llvm-project/llvm/lib/MC/MCSchedule.cpp
Julien Villette f4bb9b53ad
[MCA] Extend -instruction-tables option with verbosity levels (#130574)
Option becomes: -instruction-tables=`<level>`
 
The choice of `<level>` controls number of printed information.
`<level>` may be `none` (default), `normal`, `full`.
Note: If the option is used without `<label>`, default is `normal`
(legacy).

When `<level>` is `full`, additional information are:
- `<Bypass Latency>`: Latency when a bypass is implemented between
operands
  in pipelines (see SchedReadAdvance).
  - `<LLVM Opcode Name>`: mnemonic plus operands identifier.
  - `<Resources units>`: Used resources associated with LLVM Opcode.
- `<instruction comment>`: reports comment if any from source assembly.

Level `full` can be used to better check scheduling info when TableGen
is modified.
LLVM Opcode name help to find right instruction regexp to fix TableGen
Scheduling Info.

-instruction-tables=full option is validated on
AArch64/Neoverse/V1-sve-instructions.s

Follow up of MR #126703

---------

Co-authored-by: Julien Villette <julien.villette@sipearl.com>
2025-03-25 09:19:57 -07:00

214 lines
7.7 KiB
C++

//===- MCSchedule.cpp - Scheduling ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the default scheduling model.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCSchedule.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include <optional>
#include <type_traits>
using namespace llvm;
static_assert(std::is_trivial_v<MCSchedModel>,
"MCSchedModel is required to be a trivial type");
const MCSchedModel MCSchedModel::Default = {DefaultIssueWidth,
DefaultMicroOpBufferSize,
DefaultLoopMicroOpBufferSize,
DefaultLoadLatency,
DefaultHighLatency,
DefaultMispredictPenalty,
false,
true,
/*EnableIntervals=*/false,
0,
nullptr,
nullptr,
0,
0,
nullptr,
nullptr};
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
int Latency = 0;
for (unsigned DefIdx = 0, DefEnd = SCDesc.NumWriteLatencyEntries;
DefIdx != DefEnd; ++DefIdx) {
// Lookup the definition's write latency in SubtargetInfo.
const MCWriteLatencyEntry *WLEntry =
STI.getWriteLatencyEntry(&SCDesc, DefIdx);
// Early exit if we found an invalid latency.
if (WLEntry->Cycles < 0)
return WLEntry->Cycles;
Latency = std::max(Latency, static_cast<int>(WLEntry->Cycles));
}
return Latency;
}
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
unsigned SchedClass) const {
const MCSchedClassDesc &SCDesc = *getSchedClassDesc(SchedClass);
if (!SCDesc.isValid())
return 0;
if (!SCDesc.isVariant())
return MCSchedModel::computeInstrLatency(STI, SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII,
const MCInst &Inst) const {
return MCSchedModel::computeInstrLatency<MCSubtargetInfo, MCInstrInfo,
InstrItineraryData, MCInst>(
STI, MCII, Inst,
[&](const MCSchedClassDesc *SCDesc) -> const MCSchedClassDesc * {
if (!SCDesc->isValid())
return nullptr;
unsigned CPUID = getProcessorID();
unsigned SchedClass = 0;
while (SCDesc->isVariant()) {
SchedClass =
STI.resolveVariantSchedClass(SchedClass, &Inst, &MCII, CPUID);
SCDesc = getSchedClassDesc(SchedClass);
}
if (!SchedClass) {
assert(false && "unsupported variant scheduling class");
return nullptr;
}
return SCDesc;
});
}
double
MCSchedModel::getReciprocalThroughput(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
std::optional<double> MinThroughput;
const MCSchedModel &SM = STI.getSchedModel();
const MCWriteProcResEntry *I = STI.getWriteProcResBegin(&SCDesc);
const MCWriteProcResEntry *E = STI.getWriteProcResEnd(&SCDesc);
for (; I != E; ++I) {
if (!I->ReleaseAtCycle || I->ReleaseAtCycle == I->AcquireAtCycle)
continue;
assert(I->ReleaseAtCycle > I->AcquireAtCycle && "invalid resource segment");
unsigned NumUnits = SM.getProcResource(I->ProcResourceIdx)->NumUnits;
double Throughput =
double(NumUnits) / double(I->ReleaseAtCycle - I->AcquireAtCycle);
MinThroughput =
MinThroughput ? std::min(*MinThroughput, Throughput) : Throughput;
}
if (MinThroughput)
return 1.0 / *MinThroughput;
// If no throughput value was calculated, assume that we can execute at the
// maximum issue width scaled by number of micro-ops for the schedule class.
return ((double)SCDesc.NumMicroOps) / SM.IssueWidth;
}
double
MCSchedModel::getReciprocalThroughput(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII,
const MCInst &Inst) const {
unsigned SchedClass = MCII.get(Inst.getOpcode()).getSchedClass();
const MCSchedClassDesc *SCDesc = getSchedClassDesc(SchedClass);
// If there's no valid class, assume that the instruction executes/completes
// at the maximum issue width.
if (!SCDesc->isValid())
return 1.0 / IssueWidth;
unsigned CPUID = getProcessorID();
while (SCDesc->isVariant()) {
SchedClass = STI.resolveVariantSchedClass(SchedClass, &Inst, &MCII, CPUID);
SCDesc = getSchedClassDesc(SchedClass);
}
if (SchedClass)
return MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
double
MCSchedModel::getReciprocalThroughput(unsigned SchedClass,
const InstrItineraryData &IID) {
std::optional<double> Throughput;
const InstrStage *I = IID.beginStage(SchedClass);
const InstrStage *E = IID.endStage(SchedClass);
for (; I != E; ++I) {
if (!I->getCycles())
continue;
double Temp = llvm::popcount(I->getUnits()) * 1.0 / I->getCycles();
Throughput = Throughput ? std::min(*Throughput, Temp) : Temp;
}
if (Throughput)
return 1.0 / *Throughput;
// If there are no execution resources specified for this class, then assume
// that it can execute at the maximum default issue width.
return 1.0 / DefaultIssueWidth;
}
unsigned
MCSchedModel::getForwardingDelayCycles(ArrayRef<MCReadAdvanceEntry> Entries,
unsigned WriteResourceID) {
if (Entries.empty())
return 0;
int DelayCycles = 0;
for (const MCReadAdvanceEntry &E : Entries) {
if (E.WriteResourceID != WriteResourceID)
continue;
DelayCycles = std::min(DelayCycles, E.Cycles);
}
return std::abs(DelayCycles);
}
unsigned MCSchedModel::getBypassDelayCycles(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
ArrayRef<MCReadAdvanceEntry> Entries = STI.getReadAdvanceEntries(SCDesc);
if (Entries.empty())
return 0;
unsigned MaxLatency = 0;
unsigned WriteResourceID = 0;
unsigned DefEnd = SCDesc.NumWriteLatencyEntries;
for (unsigned DefIdx = 0; DefIdx != DefEnd; ++DefIdx) {
// Lookup the definition's write latency in SubtargetInfo.
const MCWriteLatencyEntry *WLEntry =
STI.getWriteLatencyEntry(&SCDesc, DefIdx);
unsigned Cycles = 0;
// If latency is Invalid (<0), consider 0 cycle latency
if (WLEntry->Cycles > 0)
Cycles = (unsigned)WLEntry->Cycles;
if (Cycles > MaxLatency) {
MaxLatency = Cycles;
WriteResourceID = WLEntry->WriteResourceID;
}
}
for (const MCReadAdvanceEntry &E : Entries) {
if (E.WriteResourceID == WriteResourceID)
return E.Cycles;
}
// Unable to find WriteResourceID in MCReadAdvanceEntry Entries
return 0;
}