextStmt)
if (DeclStmt *DS = dyn_cast<DeclStmt>(NextStmt); DS && DS->isSingleDecl())
NextLineDecl = DS->getSingleDecl();
CheckRoutineDecl(DirLoc, Clauses, NextLineDecl);
return NextStmt;
}
DeclGroupRef DR{CheckRoutineDecl(StartLoc, DirLoc, LParenLoc, ReferencedFunc,
RParenLoc, Clauses, EndLoc)};
return SemaRef.ActOnDeclStmt(DeclGroupPtrTy::make(DR), StartLoc, EndLoc);
}
OpenACCRoutineDeclAttr *
SemaOpenACC::mergeRoutineDeclAttr(const OpenACCRoutineDeclAttr &Old) {
OpenACCRoutineDeclAttr *New =
OpenACCRoutineDeclAttr::Create(getASTContext(), Old.getLocation());
// We should jsut be able to copy these, there isn't really any
// merging/inheriting we have to do, so no worry about doing a deep copy.
New->Clauses = Old.Clauses;
return New;
}
ExprResult
SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return OpenACCAsteriskSizeExpr::Create(getASTContext(), AsteriskLoc);
}
ExprResult
SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return BuildOpenACCAsteriskSizeExpr(AsteriskLoc);
}