mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-15 22:46:32 +00:00
2002 lines
75 KiB
C++
2002 lines
75 KiB
C++
//===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements semantic analysis for C++ Coroutines.
|
||
//
|
||
// This file contains references to sections of the Coroutines TS, which
|
||
// can be found at http://wg21.link/coroutines.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "CoroutineStmtBuilder.h"
|
||
#include "clang/AST/ASTLambda.h"
|
||
#include "clang/AST/Decl.h"
|
||
#include "clang/AST/Expr.h"
|
||
#include "clang/AST/ExprCXX.h"
|
||
#include "clang/AST/StmtCXX.h"
|
||
#include "clang/Basic/Builtins.h"
|
||
#include "clang/Lex/Preprocessor.h"
|
||
#include "clang/Sema/EnterExpressionEvaluationContext.h"
|
||
#include "clang/Sema/Initialization.h"
|
||
#include "clang/Sema/Overload.h"
|
||
#include "clang/Sema/ScopeInfo.h"
|
||
|
||
using namespace clang;
|
||
using namespace sema;
|
||
|
||
static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
|
||
SourceLocation Loc, bool &Res) {
|
||
DeclarationName DN = S.PP.getIdentifierInfo(Name);
|
||
LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
|
||
// Suppress diagnostics when a private member is selected. The same warnings
|
||
// will be produced again when building the call.
|
||
LR.suppressDiagnostics();
|
||
Res = S.LookupQualifiedName(LR, RD);
|
||
return LR;
|
||
}
|
||
|
||
static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
|
||
SourceLocation Loc) {
|
||
bool Res;
|
||
lookupMember(S, Name, RD, Loc, Res);
|
||
return Res;
|
||
}
|
||
|
||
/// Look up the std::coroutine_traits<...>::promise_type for the given
|
||
/// function type.
|
||
static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
|
||
SourceLocation KwLoc) {
|
||
const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
|
||
const SourceLocation FuncLoc = FD->getLocation();
|
||
|
||
ClassTemplateDecl *CoroTraits =
|
||
S.lookupCoroutineTraits(KwLoc, FuncLoc);
|
||
if (!CoroTraits)
|
||
return QualType();
|
||
|
||
// Form template argument list for coroutine_traits<R, P1, P2, ...> according
|
||
// to [dcl.fct.def.coroutine]3
|
||
TemplateArgumentListInfo Args(KwLoc, KwLoc);
|
||
auto AddArg = [&](QualType T) {
|
||
Args.addArgument(TemplateArgumentLoc(
|
||
TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
|
||
};
|
||
AddArg(FnType->getReturnType());
|
||
// If the function is a non-static member function, add the type
|
||
// of the implicit object parameter before the formal parameters.
|
||
if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
||
if (MD->isImplicitObjectMemberFunction()) {
|
||
// [over.match.funcs]4
|
||
// For non-static member functions, the type of the implicit object
|
||
// parameter is
|
||
// -- "lvalue reference to cv X" for functions declared without a
|
||
// ref-qualifier or with the & ref-qualifier
|
||
// -- "rvalue reference to cv X" for functions declared with the &&
|
||
// ref-qualifier
|
||
QualType T = MD->getFunctionObjectParameterType();
|
||
T = FnType->getRefQualifier() == RQ_RValue
|
||
? S.Context.getRValueReferenceType(T)
|
||
: S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
|
||
AddArg(T);
|
||
}
|
||
}
|
||
for (QualType T : FnType->getParamTypes())
|
||
AddArg(T);
|
||
|
||
// Build the template-id.
|
||
QualType CoroTrait =
|
||
S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
|
||
if (CoroTrait.isNull())
|
||
return QualType();
|
||
if (S.RequireCompleteType(KwLoc, CoroTrait,
|
||
diag::err_coroutine_type_missing_specialization))
|
||
return QualType();
|
||
|
||
auto *RD = CoroTrait->getAsCXXRecordDecl();
|
||
assert(RD && "specialization of class template is not a class?");
|
||
|
||
// Look up the ::promise_type member.
|
||
LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
|
||
Sema::LookupOrdinaryName);
|
||
S.LookupQualifiedName(R, RD);
|
||
auto *Promise = R.getAsSingle<TypeDecl>();
|
||
if (!Promise) {
|
||
S.Diag(FuncLoc,
|
||
diag::err_implied_std_coroutine_traits_promise_type_not_found)
|
||
<< RD;
|
||
return QualType();
|
||
}
|
||
// The promise type is required to be a class type.
|
||
QualType PromiseType = S.Context.getTypeDeclType(Promise);
|
||
|
||
auto buildElaboratedType = [&]() {
|
||
auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace());
|
||
NNS = NestedNameSpecifier::Create(S.Context, NNS, CoroTrait.getTypePtr());
|
||
return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS,
|
||
PromiseType);
|
||
};
|
||
|
||
if (!PromiseType->getAsCXXRecordDecl()) {
|
||
S.Diag(FuncLoc,
|
||
diag::err_implied_std_coroutine_traits_promise_type_not_class)
|
||
<< buildElaboratedType();
|
||
return QualType();
|
||
}
|
||
if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
|
||
diag::err_coroutine_promise_type_incomplete))
|
||
return QualType();
|
||
|
||
return PromiseType;
|
||
}
|
||
|
||
/// Look up the std::coroutine_handle<PromiseType>.
|
||
static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
|
||
SourceLocation Loc) {
|
||
if (PromiseType.isNull())
|
||
return QualType();
|
||
|
||
NamespaceDecl *CoroNamespace = S.getStdNamespace();
|
||
assert(CoroNamespace && "Should already be diagnosed");
|
||
|
||
LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
|
||
Loc, Sema::LookupOrdinaryName);
|
||
if (!S.LookupQualifiedName(Result, CoroNamespace)) {
|
||
S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
|
||
<< "std::coroutine_handle";
|
||
return QualType();
|
||
}
|
||
|
||
ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
|
||
if (!CoroHandle) {
|
||
Result.suppressDiagnostics();
|
||
// We found something weird. Complain about the first thing we found.
|
||
NamedDecl *Found = *Result.begin();
|
||
S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
|
||
return QualType();
|
||
}
|
||
|
||
// Form template argument list for coroutine_handle<Promise>.
|
||
TemplateArgumentListInfo Args(Loc, Loc);
|
||
Args.addArgument(TemplateArgumentLoc(
|
||
TemplateArgument(PromiseType),
|
||
S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
|
||
|
||
// Build the template-id.
|
||
QualType CoroHandleType =
|
||
S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
|
||
if (CoroHandleType.isNull())
|
||
return QualType();
|
||
if (S.RequireCompleteType(Loc, CoroHandleType,
|
||
diag::err_coroutine_type_missing_specialization))
|
||
return QualType();
|
||
|
||
return CoroHandleType;
|
||
}
|
||
|
||
static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
|
||
StringRef Keyword) {
|
||
// [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
|
||
// a function body.
|
||
// FIXME: This also covers [expr.await]p2: "An await-expression shall not
|
||
// appear in a default argument." But the diagnostic QoI here could be
|
||
// improved to inform the user that default arguments specifically are not
|
||
// allowed.
|
||
auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
|
||
if (!FD) {
|
||
S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
|
||
? diag::err_coroutine_objc_method
|
||
: diag::err_coroutine_outside_function) << Keyword;
|
||
return false;
|
||
}
|
||
|
||
// An enumeration for mapping the diagnostic type to the correct diagnostic
|
||
// selection index.
|
||
enum InvalidFuncDiag {
|
||
DiagCtor = 0,
|
||
DiagDtor,
|
||
DiagMain,
|
||
DiagConstexpr,
|
||
DiagAutoRet,
|
||
DiagVarargs,
|
||
DiagConsteval,
|
||
};
|
||
bool Diagnosed = false;
|
||
auto DiagInvalid = [&](InvalidFuncDiag ID) {
|
||
S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
|
||
Diagnosed = true;
|
||
return false;
|
||
};
|
||
|
||
// Diagnose when a constructor, destructor
|
||
// or the function 'main' are declared as a coroutine.
|
||
auto *MD = dyn_cast<CXXMethodDecl>(FD);
|
||
// [class.ctor]p11: "A constructor shall not be a coroutine."
|
||
if (MD && isa<CXXConstructorDecl>(MD))
|
||
return DiagInvalid(DiagCtor);
|
||
// [class.dtor]p17: "A destructor shall not be a coroutine."
|
||
else if (MD && isa<CXXDestructorDecl>(MD))
|
||
return DiagInvalid(DiagDtor);
|
||
// [basic.start.main]p3: "The function main shall not be a coroutine."
|
||
else if (FD->isMain())
|
||
return DiagInvalid(DiagMain);
|
||
|
||
// Emit a diagnostics for each of the following conditions which is not met.
|
||
// [expr.const]p2: "An expression e is a core constant expression unless the
|
||
// evaluation of e [...] would evaluate one of the following expressions:
|
||
// [...] an await-expression [...] a yield-expression."
|
||
if (FD->isConstexpr())
|
||
DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
|
||
// [dcl.spec.auto]p15: "A function declared with a return type that uses a
|
||
// placeholder type shall not be a coroutine."
|
||
if (FD->getReturnType()->isUndeducedType())
|
||
DiagInvalid(DiagAutoRet);
|
||
// [dcl.fct.def.coroutine]p1
|
||
// The parameter-declaration-clause of the coroutine shall not terminate with
|
||
// an ellipsis that is not part of a parameter-declaration.
|
||
if (FD->isVariadic())
|
||
DiagInvalid(DiagVarargs);
|
||
|
||
return !Diagnosed;
|
||
}
|
||
|
||
/// Build a call to 'operator co_await' if there is a suitable operator for
|
||
/// the given expression.
|
||
ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
|
||
UnresolvedLookupExpr *Lookup) {
|
||
UnresolvedSet<16> Functions;
|
||
Functions.append(Lookup->decls_begin(), Lookup->decls_end());
|
||
return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
|
||
}
|
||
|
||
static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
|
||
SourceLocation Loc, Expr *E) {
|
||
ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
|
||
if (R.isInvalid())
|
||
return ExprError();
|
||
return SemaRef.BuildOperatorCoawaitCall(Loc, E,
|
||
cast<UnresolvedLookupExpr>(R.get()));
|
||
}
|
||
|
||
static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
|
||
SourceLocation Loc) {
|
||
QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
|
||
if (CoroHandleType.isNull())
|
||
return ExprError();
|
||
|
||
DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
|
||
LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
|
||
Sema::LookupOrdinaryName);
|
||
if (!S.LookupQualifiedName(Found, LookupCtx)) {
|
||
S.Diag(Loc, diag::err_coroutine_handle_missing_member)
|
||
<< "from_address";
|
||
return ExprError();
|
||
}
|
||
|
||
Expr *FramePtr =
|
||
S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
|
||
|
||
CXXScopeSpec SS;
|
||
ExprResult FromAddr =
|
||
S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
|
||
if (FromAddr.isInvalid())
|
||
return ExprError();
|
||
|
||
return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
|
||
}
|
||
|
||
struct ReadySuspendResumeResult {
|
||
enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
|
||
Expr *Results[3];
|
||
OpaqueValueExpr *OpaqueValue;
|
||
bool IsInvalid;
|
||
};
|
||
|
||
static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
|
||
StringRef Name, MultiExprArg Args) {
|
||
DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
|
||
|
||
// FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
|
||
CXXScopeSpec SS;
|
||
ExprResult Result = S.BuildMemberReferenceExpr(
|
||
Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
|
||
SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
|
||
/*Scope=*/nullptr);
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
|
||
// We meant exactly what we asked for. No need for typo correction.
|
||
if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
|
||
S.clearDelayedTypo(TE);
|
||
S.Diag(Loc, diag::err_no_member)
|
||
<< NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
|
||
<< Base->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc();
|
||
return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr);
|
||
}
|
||
|
||
// See if return type is coroutine-handle and if so, invoke builtin coro-resume
|
||
// on its address. This is to enable the support for coroutine-handle
|
||
// returning await_suspend that results in a guaranteed tail call to the target
|
||
// coroutine.
|
||
static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
|
||
SourceLocation Loc) {
|
||
if (RetType->isReferenceType())
|
||
return nullptr;
|
||
Type const *T = RetType.getTypePtr();
|
||
if (!T->isClassType() && !T->isStructureType())
|
||
return nullptr;
|
||
|
||
// FIXME: Add convertability check to coroutine_handle<>. Possibly via
|
||
// EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
|
||
// a private function in SemaExprCXX.cpp
|
||
|
||
ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", {});
|
||
if (AddressExpr.isInvalid())
|
||
return nullptr;
|
||
|
||
Expr *JustAddress = AddressExpr.get();
|
||
|
||
// Check that the type of AddressExpr is void*
|
||
if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
|
||
S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
|
||
diag::warn_coroutine_handle_address_invalid_return_type)
|
||
<< JustAddress->getType();
|
||
|
||
// Clean up temporary objects, because the resulting expression
|
||
// will become the body of await_suspend wrapper.
|
||
return S.MaybeCreateExprWithCleanups(JustAddress);
|
||
}
|
||
|
||
/// Build calls to await_ready, await_suspend, and await_resume for a co_await
|
||
/// expression.
|
||
/// The generated AST tries to clean up temporary objects as early as
|
||
/// possible so that they don't live across suspension points if possible.
|
||
/// Having temporary objects living across suspension points unnecessarily can
|
||
/// lead to large frame size, and also lead to memory corruptions if the
|
||
/// coroutine frame is destroyed after coming back from suspension. This is done
|
||
/// by wrapping both the await_ready call and the await_suspend call with
|
||
/// ExprWithCleanups. In the end of this function, we also need to explicitly
|
||
/// set cleanup state so that the CoawaitExpr is also wrapped with an
|
||
/// ExprWithCleanups to clean up the awaiter associated with the co_await
|
||
/// expression.
|
||
static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
|
||
SourceLocation Loc, Expr *E) {
|
||
OpaqueValueExpr *Operand = new (S.Context)
|
||
OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
|
||
|
||
// Assume valid until we see otherwise.
|
||
// Further operations are responsible for setting IsInalid to true.
|
||
ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
|
||
|
||
using ACT = ReadySuspendResumeResult::AwaitCallType;
|
||
|
||
auto BuildSubExpr = [&](ACT CallType, StringRef Func,
|
||
MultiExprArg Arg) -> Expr * {
|
||
ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
|
||
if (Result.isInvalid()) {
|
||
Calls.IsInvalid = true;
|
||
return nullptr;
|
||
}
|
||
Calls.Results[CallType] = Result.get();
|
||
return Result.get();
|
||
};
|
||
|
||
CallExpr *AwaitReady =
|
||
cast_or_null<CallExpr>(BuildSubExpr(ACT::ACT_Ready, "await_ready", {}));
|
||
if (!AwaitReady)
|
||
return Calls;
|
||
if (!AwaitReady->getType()->isDependentType()) {
|
||
// [expr.await]p3 [...]
|
||
// — await-ready is the expression e.await_ready(), contextually converted
|
||
// to bool.
|
||
ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
|
||
if (Conv.isInvalid()) {
|
||
S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
|
||
diag::note_await_ready_no_bool_conversion);
|
||
S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
|
||
<< AwaitReady->getDirectCallee() << E->getSourceRange();
|
||
Calls.IsInvalid = true;
|
||
} else
|
||
Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
|
||
}
|
||
|
||
ExprResult CoroHandleRes =
|
||
buildCoroutineHandle(S, CoroPromise->getType(), Loc);
|
||
if (CoroHandleRes.isInvalid()) {
|
||
Calls.IsInvalid = true;
|
||
return Calls;
|
||
}
|
||
Expr *CoroHandle = CoroHandleRes.get();
|
||
CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
|
||
BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
|
||
if (!AwaitSuspend)
|
||
return Calls;
|
||
if (!AwaitSuspend->getType()->isDependentType()) {
|
||
// [expr.await]p3 [...]
|
||
// - await-suspend is the expression e.await_suspend(h), which shall be
|
||
// a prvalue of type void, bool, or std::coroutine_handle<Z> for some
|
||
// type Z.
|
||
QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
|
||
|
||
// Support for coroutine_handle returning await_suspend.
|
||
if (Expr *TailCallSuspend =
|
||
maybeTailCall(S, RetType, AwaitSuspend, Loc))
|
||
// Note that we don't wrap the expression with ExprWithCleanups here
|
||
// because that might interfere with tailcall contract (e.g. inserting
|
||
// clean up instructions in-between tailcall and return). Instead
|
||
// ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
|
||
// call.
|
||
Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
|
||
else {
|
||
// non-class prvalues always have cv-unqualified types
|
||
if (RetType->isReferenceType() ||
|
||
(!RetType->isBooleanType() && !RetType->isVoidType())) {
|
||
S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
|
||
diag::err_await_suspend_invalid_return_type)
|
||
<< RetType;
|
||
S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
|
||
<< AwaitSuspend->getDirectCallee();
|
||
Calls.IsInvalid = true;
|
||
} else
|
||
Calls.Results[ACT::ACT_Suspend] =
|
||
S.MaybeCreateExprWithCleanups(AwaitSuspend);
|
||
}
|
||
}
|
||
|
||
BuildSubExpr(ACT::ACT_Resume, "await_resume", {});
|
||
|
||
// Make sure the awaiter object gets a chance to be cleaned up.
|
||
S.Cleanup.setExprNeedsCleanups(true);
|
||
|
||
return Calls;
|
||
}
|
||
|
||
static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
|
||
SourceLocation Loc, StringRef Name,
|
||
MultiExprArg Args) {
|
||
|
||
// Form a reference to the promise.
|
||
ExprResult PromiseRef = S.BuildDeclRefExpr(
|
||
Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
|
||
if (PromiseRef.isInvalid())
|
||
return ExprError();
|
||
|
||
return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
|
||
}
|
||
|
||
VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
|
||
assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
|
||
auto *FD = cast<FunctionDecl>(CurContext);
|
||
bool IsThisDependentType = [&] {
|
||
if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD))
|
||
return MD->isImplicitObjectMemberFunction() &&
|
||
MD->getThisType()->isDependentType();
|
||
return false;
|
||
}();
|
||
|
||
QualType T = FD->getType()->isDependentType() || IsThisDependentType
|
||
? Context.DependentTy
|
||
: lookupPromiseType(*this, FD, Loc);
|
||
if (T.isNull())
|
||
return nullptr;
|
||
|
||
auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
|
||
&PP.getIdentifierTable().get("__promise"), T,
|
||
Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
|
||
VD->setImplicit();
|
||
CheckVariableDeclarationType(VD);
|
||
if (VD->isInvalidDecl())
|
||
return nullptr;
|
||
|
||
auto *ScopeInfo = getCurFunction();
|
||
|
||
// Build a list of arguments, based on the coroutine function's arguments,
|
||
// that if present will be passed to the promise type's constructor.
|
||
llvm::SmallVector<Expr *, 4> CtorArgExprs;
|
||
|
||
// Add implicit object parameter.
|
||
if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
||
if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
|
||
ExprResult ThisExpr = ActOnCXXThis(Loc);
|
||
if (ThisExpr.isInvalid())
|
||
return nullptr;
|
||
ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
|
||
if (ThisExpr.isInvalid())
|
||
return nullptr;
|
||
CtorArgExprs.push_back(ThisExpr.get());
|
||
}
|
||
}
|
||
|
||
// Add the coroutine function's parameters.
|
||
auto &Moves = ScopeInfo->CoroutineParameterMoves;
|
||
for (auto *PD : FD->parameters()) {
|
||
if (PD->getType()->isDependentType())
|
||
continue;
|
||
|
||
auto RefExpr = ExprEmpty();
|
||
auto Move = Moves.find(PD);
|
||
assert(Move != Moves.end() &&
|
||
"Coroutine function parameter not inserted into move map");
|
||
// If a reference to the function parameter exists in the coroutine
|
||
// frame, use that reference.
|
||
auto *MoveDecl =
|
||
cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
|
||
RefExpr =
|
||
BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
|
||
ExprValueKind::VK_LValue, FD->getLocation());
|
||
if (RefExpr.isInvalid())
|
||
return nullptr;
|
||
CtorArgExprs.push_back(RefExpr.get());
|
||
}
|
||
|
||
// If we have a non-zero number of constructor arguments, try to use them.
|
||
// Otherwise, fall back to the promise type's default constructor.
|
||
if (!CtorArgExprs.empty()) {
|
||
// Create an initialization sequence for the promise type using the
|
||
// constructor arguments, wrapped in a parenthesized list expression.
|
||
Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
|
||
CtorArgExprs, FD->getLocation());
|
||
InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
|
||
InitializationKind Kind = InitializationKind::CreateForInit(
|
||
VD->getLocation(), /*DirectInit=*/true, PLE);
|
||
InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
|
||
/*TopLevelOfInitList=*/false,
|
||
/*TreatUnavailableAsInvalid=*/false);
|
||
|
||
// [dcl.fct.def.coroutine]5.7
|
||
// promise-constructor-arguments is determined as follows: overload
|
||
// resolution is performed on a promise constructor call created by
|
||
// assembling an argument list q_1 ... q_n . If a viable constructor is
|
||
// found ([over.match.viable]), then promise-constructor-arguments is ( q_1
|
||
// , ..., q_n ), otherwise promise-constructor-arguments is empty.
|
||
if (InitSeq) {
|
||
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
|
||
if (Result.isInvalid()) {
|
||
VD->setInvalidDecl();
|
||
} else if (Result.get()) {
|
||
VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
|
||
VD->setInitStyle(VarDecl::CallInit);
|
||
CheckCompleteVariableDeclaration(VD);
|
||
}
|
||
} else
|
||
ActOnUninitializedDecl(VD);
|
||
} else
|
||
ActOnUninitializedDecl(VD);
|
||
|
||
FD->addDecl(VD);
|
||
return VD;
|
||
}
|
||
|
||
/// Check that this is a context in which a coroutine suspension can appear.
|
||
static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
|
||
StringRef Keyword,
|
||
bool IsImplicit = false) {
|
||
if (!isValidCoroutineContext(S, Loc, Keyword))
|
||
return nullptr;
|
||
|
||
assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
|
||
|
||
auto *ScopeInfo = S.getCurFunction();
|
||
assert(ScopeInfo && "missing function scope for function");
|
||
|
||
if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
|
||
ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
|
||
|
||
if (ScopeInfo->CoroutinePromise)
|
||
return ScopeInfo;
|
||
|
||
if (!S.buildCoroutineParameterMoves(Loc))
|
||
return nullptr;
|
||
|
||
ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
|
||
if (!ScopeInfo->CoroutinePromise)
|
||
return nullptr;
|
||
|
||
return ScopeInfo;
|
||
}
|
||
|
||
/// Recursively check \p E and all its children to see if any call target
|
||
/// (including constructor call) is declared noexcept. Also any value returned
|
||
/// from the call has a noexcept destructor.
|
||
static void checkNoThrow(Sema &S, const Stmt *E,
|
||
llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
|
||
auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
|
||
// In the case of dtor, the call to dtor is implicit and hence we should
|
||
// pass nullptr to canCalleeThrow.
|
||
if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
|
||
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
||
// co_await promise.final_suspend() could end up calling
|
||
// __builtin_coro_resume for symmetric transfer if await_suspend()
|
||
// returns a handle. In that case, even __builtin_coro_resume is not
|
||
// declared as noexcept and may throw, it does not throw _into_ the
|
||
// coroutine that just suspended, but rather throws back out from
|
||
// whoever called coroutine_handle::resume(), hence we claim that
|
||
// logically it does not throw.
|
||
if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
|
||
return;
|
||
}
|
||
if (ThrowingDecls.empty()) {
|
||
// [dcl.fct.def.coroutine]p15
|
||
// The expression co_await promise.final_suspend() shall not be
|
||
// potentially-throwing ([except.spec]).
|
||
//
|
||
// First time seeing an error, emit the error message.
|
||
S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
|
||
diag::err_coroutine_promise_final_suspend_requires_nothrow);
|
||
}
|
||
ThrowingDecls.insert(D);
|
||
}
|
||
};
|
||
|
||
if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
|
||
CXXConstructorDecl *Ctor = CE->getConstructor();
|
||
checkDeclNoexcept(Ctor);
|
||
// Check the corresponding destructor of the constructor.
|
||
checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
|
||
} else if (auto *CE = dyn_cast<CallExpr>(E)) {
|
||
if (CE->isTypeDependent())
|
||
return;
|
||
|
||
checkDeclNoexcept(CE->getCalleeDecl());
|
||
QualType ReturnType = CE->getCallReturnType(S.getASTContext());
|
||
// Check the destructor of the call return type, if any.
|
||
if (ReturnType.isDestructedType() ==
|
||
QualType::DestructionKind::DK_cxx_destructor) {
|
||
const auto *T =
|
||
cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
|
||
checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
|
||
/*IsDtor=*/true);
|
||
}
|
||
} else
|
||
for (const auto *Child : E->children()) {
|
||
if (!Child)
|
||
continue;
|
||
checkNoThrow(S, Child, ThrowingDecls);
|
||
}
|
||
}
|
||
|
||
bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
|
||
llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
|
||
// We first collect all declarations that should not throw but not declared
|
||
// with noexcept. We then sort them based on the location before printing.
|
||
// This is to avoid emitting the same note multiple times on the same
|
||
// declaration, and also provide a deterministic order for the messages.
|
||
checkNoThrow(*this, FinalSuspend, ThrowingDecls);
|
||
auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
|
||
ThrowingDecls.end()};
|
||
sort(SortedDecls, [](const Decl *A, const Decl *B) {
|
||
return A->getEndLoc() < B->getEndLoc();
|
||
});
|
||
for (const auto *D : SortedDecls) {
|
||
Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
|
||
}
|
||
return ThrowingDecls.empty();
|
||
}
|
||
|
||
// [stmt.return.coroutine]p1:
|
||
// A coroutine shall not enclose a return statement ([stmt.return]).
|
||
static void checkReturnStmtInCoroutine(Sema &S, FunctionScopeInfo *FSI) {
|
||
assert(FSI && "FunctionScopeInfo is null");
|
||
assert(FSI->FirstCoroutineStmtLoc.isValid() &&
|
||
"first coroutine location not set");
|
||
if (FSI->FirstReturnLoc.isInvalid())
|
||
return;
|
||
S.Diag(FSI->FirstReturnLoc, diag::err_return_in_coroutine);
|
||
S.Diag(FSI->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
|
||
<< FSI->getFirstCoroutineStmtKeyword();
|
||
}
|
||
|
||
bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
|
||
StringRef Keyword) {
|
||
// Ignore previous expr evaluation contexts.
|
||
EnterExpressionEvaluationContext PotentiallyEvaluated(
|
||
*this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
|
||
if (!checkCoroutineContext(*this, KWLoc, Keyword))
|
||
return false;
|
||
auto *ScopeInfo = getCurFunction();
|
||
assert(ScopeInfo->CoroutinePromise);
|
||
|
||
// Avoid duplicate errors, report only on first keyword.
|
||
if (ScopeInfo->FirstCoroutineStmtLoc == KWLoc)
|
||
checkReturnStmtInCoroutine(*this, ScopeInfo);
|
||
|
||
// If we have existing coroutine statements then we have already built
|
||
// the initial and final suspend points.
|
||
if (!ScopeInfo->NeedsCoroutineSuspends)
|
||
return true;
|
||
|
||
ScopeInfo->setNeedsCoroutineSuspends(false);
|
||
|
||
auto *Fn = cast<FunctionDecl>(CurContext);
|
||
SourceLocation Loc = Fn->getLocation();
|
||
// Build the initial suspend point
|
||
auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
|
||
ExprResult Operand =
|
||
buildPromiseCall(*this, ScopeInfo->CoroutinePromise, Loc, Name, {});
|
||
if (Operand.isInvalid())
|
||
return StmtError();
|
||
ExprResult Suspend =
|
||
buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
|
||
if (Suspend.isInvalid())
|
||
return StmtError();
|
||
Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
|
||
/*IsImplicit*/ true);
|
||
Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
|
||
if (Suspend.isInvalid()) {
|
||
Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
|
||
<< ((Name == "initial_suspend") ? 0 : 1);
|
||
Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
|
||
return StmtError();
|
||
}
|
||
return cast<Stmt>(Suspend.get());
|
||
};
|
||
|
||
StmtResult InitSuspend = buildSuspends("initial_suspend");
|
||
if (InitSuspend.isInvalid())
|
||
return true;
|
||
|
||
StmtResult FinalSuspend = buildSuspends("final_suspend");
|
||
if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
|
||
return true;
|
||
|
||
ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
|
||
|
||
return true;
|
||
}
|
||
|
||
// Recursively walks up the scope hierarchy until either a 'catch' or a function
|
||
// scope is found, whichever comes first.
|
||
static bool isWithinCatchScope(Scope *S) {
|
||
// 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
|
||
// lambdas that use 'co_await' are allowed. The loop below ends when a
|
||
// function scope is found in order to ensure the following behavior:
|
||
//
|
||
// void foo() { // <- function scope
|
||
// try { //
|
||
// co_await x; // <- 'co_await' is OK within a function scope
|
||
// } catch { // <- catch scope
|
||
// co_await x; // <- 'co_await' is not OK within a catch scope
|
||
// []() { // <- function scope
|
||
// co_await x; // <- 'co_await' is OK within a function scope
|
||
// }();
|
||
// }
|
||
// }
|
||
while (S && !S->isFunctionScope()) {
|
||
if (S->isCatchScope())
|
||
return true;
|
||
S = S->getParent();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// [expr.await]p2, emphasis added: "An await-expression shall appear only in
|
||
// a *potentially evaluated* expression within the compound-statement of a
|
||
// function-body *outside of a handler* [...] A context within a function
|
||
// where an await-expression can appear is called a suspension context of the
|
||
// function."
|
||
static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
|
||
StringRef Keyword) {
|
||
// First emphasis of [expr.await]p2: must be a potentially evaluated context.
|
||
// That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
|
||
// \c sizeof.
|
||
const auto ExprContext = S.currentEvaluationContext().ExprContext;
|
||
const bool BadContext =
|
||
S.isUnevaluatedContext() ||
|
||
ExprContext != Sema::ExpressionEvaluationContextRecord::EK_Other;
|
||
if (BadContext) {
|
||
S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
|
||
return false;
|
||
}
|
||
|
||
// Second emphasis of [expr.await]p2: must be outside of an exception handler.
|
||
if (isWithinCatchScope(S.getCurScope())) {
|
||
S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
|
||
if (!checkSuspensionContext(*this, Loc, "co_await"))
|
||
return ExprError();
|
||
|
||
if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
|
||
CorrectDelayedTyposInExpr(E);
|
||
return ExprError();
|
||
}
|
||
|
||
if (E->hasPlaceholderType()) {
|
||
ExprResult R = CheckPlaceholderExpr(E);
|
||
if (R.isInvalid()) return ExprError();
|
||
E = R.get();
|
||
}
|
||
|
||
ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
|
||
if (Lookup.isInvalid())
|
||
return ExprError();
|
||
return BuildUnresolvedCoawaitExpr(Loc, E,
|
||
cast<UnresolvedLookupExpr>(Lookup.get()));
|
||
}
|
||
|
||
ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
|
||
DeclarationName OpName =
|
||
Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
|
||
LookupResult Operators(*this, OpName, SourceLocation(),
|
||
Sema::LookupOperatorName);
|
||
LookupName(Operators, S);
|
||
|
||
assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
|
||
const auto &Functions = Operators.asUnresolvedSet();
|
||
Expr *CoawaitOp = UnresolvedLookupExpr::Create(
|
||
Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
|
||
DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, Functions.begin(),
|
||
Functions.end(), /*KnownDependent=*/false,
|
||
/*KnownInstantiationDependent=*/false);
|
||
assert(CoawaitOp);
|
||
return CoawaitOp;
|
||
}
|
||
|
||
static bool isAttributedCoroAwaitElidable(const QualType &QT) {
|
||
auto *Record = QT->getAsCXXRecordDecl();
|
||
return Record && Record->hasAttr<CoroAwaitElidableAttr>();
|
||
}
|
||
|
||
static void applySafeElideContext(Expr *Operand) {
|
||
auto *Call = dyn_cast<CallExpr>(Operand->IgnoreImplicit());
|
||
if (!Call || !Call->isPRValue())
|
||
return;
|
||
|
||
if (!isAttributedCoroAwaitElidable(Call->getType()))
|
||
return;
|
||
|
||
Call->setCoroElideSafe();
|
||
|
||
// Check parameter
|
||
auto *Fn = llvm::dyn_cast_if_present<FunctionDecl>(Call->getCalleeDecl());
|
||
if (!Fn)
|
||
return;
|
||
|
||
size_t ParmIdx = 0;
|
||
for (ParmVarDecl *PD : Fn->parameters()) {
|
||
if (PD->hasAttr<CoroAwaitElidableArgumentAttr>())
|
||
applySafeElideContext(Call->getArg(ParmIdx));
|
||
|
||
ParmIdx++;
|
||
}
|
||
}
|
||
|
||
// Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
|
||
// DependentCoawaitExpr if needed.
|
||
ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
|
||
UnresolvedLookupExpr *Lookup) {
|
||
auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
|
||
if (!FSI)
|
||
return ExprError();
|
||
|
||
if (Operand->hasPlaceholderType()) {
|
||
ExprResult R = CheckPlaceholderExpr(Operand);
|
||
if (R.isInvalid())
|
||
return ExprError();
|
||
Operand = R.get();
|
||
}
|
||
|
||
auto *Promise = FSI->CoroutinePromise;
|
||
if (Promise->getType()->isDependentType()) {
|
||
Expr *Res = new (Context)
|
||
DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
|
||
return Res;
|
||
}
|
||
|
||
auto *RD = Promise->getType()->getAsCXXRecordDecl();
|
||
|
||
bool CurFnAwaitElidable = isAttributedCoroAwaitElidable(
|
||
getCurFunctionDecl(/*AllowLambda=*/true)->getReturnType());
|
||
|
||
if (CurFnAwaitElidable)
|
||
applySafeElideContext(Operand);
|
||
|
||
Expr *Transformed = Operand;
|
||
if (lookupMember(*this, "await_transform", RD, Loc)) {
|
||
ExprResult R =
|
||
buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
|
||
if (R.isInvalid()) {
|
||
Diag(Loc,
|
||
diag::note_coroutine_promise_implicit_await_transform_required_here)
|
||
<< Operand->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
Transformed = R.get();
|
||
}
|
||
ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
|
||
if (Awaiter.isInvalid())
|
||
return ExprError();
|
||
|
||
return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
|
||
}
|
||
|
||
ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
|
||
Expr *Awaiter, bool IsImplicit) {
|
||
auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
|
||
if (!Coroutine)
|
||
return ExprError();
|
||
|
||
if (Awaiter->hasPlaceholderType()) {
|
||
ExprResult R = CheckPlaceholderExpr(Awaiter);
|
||
if (R.isInvalid()) return ExprError();
|
||
Awaiter = R.get();
|
||
}
|
||
|
||
if (Awaiter->getType()->isDependentType()) {
|
||
Expr *Res = new (Context)
|
||
CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
|
||
return Res;
|
||
}
|
||
|
||
// If the expression is a temporary, materialize it as an lvalue so that we
|
||
// can use it multiple times.
|
||
if (Awaiter->isPRValue())
|
||
Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
|
||
|
||
// The location of the `co_await` token cannot be used when constructing
|
||
// the member call expressions since it's before the location of `Expr`, which
|
||
// is used as the start of the member call expression.
|
||
SourceLocation CallLoc = Awaiter->getExprLoc();
|
||
|
||
// Build the await_ready, await_suspend, await_resume calls.
|
||
ReadySuspendResumeResult RSS =
|
||
buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
|
||
if (RSS.IsInvalid)
|
||
return ExprError();
|
||
|
||
Expr *Res = new (Context)
|
||
CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
|
||
RSS.Results[2], RSS.OpaqueValue, IsImplicit);
|
||
|
||
return Res;
|
||
}
|
||
|
||
ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
|
||
if (!checkSuspensionContext(*this, Loc, "co_yield"))
|
||
return ExprError();
|
||
|
||
if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
|
||
CorrectDelayedTyposInExpr(E);
|
||
return ExprError();
|
||
}
|
||
|
||
// Build yield_value call.
|
||
ExprResult Awaitable = buildPromiseCall(
|
||
*this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
|
||
if (Awaitable.isInvalid())
|
||
return ExprError();
|
||
|
||
// Build 'operator co_await' call.
|
||
Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
|
||
if (Awaitable.isInvalid())
|
||
return ExprError();
|
||
|
||
return BuildCoyieldExpr(Loc, Awaitable.get());
|
||
}
|
||
ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
|
||
auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
|
||
if (!Coroutine)
|
||
return ExprError();
|
||
|
||
if (E->hasPlaceholderType()) {
|
||
ExprResult R = CheckPlaceholderExpr(E);
|
||
if (R.isInvalid()) return ExprError();
|
||
E = R.get();
|
||
}
|
||
|
||
Expr *Operand = E;
|
||
|
||
if (E->getType()->isDependentType()) {
|
||
Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
|
||
return Res;
|
||
}
|
||
|
||
// If the expression is a temporary, materialize it as an lvalue so that we
|
||
// can use it multiple times.
|
||
if (E->isPRValue())
|
||
E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
|
||
|
||
// Build the await_ready, await_suspend, await_resume calls.
|
||
ReadySuspendResumeResult RSS = buildCoawaitCalls(
|
||
*this, Coroutine->CoroutinePromise, Loc, E);
|
||
if (RSS.IsInvalid)
|
||
return ExprError();
|
||
|
||
Expr *Res =
|
||
new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
|
||
RSS.Results[2], RSS.OpaqueValue);
|
||
|
||
return Res;
|
||
}
|
||
|
||
StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
|
||
if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
|
||
CorrectDelayedTyposInExpr(E);
|
||
return StmtError();
|
||
}
|
||
return BuildCoreturnStmt(Loc, E);
|
||
}
|
||
|
||
StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
|
||
bool IsImplicit) {
|
||
auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
|
||
if (!FSI)
|
||
return StmtError();
|
||
|
||
if (E && E->hasPlaceholderType() &&
|
||
!E->hasPlaceholderType(BuiltinType::Overload)) {
|
||
ExprResult R = CheckPlaceholderExpr(E);
|
||
if (R.isInvalid()) return StmtError();
|
||
E = R.get();
|
||
}
|
||
|
||
VarDecl *Promise = FSI->CoroutinePromise;
|
||
ExprResult PC;
|
||
if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
|
||
getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
|
||
PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
|
||
} else {
|
||
E = MakeFullDiscardedValueExpr(E).get();
|
||
PC = buildPromiseCall(*this, Promise, Loc, "return_void", {});
|
||
}
|
||
if (PC.isInvalid())
|
||
return StmtError();
|
||
|
||
Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
|
||
|
||
Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
|
||
return Res;
|
||
}
|
||
|
||
/// Look up the std::nothrow object.
|
||
static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
|
||
NamespaceDecl *Std = S.getStdNamespace();
|
||
assert(Std && "Should already be diagnosed");
|
||
|
||
LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
|
||
Sema::LookupOrdinaryName);
|
||
if (!S.LookupQualifiedName(Result, Std)) {
|
||
// <coroutine> is not requred to include <new>, so we couldn't omit
|
||
// the check here.
|
||
S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
|
||
return nullptr;
|
||
}
|
||
|
||
auto *VD = Result.getAsSingle<VarDecl>();
|
||
if (!VD) {
|
||
Result.suppressDiagnostics();
|
||
// We found something weird. Complain about the first thing we found.
|
||
NamedDecl *Found = *Result.begin();
|
||
S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
|
||
return nullptr;
|
||
}
|
||
|
||
ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
|
||
if (DR.isInvalid())
|
||
return nullptr;
|
||
|
||
return DR.get();
|
||
}
|
||
|
||
static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
|
||
SourceLocation Loc) {
|
||
EnumDecl *StdAlignValT = S.getStdAlignValT();
|
||
QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
|
||
return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl);
|
||
}
|
||
|
||
// Find an appropriate delete for the promise.
|
||
static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
|
||
FunctionDecl *&OperatorDelete) {
|
||
DeclarationName DeleteName =
|
||
S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
|
||
|
||
auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
|
||
assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
|
||
|
||
const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
|
||
|
||
// [dcl.fct.def.coroutine]p12
|
||
// The deallocation function's name is looked up by searching for it in the
|
||
// scope of the promise type. If nothing is found, a search is performed in
|
||
// the global scope.
|
||
if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
|
||
/*Diagnose*/ true, /*WantSize*/ true,
|
||
/*WantAligned*/ Overaligned))
|
||
return false;
|
||
|
||
// [dcl.fct.def.coroutine]p12
|
||
// If both a usual deallocation function with only a pointer parameter and a
|
||
// usual deallocation function with both a pointer parameter and a size
|
||
// parameter are found, then the selected deallocation function shall be the
|
||
// one with two parameters. Otherwise, the selected deallocation function
|
||
// shall be the function with one parameter.
|
||
if (!OperatorDelete) {
|
||
// Look for a global declaration.
|
||
// Coroutines can always provide their required size.
|
||
const bool CanProvideSize = true;
|
||
// Sema::FindUsualDeallocationFunction will try to find the one with two
|
||
// parameters first. It will return the deallocation function with one
|
||
// parameter if failed.
|
||
OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
|
||
Overaligned, DeleteName);
|
||
|
||
if (!OperatorDelete)
|
||
return false;
|
||
}
|
||
|
||
S.MarkFunctionReferenced(Loc, OperatorDelete);
|
||
return true;
|
||
}
|
||
|
||
|
||
void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
|
||
FunctionScopeInfo *Fn = getCurFunction();
|
||
assert(Fn && Fn->isCoroutine() && "not a coroutine");
|
||
if (!Body) {
|
||
assert(FD->isInvalidDecl() &&
|
||
"a null body is only allowed for invalid declarations");
|
||
return;
|
||
}
|
||
// We have a function that uses coroutine keywords, but we failed to build
|
||
// the promise type.
|
||
if (!Fn->CoroutinePromise)
|
||
return FD->setInvalidDecl();
|
||
|
||
if (isa<CoroutineBodyStmt>(Body)) {
|
||
// Nothing todo. the body is already a transformed coroutine body statement.
|
||
return;
|
||
}
|
||
|
||
// The always_inline attribute doesn't reliably apply to a coroutine,
|
||
// because the coroutine will be split into pieces and some pieces
|
||
// might be called indirectly, as in a virtual call. Even the ramp
|
||
// function cannot be inlined at -O0, due to pipeline ordering
|
||
// problems (see https://llvm.org/PR53413). Tell the user about it.
|
||
if (FD->hasAttr<AlwaysInlineAttr>())
|
||
Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
|
||
|
||
// The design of coroutines means we cannot allow use of VLAs within one, so
|
||
// diagnose if we've seen a VLA in the body of this function.
|
||
if (Fn->FirstVLALoc.isValid())
|
||
Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported);
|
||
|
||
// Coroutines will get splitted into pieces. The GNU address of label
|
||
// extension wouldn't be meaningful in coroutines.
|
||
for (AddrLabelExpr *ALE : Fn->AddrLabels)
|
||
Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
|
||
|
||
// Coroutines always return a handle, so they can't be [[noreturn]].
|
||
if (FD->isNoReturn())
|
||
Diag(FD->getLocation(), diag::warn_noreturn_coroutine) << FD;
|
||
|
||
CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
|
||
if (Builder.isInvalid() || !Builder.buildStatements())
|
||
return FD->setInvalidDecl();
|
||
|
||
// Build body for the coroutine wrapper statement.
|
||
Body = CoroutineBodyStmt::Create(Context, Builder);
|
||
}
|
||
|
||
static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) {
|
||
if (auto *CS = dyn_cast<CompoundStmt>(Body))
|
||
return CS;
|
||
|
||
// The body of the coroutine may be a try statement if it is in
|
||
// 'function-try-block' syntax. Here we wrap it into a compound
|
||
// statement for consistency.
|
||
assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type");
|
||
return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(),
|
||
SourceLocation(), SourceLocation());
|
||
}
|
||
|
||
CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
|
||
sema::FunctionScopeInfo &Fn,
|
||
Stmt *Body)
|
||
: S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
|
||
IsPromiseDependentType(
|
||
!Fn.CoroutinePromise ||
|
||
Fn.CoroutinePromise->getType()->isDependentType()) {
|
||
this->Body = buildCoroutineBody(Body, S.getASTContext());
|
||
|
||
for (auto KV : Fn.CoroutineParameterMoves)
|
||
this->ParamMovesVector.push_back(KV.second);
|
||
this->ParamMoves = this->ParamMovesVector;
|
||
|
||
if (!IsPromiseDependentType) {
|
||
PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
|
||
assert(PromiseRecordDecl && "Type should have already been checked");
|
||
}
|
||
this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::buildStatements() {
|
||
assert(this->IsValid && "coroutine already invalid");
|
||
this->IsValid = makeReturnObject();
|
||
if (this->IsValid && !IsPromiseDependentType)
|
||
buildDependentStatements();
|
||
return this->IsValid;
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::buildDependentStatements() {
|
||
assert(this->IsValid && "coroutine already invalid");
|
||
assert(!this->IsPromiseDependentType &&
|
||
"coroutine cannot have a dependent promise type");
|
||
this->IsValid = makeOnException() && makeOnFallthrough() &&
|
||
makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
|
||
makeNewAndDeleteExpr();
|
||
return this->IsValid;
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::makePromiseStmt() {
|
||
// Form a declaration statement for the promise declaration, so that AST
|
||
// visitors can more easily find it.
|
||
StmtResult PromiseStmt =
|
||
S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
|
||
if (PromiseStmt.isInvalid())
|
||
return false;
|
||
|
||
this->Promise = PromiseStmt.get();
|
||
return true;
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
|
||
if (Fn.hasInvalidCoroutineSuspends())
|
||
return false;
|
||
this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
|
||
this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
|
||
return true;
|
||
}
|
||
|
||
static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
|
||
CXXRecordDecl *PromiseRecordDecl,
|
||
FunctionScopeInfo &Fn) {
|
||
auto Loc = E->getExprLoc();
|
||
if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
|
||
auto *Decl = DeclRef->getDecl();
|
||
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
|
||
if (Method->isStatic())
|
||
return true;
|
||
else
|
||
Loc = Decl->getLocation();
|
||
}
|
||
}
|
||
|
||
S.Diag(
|
||
Loc,
|
||
diag::err_coroutine_promise_get_return_object_on_allocation_failure)
|
||
<< PromiseRecordDecl;
|
||
S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
|
||
<< Fn.getFirstCoroutineStmtKeyword();
|
||
return false;
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
|
||
assert(!IsPromiseDependentType &&
|
||
"cannot make statement while the promise type is dependent");
|
||
|
||
// [dcl.fct.def.coroutine]p10
|
||
// If a search for the name get_return_object_on_allocation_failure in
|
||
// the scope of the promise type ([class.member.lookup]) finds any
|
||
// declarations, then the result of a call to an allocation function used to
|
||
// obtain storage for the coroutine state is assumed to return nullptr if it
|
||
// fails to obtain storage, ... If the allocation function returns nullptr,
|
||
// ... and the return value is obtained by a call to
|
||
// T::get_return_object_on_allocation_failure(), where T is the
|
||
// promise type.
|
||
DeclarationName DN =
|
||
S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
|
||
LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
|
||
if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
|
||
return true;
|
||
|
||
CXXScopeSpec SS;
|
||
ExprResult DeclNameExpr =
|
||
S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
|
||
if (DeclNameExpr.isInvalid())
|
||
return false;
|
||
|
||
if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
|
||
return false;
|
||
|
||
ExprResult ReturnObjectOnAllocationFailure =
|
||
S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
|
||
if (ReturnObjectOnAllocationFailure.isInvalid())
|
||
return false;
|
||
|
||
StmtResult ReturnStmt =
|
||
S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
|
||
if (ReturnStmt.isInvalid()) {
|
||
S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
|
||
<< DN;
|
||
S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
|
||
<< Fn.getFirstCoroutineStmtKeyword();
|
||
return false;
|
||
}
|
||
|
||
this->ReturnStmtOnAllocFailure = ReturnStmt.get();
|
||
return true;
|
||
}
|
||
|
||
// Collect placement arguments for allocation function of coroutine FD.
|
||
// Return true if we collect placement arguments succesfully. Return false,
|
||
// otherwise.
|
||
static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
|
||
SmallVectorImpl<Expr *> &PlacementArgs) {
|
||
if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
|
||
if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
|
||
ExprResult ThisExpr = S.ActOnCXXThis(Loc);
|
||
if (ThisExpr.isInvalid())
|
||
return false;
|
||
ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
|
||
if (ThisExpr.isInvalid())
|
||
return false;
|
||
PlacementArgs.push_back(ThisExpr.get());
|
||
}
|
||
}
|
||
|
||
for (auto *PD : FD.parameters()) {
|
||
if (PD->getType()->isDependentType())
|
||
continue;
|
||
|
||
// Build a reference to the parameter.
|
||
auto PDLoc = PD->getLocation();
|
||
ExprResult PDRefExpr =
|
||
S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
|
||
ExprValueKind::VK_LValue, PDLoc);
|
||
if (PDRefExpr.isInvalid())
|
||
return false;
|
||
|
||
PlacementArgs.push_back(PDRefExpr.get());
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
|
||
// Form and check allocation and deallocation calls.
|
||
assert(!IsPromiseDependentType &&
|
||
"cannot make statement while the promise type is dependent");
|
||
QualType PromiseType = Fn.CoroutinePromise->getType();
|
||
|
||
if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
|
||
return false;
|
||
|
||
const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
|
||
|
||
// According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
|
||
// parameter list composed of the requested size of the coroutine state being
|
||
// allocated, followed by the coroutine function's arguments. If a matching
|
||
// allocation function exists, use it. Otherwise, use an allocation function
|
||
// that just takes the requested size.
|
||
//
|
||
// [dcl.fct.def.coroutine]p9
|
||
// An implementation may need to allocate additional storage for a
|
||
// coroutine.
|
||
// This storage is known as the coroutine state and is obtained by calling a
|
||
// non-array allocation function ([basic.stc.dynamic.allocation]). The
|
||
// allocation function's name is looked up by searching for it in the scope of
|
||
// the promise type.
|
||
// - If any declarations are found, overload resolution is performed on a
|
||
// function call created by assembling an argument list. The first argument is
|
||
// the amount of space requested, and has type std::size_t. The
|
||
// lvalues p1 ... pn are the succeeding arguments.
|
||
//
|
||
// ...where "p1 ... pn" are defined earlier as:
|
||
//
|
||
// [dcl.fct.def.coroutine]p3
|
||
// The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
|
||
// Pn>`
|
||
// , where R is the return type of the function, and `P1, ..., Pn` are the
|
||
// sequence of types of the non-object function parameters, preceded by the
|
||
// type of the object parameter ([dcl.fct]) if the coroutine is a non-static
|
||
// member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
|
||
// lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
|
||
// the i-th non-object function parameter for a non-static member function,
|
||
// and p_i denotes the i-th function parameter otherwise. For a non-static
|
||
// member function, q_1 is an lvalue that denotes *this; any other q_i is an
|
||
// lvalue that denotes the parameter copy corresponding to p_i.
|
||
|
||
FunctionDecl *OperatorNew = nullptr;
|
||
SmallVector<Expr *, 1> PlacementArgs;
|
||
|
||
const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
|
||
DeclarationName NewName =
|
||
S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
|
||
LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
|
||
|
||
if (PromiseType->isRecordType())
|
||
S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
|
||
|
||
return !R.empty() && !R.isAmbiguous();
|
||
}();
|
||
|
||
// Helper function to indicate whether the last lookup found the aligned
|
||
// allocation function.
|
||
bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
|
||
auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
|
||
Sema::AFS_Both,
|
||
bool WithoutPlacementArgs = false,
|
||
bool ForceNonAligned = false) {
|
||
// [dcl.fct.def.coroutine]p9
|
||
// The allocation function's name is looked up by searching for it in the
|
||
// scope of the promise type.
|
||
// - If any declarations are found, ...
|
||
// - If no declarations are found in the scope of the promise type, a search
|
||
// is performed in the global scope.
|
||
if (NewScope == Sema::AFS_Both)
|
||
NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
|
||
|
||
PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation;
|
||
FunctionDecl *UnusedResult = nullptr;
|
||
S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
|
||
/*DeleteScope*/ Sema::AFS_Both, PromiseType,
|
||
/*isArray*/ false, PassAlignment,
|
||
WithoutPlacementArgs ? MultiExprArg{}
|
||
: PlacementArgs,
|
||
OperatorNew, UnusedResult, /*Diagnose*/ false);
|
||
};
|
||
|
||
// We don't expect to call to global operator new with (size, p0, …, pn).
|
||
// So if we choose to lookup the allocation function in global scope, we
|
||
// shouldn't lookup placement arguments.
|
||
if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
|
||
return false;
|
||
|
||
LookupAllocationFunction();
|
||
|
||
if (PromiseContainsNew && !PlacementArgs.empty()) {
|
||
// [dcl.fct.def.coroutine]p9
|
||
// If no viable function is found ([over.match.viable]), overload
|
||
// resolution
|
||
// is performed again on a function call created by passing just the amount
|
||
// of space required as an argument of type std::size_t.
|
||
//
|
||
// Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
|
||
// Otherwise, overload resolution is performed again on a function call
|
||
// created
|
||
// by passing the amount of space requested as an argument of type
|
||
// std::size_t as the first argument, and the requested alignment as
|
||
// an argument of type std:align_val_t as the second argument.
|
||
if (!OperatorNew ||
|
||
(S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
|
||
LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
|
||
/*WithoutPlacementArgs*/ true);
|
||
}
|
||
|
||
// Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
|
||
// Otherwise, overload resolution is performed again on a function call
|
||
// created
|
||
// by passing the amount of space requested as an argument of type
|
||
// std::size_t as the first argument, and the lvalues p1 ... pn as the
|
||
// succeeding arguments. Otherwise, overload resolution is performed again
|
||
// on a function call created by passing just the amount of space required as
|
||
// an argument of type std::size_t.
|
||
//
|
||
// So within the proposed change in P2014RO, the priority order of aligned
|
||
// allocation functions wiht promise_type is:
|
||
//
|
||
// void* operator new( std::size_t, std::align_val_t, placement_args... );
|
||
// void* operator new( std::size_t, std::align_val_t);
|
||
// void* operator new( std::size_t, placement_args... );
|
||
// void* operator new( std::size_t);
|
||
|
||
// Helper variable to emit warnings.
|
||
bool FoundNonAlignedInPromise = false;
|
||
if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation)
|
||
if (!OperatorNew || !PassAlignment) {
|
||
FoundNonAlignedInPromise = OperatorNew;
|
||
|
||
LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
|
||
/*WithoutPlacementArgs*/ false,
|
||
/*ForceNonAligned*/ true);
|
||
|
||
if (!OperatorNew && !PlacementArgs.empty())
|
||
LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
|
||
/*WithoutPlacementArgs*/ true,
|
||
/*ForceNonAligned*/ true);
|
||
}
|
||
|
||
bool IsGlobalOverload =
|
||
OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
|
||
// If we didn't find a class-local new declaration and non-throwing new
|
||
// was is required then we need to lookup the non-throwing global operator
|
||
// instead.
|
||
if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
|
||
auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
|
||
if (!StdNoThrow)
|
||
return false;
|
||
PlacementArgs = {StdNoThrow};
|
||
OperatorNew = nullptr;
|
||
LookupAllocationFunction(Sema::AFS_Global);
|
||
}
|
||
|
||
// If we found a non-aligned allocation function in the promise_type,
|
||
// it indicates the user forgot to update the allocation function. Let's emit
|
||
// a warning here.
|
||
if (FoundNonAlignedInPromise) {
|
||
S.Diag(OperatorNew->getLocation(),
|
||
diag::warn_non_aligned_allocation_function)
|
||
<< &FD;
|
||
}
|
||
|
||
if (!OperatorNew) {
|
||
if (PromiseContainsNew)
|
||
S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
|
||
else if (RequiresNoThrowAlloc)
|
||
S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
|
||
<< &FD << S.getLangOpts().CoroAlignedAllocation;
|
||
|
||
return false;
|
||
}
|
||
|
||
if (RequiresNoThrowAlloc) {
|
||
const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
|
||
if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
|
||
S.Diag(OperatorNew->getLocation(),
|
||
diag::err_coroutine_promise_new_requires_nothrow)
|
||
<< OperatorNew;
|
||
S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
|
||
<< OperatorNew;
|
||
return false;
|
||
}
|
||
}
|
||
|
||
FunctionDecl *OperatorDelete = nullptr;
|
||
if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
|
||
// FIXME: We should add an error here. According to:
|
||
// [dcl.fct.def.coroutine]p12
|
||
// If no usual deallocation function is found, the program is ill-formed.
|
||
return false;
|
||
}
|
||
|
||
Expr *FramePtr =
|
||
S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
|
||
|
||
Expr *FrameSize =
|
||
S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
|
||
|
||
Expr *FrameAlignment = nullptr;
|
||
|
||
if (S.getLangOpts().CoroAlignedAllocation) {
|
||
FrameAlignment =
|
||
S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
|
||
|
||
TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
|
||
if (!AlignValTy)
|
||
return false;
|
||
|
||
FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy,
|
||
FrameAlignment, SourceRange(Loc, Loc),
|
||
SourceRange(Loc, Loc))
|
||
.get();
|
||
}
|
||
|
||
// Make new call.
|
||
ExprResult NewRef =
|
||
S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
|
||
if (NewRef.isInvalid())
|
||
return false;
|
||
|
||
SmallVector<Expr *, 2> NewArgs(1, FrameSize);
|
||
if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
|
||
NewArgs.push_back(FrameAlignment);
|
||
|
||
if (OperatorNew->getNumParams() > NewArgs.size())
|
||
llvm::append_range(NewArgs, PlacementArgs);
|
||
|
||
ExprResult NewExpr =
|
||
S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
|
||
NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
|
||
if (NewExpr.isInvalid())
|
||
return false;
|
||
|
||
// Make delete call.
|
||
|
||
QualType OpDeleteQualType = OperatorDelete->getType();
|
||
|
||
ExprResult DeleteRef =
|
||
S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
|
||
if (DeleteRef.isInvalid())
|
||
return false;
|
||
|
||
Expr *CoroFree =
|
||
S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
|
||
|
||
SmallVector<Expr *, 2> DeleteArgs{CoroFree};
|
||
|
||
// [dcl.fct.def.coroutine]p12
|
||
// The selected deallocation function shall be called with the address of
|
||
// the block of storage to be reclaimed as its first argument. If a
|
||
// deallocation function with a parameter of type std::size_t is
|
||
// used, the size of the block is passed as the corresponding argument.
|
||
const auto *OpDeleteType =
|
||
OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
|
||
if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
|
||
S.getASTContext().hasSameUnqualifiedType(
|
||
OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType()))
|
||
DeleteArgs.push_back(FrameSize);
|
||
|
||
// Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
|
||
// If deallocation function lookup finds a usual deallocation function with
|
||
// a pointer parameter, size parameter and alignment parameter then this
|
||
// will be the selected deallocation function, otherwise if lookup finds a
|
||
// usual deallocation function with both a pointer parameter and a size
|
||
// parameter, then this will be the selected deallocation function.
|
||
// Otherwise, if lookup finds a usual deallocation function with only a
|
||
// pointer parameter, then this will be the selected deallocation
|
||
// function.
|
||
//
|
||
// So we are not forced to pass alignment to the deallocation function.
|
||
if (S.getLangOpts().CoroAlignedAllocation &&
|
||
OpDeleteType->getNumParams() > DeleteArgs.size() &&
|
||
S.getASTContext().hasSameUnqualifiedType(
|
||
OpDeleteType->getParamType(DeleteArgs.size()),
|
||
FrameAlignment->getType()))
|
||
DeleteArgs.push_back(FrameAlignment);
|
||
|
||
ExprResult DeleteExpr =
|
||
S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
|
||
DeleteExpr =
|
||
S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
|
||
if (DeleteExpr.isInvalid())
|
||
return false;
|
||
|
||
this->Allocate = NewExpr.get();
|
||
this->Deallocate = DeleteExpr.get();
|
||
|
||
return true;
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::makeOnFallthrough() {
|
||
assert(!IsPromiseDependentType &&
|
||
"cannot make statement while the promise type is dependent");
|
||
|
||
// [dcl.fct.def.coroutine]/p6
|
||
// If searches for the names return_void and return_value in the scope of
|
||
// the promise type each find any declarations, the program is ill-formed.
|
||
// [Note 1: If return_void is found, flowing off the end of a coroutine is
|
||
// equivalent to a co_return with no operand. Otherwise, flowing off the end
|
||
// of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
|
||
// end note]
|
||
bool HasRVoid, HasRValue;
|
||
LookupResult LRVoid =
|
||
lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
|
||
LookupResult LRValue =
|
||
lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
|
||
|
||
StmtResult Fallthrough;
|
||
if (HasRVoid && HasRValue) {
|
||
// FIXME Improve this diagnostic
|
||
S.Diag(FD.getLocation(),
|
||
diag::err_coroutine_promise_incompatible_return_functions)
|
||
<< PromiseRecordDecl;
|
||
S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
|
||
diag::note_member_first_declared_here)
|
||
<< LRVoid.getLookupName();
|
||
S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
|
||
diag::note_member_first_declared_here)
|
||
<< LRValue.getLookupName();
|
||
return false;
|
||
} else if (!HasRVoid && !HasRValue) {
|
||
// We need to set 'Fallthrough'. Otherwise the other analysis part might
|
||
// think the coroutine has defined a return_value method. So it might emit
|
||
// **false** positive warning. e.g.,
|
||
//
|
||
// promise_without_return_func foo() {
|
||
// co_await something();
|
||
// }
|
||
//
|
||
// Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
|
||
// co_return statements, which isn't correct.
|
||
Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
|
||
if (Fallthrough.isInvalid())
|
||
return false;
|
||
} else if (HasRVoid) {
|
||
Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
|
||
/*IsImplicit=*/true);
|
||
Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
|
||
if (Fallthrough.isInvalid())
|
||
return false;
|
||
}
|
||
|
||
this->OnFallthrough = Fallthrough.get();
|
||
return true;
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::makeOnException() {
|
||
// Try to form 'p.unhandled_exception();'
|
||
assert(!IsPromiseDependentType &&
|
||
"cannot make statement while the promise type is dependent");
|
||
|
||
const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
|
||
|
||
if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
|
||
auto DiagID =
|
||
RequireUnhandledException
|
||
? diag::err_coroutine_promise_unhandled_exception_required
|
||
: diag::
|
||
warn_coroutine_promise_unhandled_exception_required_with_exceptions;
|
||
S.Diag(Loc, DiagID) << PromiseRecordDecl;
|
||
S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
|
||
<< PromiseRecordDecl;
|
||
return !RequireUnhandledException;
|
||
}
|
||
|
||
// If exceptions are disabled, don't try to build OnException.
|
||
if (!S.getLangOpts().CXXExceptions)
|
||
return true;
|
||
|
||
ExprResult UnhandledException =
|
||
buildPromiseCall(S, Fn.CoroutinePromise, Loc, "unhandled_exception", {});
|
||
UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
|
||
/*DiscardedValue*/ false);
|
||
if (UnhandledException.isInvalid())
|
||
return false;
|
||
|
||
// Since the body of the coroutine will be wrapped in try-catch, it will
|
||
// be incompatible with SEH __try if present in a function.
|
||
if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
|
||
S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
|
||
S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
|
||
<< Fn.getFirstCoroutineStmtKeyword();
|
||
return false;
|
||
}
|
||
|
||
this->OnException = UnhandledException.get();
|
||
return true;
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::makeReturnObject() {
|
||
// [dcl.fct.def.coroutine]p7
|
||
// The expression promise.get_return_object() is used to initialize the
|
||
// returned reference or prvalue result object of a call to a coroutine.
|
||
ExprResult ReturnObject =
|
||
buildPromiseCall(S, Fn.CoroutinePromise, Loc, "get_return_object", {});
|
||
if (ReturnObject.isInvalid())
|
||
return false;
|
||
|
||
this->ReturnValue = ReturnObject.get();
|
||
return true;
|
||
}
|
||
|
||
static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
|
||
if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
|
||
auto *MethodDecl = MbrRef->getMethodDecl();
|
||
S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
|
||
<< MethodDecl;
|
||
}
|
||
S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
|
||
<< Fn.getFirstCoroutineStmtKeyword();
|
||
}
|
||
|
||
bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
|
||
assert(!IsPromiseDependentType &&
|
||
"cannot make statement while the promise type is dependent");
|
||
assert(this->ReturnValue && "ReturnValue must be already formed");
|
||
|
||
QualType const GroType = this->ReturnValue->getType();
|
||
assert(!GroType->isDependentType() &&
|
||
"get_return_object type must no longer be dependent");
|
||
|
||
QualType const FnRetType = FD.getReturnType();
|
||
assert(!FnRetType->isDependentType() &&
|
||
"get_return_object type must no longer be dependent");
|
||
|
||
// The call to get_return_object is sequenced before the call to
|
||
// initial_suspend and is invoked at most once, but there are caveats
|
||
// regarding on whether the prvalue result object may be initialized
|
||
// directly/eager or delayed, depending on the types involved.
|
||
//
|
||
// More info at https://github.com/cplusplus/papers/issues/1414
|
||
bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType);
|
||
|
||
if (FnRetType->isVoidType()) {
|
||
ExprResult Res =
|
||
S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
|
||
if (Res.isInvalid())
|
||
return false;
|
||
|
||
if (!GroMatchesRetType)
|
||
this->ResultDecl = Res.get();
|
||
return true;
|
||
}
|
||
|
||
if (GroType->isVoidType()) {
|
||
// Trigger a nice error message.
|
||
InitializedEntity Entity =
|
||
InitializedEntity::InitializeResult(Loc, FnRetType);
|
||
S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
|
||
noteMemberDeclaredHere(S, ReturnValue, Fn);
|
||
return false;
|
||
}
|
||
|
||
StmtResult ReturnStmt;
|
||
clang::VarDecl *GroDecl = nullptr;
|
||
if (GroMatchesRetType) {
|
||
ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
|
||
} else {
|
||
GroDecl = VarDecl::Create(
|
||
S.Context, &FD, FD.getLocation(), FD.getLocation(),
|
||
&S.PP.getIdentifierTable().get("__coro_gro"), GroType,
|
||
S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None);
|
||
GroDecl->setImplicit();
|
||
|
||
S.CheckVariableDeclarationType(GroDecl);
|
||
if (GroDecl->isInvalidDecl())
|
||
return false;
|
||
|
||
InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl);
|
||
ExprResult Res =
|
||
S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
|
||
if (Res.isInvalid())
|
||
return false;
|
||
|
||
Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false);
|
||
if (Res.isInvalid())
|
||
return false;
|
||
|
||
S.AddInitializerToDecl(GroDecl, Res.get(),
|
||
/*DirectInit=*/false);
|
||
|
||
S.FinalizeDeclaration(GroDecl);
|
||
|
||
// Form a declaration statement for the return declaration, so that AST
|
||
// visitors can more easily find it.
|
||
StmtResult GroDeclStmt =
|
||
S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc);
|
||
if (GroDeclStmt.isInvalid())
|
||
return false;
|
||
|
||
this->ResultDecl = GroDeclStmt.get();
|
||
|
||
ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
|
||
if (declRef.isInvalid())
|
||
return false;
|
||
|
||
ReturnStmt = S.BuildReturnStmt(Loc, declRef.get());
|
||
}
|
||
|
||
if (ReturnStmt.isInvalid()) {
|
||
noteMemberDeclaredHere(S, ReturnValue, Fn);
|
||
return false;
|
||
}
|
||
|
||
if (!GroMatchesRetType &&
|
||
cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl)
|
||
GroDecl->setNRVOVariable(true);
|
||
|
||
this->ReturnStmt = ReturnStmt.get();
|
||
return true;
|
||
}
|
||
|
||
// Create a static_cast\<T&&>(expr).
|
||
static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
|
||
if (T.isNull())
|
||
T = E->getType();
|
||
QualType TargetType = S.BuildReferenceType(
|
||
T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
|
||
SourceLocation ExprLoc = E->getBeginLoc();
|
||
TypeSourceInfo *TargetLoc =
|
||
S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
|
||
|
||
return S
|
||
.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
|
||
SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
|
||
.get();
|
||
}
|
||
|
||
/// Build a variable declaration for move parameter.
|
||
static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
|
||
IdentifierInfo *II) {
|
||
TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
|
||
VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
|
||
TInfo, SC_None);
|
||
Decl->setImplicit();
|
||
return Decl;
|
||
}
|
||
|
||
// Build statements that move coroutine function parameters to the coroutine
|
||
// frame, and store them on the function scope info.
|
||
bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
|
||
assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
|
||
auto *FD = cast<FunctionDecl>(CurContext);
|
||
|
||
auto *ScopeInfo = getCurFunction();
|
||
if (!ScopeInfo->CoroutineParameterMoves.empty())
|
||
return false;
|
||
|
||
// [dcl.fct.def.coroutine]p13
|
||
// When a coroutine is invoked, after initializing its parameters
|
||
// ([expr.call]), a copy is created for each coroutine parameter. For a
|
||
// parameter of type cv T, the copy is a variable of type cv T with
|
||
// automatic storage duration that is direct-initialized from an xvalue of
|
||
// type T referring to the parameter.
|
||
for (auto *PD : FD->parameters()) {
|
||
if (PD->getType()->isDependentType())
|
||
continue;
|
||
|
||
// Preserve the referenced state for unused parameter diagnostics.
|
||
bool DeclReferenced = PD->isReferenced();
|
||
|
||
ExprResult PDRefExpr =
|
||
BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
|
||
ExprValueKind::VK_LValue, Loc); // FIXME: scope?
|
||
|
||
PD->setReferenced(DeclReferenced);
|
||
|
||
if (PDRefExpr.isInvalid())
|
||
return false;
|
||
|
||
Expr *CExpr = nullptr;
|
||
if (PD->getType()->getAsCXXRecordDecl() ||
|
||
PD->getType()->isRValueReferenceType())
|
||
CExpr = castForMoving(*this, PDRefExpr.get());
|
||
else
|
||
CExpr = PDRefExpr.get();
|
||
// [dcl.fct.def.coroutine]p13
|
||
// The initialization and destruction of each parameter copy occurs in the
|
||
// context of the called coroutine.
|
||
auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
|
||
AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
|
||
|
||
// Convert decl to a statement.
|
||
StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
|
||
if (Stmt.isInvalid())
|
||
return false;
|
||
|
||
ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
|
||
}
|
||
return true;
|
||
}
|
||
|
||
StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
|
||
CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
|
||
if (!Res)
|
||
return StmtError();
|
||
return Res;
|
||
}
|
||
|
||
ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
|
||
SourceLocation FuncLoc) {
|
||
if (StdCoroutineTraitsCache)
|
||
return StdCoroutineTraitsCache;
|
||
|
||
IdentifierInfo const &TraitIdent =
|
||
PP.getIdentifierTable().get("coroutine_traits");
|
||
|
||
NamespaceDecl *StdSpace = getStdNamespace();
|
||
LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
|
||
bool Found = StdSpace && LookupQualifiedName(Result, StdSpace);
|
||
|
||
if (!Found) {
|
||
// The goggles, we found nothing!
|
||
Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
|
||
<< "std::coroutine_traits";
|
||
return nullptr;
|
||
}
|
||
|
||
// coroutine_traits is required to be a class template.
|
||
StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
|
||
if (!StdCoroutineTraitsCache) {
|
||
Result.suppressDiagnostics();
|
||
NamedDecl *Found = *Result.begin();
|
||
Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
|
||
return nullptr;
|
||
}
|
||
|
||
return StdCoroutineTraitsCache;
|
||
}
|