mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-17 21:36:39 +00:00
7228 lines
295 KiB
C++
7228 lines
295 KiB
C++
//===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements C++ template argument deduction.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TreeTransform.h"
|
|
#include "TypeLocBuilder.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclAccessPair.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/DynamicRecursiveASTVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/TemplateBase.h"
|
|
#include "clang/AST/TemplateName.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeOrdering.h"
|
|
#include "clang/AST/UnresolvedSet.h"
|
|
#include "clang/Basic/AddressSpaces.h"
|
|
#include "clang/Basic/ExceptionSpecificationType.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Sema/EnterExpressionEvaluationContext.h"
|
|
#include "clang/Sema/Ownership.h"
|
|
#include "clang/Sema/Sema.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <optional>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace clang {
|
|
|
|
/// Various flags that control template argument deduction.
|
|
///
|
|
/// These flags can be bitwise-OR'd together.
|
|
enum TemplateDeductionFlags {
|
|
/// No template argument deduction flags, which indicates the
|
|
/// strictest results for template argument deduction (as used for, e.g.,
|
|
/// matching class template partial specializations).
|
|
TDF_None = 0,
|
|
|
|
/// Within template argument deduction from a function call, we are
|
|
/// matching with a parameter type for which the original parameter was
|
|
/// a reference.
|
|
TDF_ParamWithReferenceType = 0x1,
|
|
|
|
/// Within template argument deduction from a function call, we
|
|
/// are matching in a case where we ignore cv-qualifiers.
|
|
TDF_IgnoreQualifiers = 0x02,
|
|
|
|
/// Within template argument deduction from a function call,
|
|
/// we are matching in a case where we can perform template argument
|
|
/// deduction from a template-id of a derived class of the argument type.
|
|
TDF_DerivedClass = 0x04,
|
|
|
|
/// Allow non-dependent types to differ, e.g., when performing
|
|
/// template argument deduction from a function call where conversions
|
|
/// may apply.
|
|
TDF_SkipNonDependent = 0x08,
|
|
|
|
/// Whether we are performing template argument deduction for
|
|
/// parameters and arguments in a top-level template argument
|
|
TDF_TopLevelParameterTypeList = 0x10,
|
|
|
|
/// Within template argument deduction from overload resolution per
|
|
/// C++ [over.over] allow matching function types that are compatible in
|
|
/// terms of noreturn and default calling convention adjustments, or
|
|
/// similarly matching a declared template specialization against a
|
|
/// possible template, per C++ [temp.deduct.decl]. In either case, permit
|
|
/// deduction where the parameter is a function type that can be converted
|
|
/// to the argument type.
|
|
TDF_AllowCompatibleFunctionType = 0x20,
|
|
|
|
/// Within template argument deduction for a conversion function, we are
|
|
/// matching with an argument type for which the original argument was
|
|
/// a reference.
|
|
TDF_ArgWithReferenceType = 0x40,
|
|
};
|
|
}
|
|
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
/// Compare two APSInts, extending and switching the sign as
|
|
/// necessary to compare their values regardless of underlying type.
|
|
static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
|
|
if (Y.getBitWidth() > X.getBitWidth())
|
|
X = X.extend(Y.getBitWidth());
|
|
else if (Y.getBitWidth() < X.getBitWidth())
|
|
Y = Y.extend(X.getBitWidth());
|
|
|
|
// If there is a signedness mismatch, correct it.
|
|
if (X.isSigned() != Y.isSigned()) {
|
|
// If the signed value is negative, then the values cannot be the same.
|
|
if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
|
|
return false;
|
|
|
|
Y.setIsSigned(true);
|
|
X.setIsSigned(true);
|
|
}
|
|
|
|
return X == Y;
|
|
}
|
|
|
|
/// The kind of PartialOrdering we're performing template argument deduction
|
|
/// for (C++11 [temp.deduct.partial]).
|
|
enum class PartialOrderingKind { None, NonCall, Call };
|
|
|
|
static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch(
|
|
Sema &S, TemplateParameterList *TemplateParams, QualType Param,
|
|
QualType Arg, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
|
|
PartialOrderingKind POK, bool DeducedFromArrayBound,
|
|
bool *HasDeducedAnyParam);
|
|
|
|
/// What directions packs are allowed to match non-packs.
|
|
enum class PackFold { ParameterToArgument, ArgumentToParameter, Both };
|
|
|
|
static TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
|
|
ArrayRef<TemplateArgument> Ps,
|
|
ArrayRef<TemplateArgument> As,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool NumberOfArgumentsMustMatch, bool PartialOrdering,
|
|
PackFold PackFold, bool *HasDeducedAnyParam);
|
|
|
|
static void MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const TemplateArgument &TemplateArg,
|
|
bool OnlyDeduced, unsigned Depth,
|
|
llvm::SmallBitVector &Used);
|
|
|
|
static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
|
|
bool OnlyDeduced, unsigned Level,
|
|
llvm::SmallBitVector &Deduced);
|
|
|
|
/// If the given expression is of a form that permits the deduction
|
|
/// of a non-type template parameter, return the declaration of that
|
|
/// non-type template parameter.
|
|
static const NonTypeTemplateParmDecl *
|
|
getDeducedParameterFromExpr(const Expr *E, unsigned Depth) {
|
|
// If we are within an alias template, the expression may have undergone
|
|
// any number of parameter substitutions already.
|
|
while (true) {
|
|
if (const auto *IC = dyn_cast<ImplicitCastExpr>(E))
|
|
E = IC->getSubExpr();
|
|
else if (const auto *CE = dyn_cast<ConstantExpr>(E))
|
|
E = CE->getSubExpr();
|
|
else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
|
|
E = Subst->getReplacement();
|
|
else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) {
|
|
// Look through implicit copy construction from an lvalue of the same type.
|
|
if (CCE->getParenOrBraceRange().isValid())
|
|
break;
|
|
// Note, there could be default arguments.
|
|
assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg");
|
|
E = CCE->getArg(0);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
|
|
if (NTTP->getDepth() == Depth)
|
|
return NTTP;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static const NonTypeTemplateParmDecl *
|
|
getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
|
|
return getDeducedParameterFromExpr(E, Info.getDeducedDepth());
|
|
}
|
|
|
|
/// Determine whether two declaration pointers refer to the same
|
|
/// declaration.
|
|
static bool isSameDeclaration(Decl *X, Decl *Y) {
|
|
if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
|
|
X = NX->getUnderlyingDecl();
|
|
if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
|
|
Y = NY->getUnderlyingDecl();
|
|
|
|
return X->getCanonicalDecl() == Y->getCanonicalDecl();
|
|
}
|
|
|
|
/// Verify that the given, deduced template arguments are compatible.
|
|
///
|
|
/// \returns The deduced template argument, or a NULL template argument if
|
|
/// the deduced template arguments were incompatible.
|
|
static DeducedTemplateArgument
|
|
checkDeducedTemplateArguments(ASTContext &Context,
|
|
const DeducedTemplateArgument &X,
|
|
const DeducedTemplateArgument &Y,
|
|
bool AggregateCandidateDeduction = false) {
|
|
// We have no deduction for one or both of the arguments; they're compatible.
|
|
if (X.isNull())
|
|
return Y;
|
|
if (Y.isNull())
|
|
return X;
|
|
|
|
// If we have two non-type template argument values deduced for the same
|
|
// parameter, they must both match the type of the parameter, and thus must
|
|
// match each other's type. As we're only keeping one of them, we must check
|
|
// for that now. The exception is that if either was deduced from an array
|
|
// bound, the type is permitted to differ.
|
|
if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
|
|
QualType XType = X.getNonTypeTemplateArgumentType();
|
|
if (!XType.isNull()) {
|
|
QualType YType = Y.getNonTypeTemplateArgumentType();
|
|
if (YType.isNull() || !Context.hasSameType(XType, YType))
|
|
return DeducedTemplateArgument();
|
|
}
|
|
}
|
|
|
|
switch (X.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Non-deduced template arguments handled above");
|
|
|
|
case TemplateArgument::Type: {
|
|
// If two template type arguments have the same type, they're compatible.
|
|
QualType TX = X.getAsType(), TY = Y.getAsType();
|
|
if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY))
|
|
return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY),
|
|
X.wasDeducedFromArrayBound() ||
|
|
Y.wasDeducedFromArrayBound());
|
|
|
|
// If one of the two arguments was deduced from an array bound, the other
|
|
// supersedes it.
|
|
if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
|
|
return X.wasDeducedFromArrayBound() ? Y : X;
|
|
|
|
// The arguments are not compatible.
|
|
return DeducedTemplateArgument();
|
|
}
|
|
|
|
case TemplateArgument::Integral:
|
|
// If we deduced a constant in one case and either a dependent expression or
|
|
// declaration in another case, keep the integral constant.
|
|
// If both are integral constants with the same value, keep that value.
|
|
if (Y.getKind() == TemplateArgument::Expression ||
|
|
Y.getKind() == TemplateArgument::Declaration ||
|
|
(Y.getKind() == TemplateArgument::Integral &&
|
|
hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
|
|
return X.wasDeducedFromArrayBound() ? Y : X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::StructuralValue:
|
|
// If we deduced a value and a dependent expression, keep the value.
|
|
if (Y.getKind() == TemplateArgument::Expression ||
|
|
(Y.getKind() == TemplateArgument::StructuralValue &&
|
|
X.structurallyEquals(Y)))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Template:
|
|
if (Y.getKind() == TemplateArgument::Template &&
|
|
Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::TemplateExpansion:
|
|
if (Y.getKind() == TemplateArgument::TemplateExpansion &&
|
|
Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
|
|
Y.getAsTemplateOrTemplatePattern()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Expression: {
|
|
if (Y.getKind() != TemplateArgument::Expression)
|
|
return checkDeducedTemplateArguments(Context, Y, X);
|
|
|
|
// Compare the expressions for equality
|
|
llvm::FoldingSetNodeID ID1, ID2;
|
|
X.getAsExpr()->Profile(ID1, Context, true);
|
|
Y.getAsExpr()->Profile(ID2, Context, true);
|
|
if (ID1 == ID2)
|
|
return X.wasDeducedFromArrayBound() ? Y : X;
|
|
|
|
// Differing dependent expressions are incompatible.
|
|
return DeducedTemplateArgument();
|
|
}
|
|
|
|
case TemplateArgument::Declaration:
|
|
assert(!X.wasDeducedFromArrayBound());
|
|
|
|
// If we deduced a declaration and a dependent expression, keep the
|
|
// declaration.
|
|
if (Y.getKind() == TemplateArgument::Expression)
|
|
return X;
|
|
|
|
// If we deduced a declaration and an integral constant, keep the
|
|
// integral constant and whichever type did not come from an array
|
|
// bound.
|
|
if (Y.getKind() == TemplateArgument::Integral) {
|
|
if (Y.wasDeducedFromArrayBound())
|
|
return TemplateArgument(Context, Y.getAsIntegral(),
|
|
X.getParamTypeForDecl());
|
|
return Y;
|
|
}
|
|
|
|
// If we deduced two declarations, make sure that they refer to the
|
|
// same declaration.
|
|
if (Y.getKind() == TemplateArgument::Declaration &&
|
|
isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::NullPtr:
|
|
// If we deduced a null pointer and a dependent expression, keep the
|
|
// null pointer.
|
|
if (Y.getKind() == TemplateArgument::Expression)
|
|
return TemplateArgument(Context.getCommonSugaredType(
|
|
X.getNullPtrType(), Y.getAsExpr()->getType()),
|
|
true);
|
|
|
|
// If we deduced a null pointer and an integral constant, keep the
|
|
// integral constant.
|
|
if (Y.getKind() == TemplateArgument::Integral)
|
|
return Y;
|
|
|
|
// If we deduced two null pointers, they are the same.
|
|
if (Y.getKind() == TemplateArgument::NullPtr)
|
|
return TemplateArgument(
|
|
Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
|
|
true);
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Pack: {
|
|
if (Y.getKind() != TemplateArgument::Pack ||
|
|
(!AggregateCandidateDeduction && X.pack_size() != Y.pack_size()))
|
|
return DeducedTemplateArgument();
|
|
|
|
llvm::SmallVector<TemplateArgument, 8> NewPack;
|
|
for (TemplateArgument::pack_iterator
|
|
XA = X.pack_begin(),
|
|
XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end();
|
|
XA != XAEnd; ++XA) {
|
|
if (YA != YAEnd) {
|
|
TemplateArgument Merged = checkDeducedTemplateArguments(
|
|
Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
|
|
DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
|
|
if (Merged.isNull() && !(XA->isNull() && YA->isNull()))
|
|
return DeducedTemplateArgument();
|
|
NewPack.push_back(Merged);
|
|
++YA;
|
|
} else {
|
|
NewPack.push_back(*XA);
|
|
}
|
|
}
|
|
|
|
return DeducedTemplateArgument(
|
|
TemplateArgument::CreatePackCopy(Context, NewPack),
|
|
X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// as the given deduced template argument. All non-type template parameter
|
|
/// deduction is funneled through here.
|
|
static TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP,
|
|
const DeducedTemplateArgument &NewDeduced,
|
|
QualType ValueType, TemplateDeductionInfo &Info,
|
|
bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
assert(NTTP->getDepth() == Info.getDeducedDepth() &&
|
|
"deducing non-type template argument with wrong depth");
|
|
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(
|
|
S.Context, Deduced[NTTP->getIndex()], NewDeduced);
|
|
if (Result.isNull()) {
|
|
Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP);
|
|
Info.FirstArg = Deduced[NTTP->getIndex()];
|
|
Info.SecondArg = NewDeduced;
|
|
return TemplateDeductionResult::Inconsistent;
|
|
}
|
|
|
|
Deduced[NTTP->getIndex()] = Result;
|
|
if (!S.getLangOpts().CPlusPlus17)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
if (NTTP->isExpandedParameterPack())
|
|
// FIXME: We may still need to deduce parts of the type here! But we
|
|
// don't have any way to find which slice of the type to use, and the
|
|
// type stored on the NTTP itself is nonsense. Perhaps the type of an
|
|
// expanded NTTP should be a pack expansion type?
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Get the type of the parameter for deduction. If it's a (dependent) array
|
|
// or function type, we will not have decayed it yet, so do that now.
|
|
QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
|
|
if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
|
|
ParamType = Expansion->getPattern();
|
|
|
|
// FIXME: It's not clear how deduction of a parameter of reference
|
|
// type from an argument (of non-reference type) should be performed.
|
|
// For now, we just make the argument have same reference type as the
|
|
// parameter.
|
|
if (ParamType->isReferenceType() && !ValueType->isReferenceType()) {
|
|
if (ParamType->isRValueReferenceType())
|
|
ValueType = S.Context.getRValueReferenceType(ValueType);
|
|
else
|
|
ValueType = S.Context.getLValueReferenceType(ValueType);
|
|
}
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ParamType, ValueType, Info, Deduced,
|
|
TDF_SkipNonDependent | TDF_IgnoreQualifiers,
|
|
PartialOrdering ? PartialOrderingKind::NonCall
|
|
: PartialOrderingKind::None,
|
|
/*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound(), HasDeducedAnyParam);
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// from the given integral constant.
|
|
static TemplateDeductionResult DeduceNonTypeTemplateArgument(
|
|
Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
|
|
QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
|
|
bool PartialOrdering, SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP,
|
|
DeducedTemplateArgument(S.Context, Value, ValueType,
|
|
DeducedFromArrayBound),
|
|
ValueType, Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// from the given null pointer template argument type.
|
|
static TemplateDeductionResult
|
|
DeduceNullPtrTemplateArgument(Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP,
|
|
QualType NullPtrType, TemplateDeductionInfo &Info,
|
|
bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
Expr *Value = S.ImpCastExprToType(
|
|
new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy,
|
|
NTTP->getLocation()),
|
|
NullPtrType,
|
|
NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer
|
|
: CK_NullToPointer)
|
|
.get();
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DeducedTemplateArgument(Value), Value->getType(),
|
|
Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// from the given type- or value-dependent expression.
|
|
///
|
|
/// \returns true if deduction succeeded, false otherwise.
|
|
static TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP, Expr *Value,
|
|
TemplateDeductionInfo &Info, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DeducedTemplateArgument(Value), Value->getType(),
|
|
Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
/// Deduce the value of the given non-type template parameter
|
|
/// from the given declaration.
|
|
///
|
|
/// \returns true if deduction succeeded, false otherwise.
|
|
static TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams,
|
|
const NonTypeTemplateParmDecl *NTTP, ValueDecl *D,
|
|
QualType T, TemplateDeductionInfo &Info,
|
|
bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
TemplateArgument New(D, T);
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info,
|
|
PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
static TemplateDeductionResult DeduceTemplateArguments(
|
|
Sema &S, TemplateParameterList *TemplateParams, TemplateName Param,
|
|
TemplateName Arg, TemplateDeductionInfo &Info,
|
|
ArrayRef<TemplateArgument> DefaultArguments, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
|
|
if (!ParamDecl) {
|
|
// The parameter type is dependent and is not a template template parameter,
|
|
// so there is nothing that we can deduce.
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
if (auto *TempParam = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
|
|
// If we're not deducing at this depth, there's nothing to deduce.
|
|
if (TempParam->getDepth() != Info.getDeducedDepth())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
ArrayRef<NamedDecl *> Params =
|
|
ParamDecl->getTemplateParameters()->asArray();
|
|
unsigned StartPos = 0;
|
|
for (unsigned I = 0, E = std::min(Params.size(), DefaultArguments.size());
|
|
I < E; ++I) {
|
|
if (Params[I]->isParameterPack()) {
|
|
StartPos = DefaultArguments.size();
|
|
break;
|
|
}
|
|
StartPos = I + 1;
|
|
}
|
|
|
|
// Provisional resolution for CWG2398: If Arg names a template
|
|
// specialization, then we deduce a synthesized template name
|
|
// based on A, but using the TS's extra arguments, relative to P, as
|
|
// defaults.
|
|
DeducedTemplateArgument NewDeduced =
|
|
PartialOrdering
|
|
? TemplateArgument(S.Context.getDeducedTemplateName(
|
|
Arg, {StartPos, DefaultArguments.drop_front(StartPos)}))
|
|
: Arg;
|
|
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(
|
|
S.Context, Deduced[TempParam->getIndex()], NewDeduced);
|
|
if (Result.isNull()) {
|
|
Info.Param = TempParam;
|
|
Info.FirstArg = Deduced[TempParam->getIndex()];
|
|
Info.SecondArg = NewDeduced;
|
|
return TemplateDeductionResult::Inconsistent;
|
|
}
|
|
|
|
Deduced[TempParam->getIndex()] = Result;
|
|
if (HasDeducedAnyParam)
|
|
*HasDeducedAnyParam = true;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Verify that the two template names are equivalent.
|
|
if (S.Context.hasSameTemplateName(
|
|
Param, Arg, /*IgnoreDeduced=*/DefaultArguments.size() != 0))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Mismatch of non-dependent template parameter to argument.
|
|
Info.FirstArg = TemplateArgument(Param);
|
|
Info.SecondArg = TemplateArgument(Arg);
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
/// Deduce the template arguments by comparing the template parameter
|
|
/// type (which is a template-id) with the template argument type.
|
|
///
|
|
/// \param S the Sema
|
|
///
|
|
/// \param TemplateParams the template parameters that we are deducing
|
|
///
|
|
/// \param P the parameter type
|
|
///
|
|
/// \param A the argument type
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
|
|
static const TemplateSpecializationType *getLastTemplateSpecType(QualType QT) {
|
|
for (const Type *T = QT.getTypePtr(); /**/; /**/) {
|
|
const TemplateSpecializationType *TST =
|
|
T->getAs<TemplateSpecializationType>();
|
|
assert(TST && "Expected a TemplateSpecializationType");
|
|
if (!TST->isSugared())
|
|
return TST;
|
|
T = TST->desugar().getTypePtr();
|
|
}
|
|
}
|
|
|
|
static TemplateDeductionResult
|
|
DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams,
|
|
const QualType P, QualType A,
|
|
TemplateDeductionInfo &Info, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
QualType UP = P;
|
|
if (const auto *IP = P->getAs<InjectedClassNameType>())
|
|
UP = IP->getInjectedSpecializationType();
|
|
|
|
assert(isa<TemplateSpecializationType>(UP.getCanonicalType()));
|
|
const TemplateSpecializationType *TP = ::getLastTemplateSpecType(UP);
|
|
TemplateName TNP = TP->getTemplateName();
|
|
|
|
// If the parameter is an alias template, there is nothing to deduce.
|
|
if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// FIXME: To preserve sugar, the TST needs to carry sugared resolved
|
|
// arguments.
|
|
ArrayRef<TemplateArgument> PResolved =
|
|
TP->getCanonicalTypeInternal()
|
|
->castAs<TemplateSpecializationType>()
|
|
->template_arguments();
|
|
|
|
QualType UA = A;
|
|
std::optional<NestedNameSpecifier *> NNS;
|
|
// Treat an injected-class-name as its underlying template-id.
|
|
if (const auto *Elaborated = A->getAs<ElaboratedType>()) {
|
|
NNS = Elaborated->getQualifier();
|
|
} else if (const auto *Injected = A->getAs<InjectedClassNameType>()) {
|
|
UA = Injected->getInjectedSpecializationType();
|
|
NNS = nullptr;
|
|
}
|
|
|
|
// Check whether the template argument is a dependent template-id.
|
|
if (isa<TemplateSpecializationType>(UA.getCanonicalType())) {
|
|
const TemplateSpecializationType *SA = ::getLastTemplateSpecType(UA);
|
|
TemplateName TNA = SA->getTemplateName();
|
|
|
|
// If the argument is an alias template, there is nothing to deduce.
|
|
if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// FIXME: To preserve sugar, the TST needs to carry sugared resolved
|
|
// arguments.
|
|
ArrayRef<TemplateArgument> AResolved =
|
|
SA->getCanonicalTypeInternal()
|
|
->castAs<TemplateSpecializationType>()
|
|
->template_arguments();
|
|
|
|
// Perform template argument deduction for the template name.
|
|
if (auto Result = DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info,
|
|
/*DefaultArguments=*/AResolved,
|
|
PartialOrdering, Deduced,
|
|
HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform template argument deduction on each template
|
|
// argument. Ignore any missing/extra arguments, since they could be
|
|
// filled in by default arguments.
|
|
return DeduceTemplateArguments(
|
|
S, TemplateParams, PResolved, AResolved, Info, Deduced,
|
|
/*NumberOfArgumentsMustMatch=*/false, PartialOrdering,
|
|
PackFold::ParameterToArgument, HasDeducedAnyParam);
|
|
}
|
|
|
|
// If the argument type is a class template specialization, we
|
|
// perform template argument deduction using its template
|
|
// arguments.
|
|
const auto *RA = UA->getAs<RecordType>();
|
|
const auto *SA =
|
|
RA ? dyn_cast<ClassTemplateSpecializationDecl>(RA->getDecl()) : nullptr;
|
|
if (!SA) {
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
TemplateName TNA = TemplateName(SA->getSpecializedTemplate());
|
|
if (NNS)
|
|
TNA = S.Context.getQualifiedTemplateName(
|
|
*NNS, false, TemplateName(SA->getSpecializedTemplate()));
|
|
|
|
// Perform template argument deduction for the template name.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, TNP, TNA, Info,
|
|
/*DefaultArguments=*/SA->getTemplateArgs().asArray(), PartialOrdering,
|
|
Deduced, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform template argument deduction for the template arguments.
|
|
return DeduceTemplateArguments(S, TemplateParams, PResolved,
|
|
SA->getTemplateArgs().asArray(), Info, Deduced,
|
|
/*NumberOfArgumentsMustMatch=*/true,
|
|
PartialOrdering, PackFold::ParameterToArgument,
|
|
HasDeducedAnyParam);
|
|
}
|
|
|
|
static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) {
|
|
assert(T->isCanonicalUnqualified());
|
|
|
|
switch (T->getTypeClass()) {
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::DependentName:
|
|
case Type::Decltype:
|
|
case Type::PackIndexing:
|
|
case Type::UnresolvedUsing:
|
|
case Type::TemplateTypeParm:
|
|
case Type::Auto:
|
|
return true;
|
|
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::DependentSizedArray:
|
|
return IsPossiblyOpaquelyQualifiedTypeInternal(
|
|
cast<ArrayType>(T)->getElementType().getTypePtr());
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Determines whether the given type is an opaque type that
|
|
/// might be more qualified when instantiated.
|
|
static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
|
|
return IsPossiblyOpaquelyQualifiedTypeInternal(
|
|
T->getCanonicalTypeInternal().getTypePtr());
|
|
}
|
|
|
|
/// Helper function to build a TemplateParameter when we don't
|
|
/// know its type statically.
|
|
static TemplateParameter makeTemplateParameter(Decl *D) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
|
|
return TemplateParameter(TTP);
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
|
|
return TemplateParameter(NTTP);
|
|
|
|
return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
|
|
}
|
|
|
|
/// A pack that we're currently deducing.
|
|
struct clang::DeducedPack {
|
|
// The index of the pack.
|
|
unsigned Index;
|
|
|
|
// The old value of the pack before we started deducing it.
|
|
DeducedTemplateArgument Saved;
|
|
|
|
// A deferred value of this pack from an inner deduction, that couldn't be
|
|
// deduced because this deduction hadn't happened yet.
|
|
DeducedTemplateArgument DeferredDeduction;
|
|
|
|
// The new value of the pack.
|
|
SmallVector<DeducedTemplateArgument, 4> New;
|
|
|
|
// The outer deduction for this pack, if any.
|
|
DeducedPack *Outer = nullptr;
|
|
|
|
DeducedPack(unsigned Index) : Index(Index) {}
|
|
};
|
|
|
|
namespace {
|
|
|
|
/// A scope in which we're performing pack deduction.
|
|
class PackDeductionScope {
|
|
public:
|
|
/// Prepare to deduce the packs named within Pattern.
|
|
/// \param FinishingDeduction Don't attempt to deduce the pack. Useful when
|
|
/// just checking a previous deduction of the pack.
|
|
PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, TemplateArgument Pattern,
|
|
bool DeducePackIfNotAlreadyDeduced = false,
|
|
bool FinishingDeduction = false)
|
|
: S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info),
|
|
DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced),
|
|
FinishingDeduction(FinishingDeduction) {
|
|
unsigned NumNamedPacks = addPacks(Pattern);
|
|
finishConstruction(NumNamedPacks);
|
|
}
|
|
|
|
/// Prepare to directly deduce arguments of the parameter with index \p Index.
|
|
PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, unsigned Index)
|
|
: S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
|
|
addPack(Index);
|
|
finishConstruction(1);
|
|
}
|
|
|
|
private:
|
|
void addPack(unsigned Index) {
|
|
// Save the deduced template argument for the parameter pack expanded
|
|
// by this pack expansion, then clear out the deduction.
|
|
DeducedFromEarlierParameter = !Deduced[Index].isNull();
|
|
DeducedPack Pack(Index);
|
|
if (!FinishingDeduction) {
|
|
Pack.Saved = Deduced[Index];
|
|
Deduced[Index] = TemplateArgument();
|
|
}
|
|
|
|
// FIXME: What if we encounter multiple packs with different numbers of
|
|
// pre-expanded expansions? (This should already have been diagnosed
|
|
// during substitution.)
|
|
if (std::optional<unsigned> ExpandedPackExpansions =
|
|
getExpandedPackSize(TemplateParams->getParam(Index)))
|
|
FixedNumExpansions = ExpandedPackExpansions;
|
|
|
|
Packs.push_back(Pack);
|
|
}
|
|
|
|
unsigned addPacks(TemplateArgument Pattern) {
|
|
// Compute the set of template parameter indices that correspond to
|
|
// parameter packs expanded by the pack expansion.
|
|
llvm::SmallBitVector SawIndices(TemplateParams->size());
|
|
llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
|
|
|
|
auto AddPack = [&](unsigned Index) {
|
|
if (SawIndices[Index])
|
|
return;
|
|
SawIndices[Index] = true;
|
|
addPack(Index);
|
|
|
|
// Deducing a parameter pack that is a pack expansion also constrains the
|
|
// packs appearing in that parameter to have the same deduced arity. Also,
|
|
// in C++17 onwards, deducing a non-type template parameter deduces its
|
|
// type, so we need to collect the pending deduced values for those packs.
|
|
if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
|
|
TemplateParams->getParam(Index))) {
|
|
if (!NTTP->isExpandedParameterPack())
|
|
// FIXME: CWG2982 suggests a type-constraint forms a non-deduced
|
|
// context, however it is not yet resolved.
|
|
if (auto *Expansion = dyn_cast<PackExpansionType>(
|
|
S.Context.getUnconstrainedType(NTTP->getType())))
|
|
ExtraDeductions.push_back(Expansion->getPattern());
|
|
}
|
|
// FIXME: Also collect the unexpanded packs in any type and template
|
|
// parameter packs that are pack expansions.
|
|
};
|
|
|
|
auto Collect = [&](TemplateArgument Pattern) {
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
|
|
unsigned Depth, Index;
|
|
std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
|
|
if (Depth == Info.getDeducedDepth())
|
|
AddPack(Index);
|
|
}
|
|
};
|
|
|
|
// Look for unexpanded packs in the pattern.
|
|
Collect(Pattern);
|
|
assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
|
|
|
|
unsigned NumNamedPacks = Packs.size();
|
|
|
|
// Also look for unexpanded packs that are indirectly deduced by deducing
|
|
// the sizes of the packs in this pattern.
|
|
while (!ExtraDeductions.empty())
|
|
Collect(ExtraDeductions.pop_back_val());
|
|
|
|
return NumNamedPacks;
|
|
}
|
|
|
|
void finishConstruction(unsigned NumNamedPacks) {
|
|
// Dig out the partially-substituted pack, if there is one.
|
|
const TemplateArgument *PartialPackArgs = nullptr;
|
|
unsigned NumPartialPackArgs = 0;
|
|
std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
|
|
if (auto *Scope = S.CurrentInstantiationScope)
|
|
if (auto *Partial = Scope->getPartiallySubstitutedPack(
|
|
&PartialPackArgs, &NumPartialPackArgs))
|
|
PartialPackDepthIndex = getDepthAndIndex(Partial);
|
|
|
|
// This pack expansion will have been partially or fully expanded if
|
|
// it only names explicitly-specified parameter packs (including the
|
|
// partially-substituted one, if any).
|
|
bool IsExpanded = true;
|
|
for (unsigned I = 0; I != NumNamedPacks; ++I) {
|
|
if (Packs[I].Index >= Info.getNumExplicitArgs()) {
|
|
IsExpanded = false;
|
|
IsPartiallyExpanded = false;
|
|
break;
|
|
}
|
|
if (PartialPackDepthIndex ==
|
|
std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
|
|
IsPartiallyExpanded = true;
|
|
}
|
|
}
|
|
|
|
// Skip over the pack elements that were expanded into separate arguments.
|
|
// If we partially expanded, this is the number of partial arguments.
|
|
// FIXME: `&& FixedNumExpansions` is a workaround for UB described in
|
|
// https://github.com/llvm/llvm-project/issues/100095
|
|
if (IsPartiallyExpanded)
|
|
PackElements += NumPartialPackArgs;
|
|
else if (IsExpanded && FixedNumExpansions)
|
|
PackElements += *FixedNumExpansions;
|
|
|
|
for (auto &Pack : Packs) {
|
|
if (Info.PendingDeducedPacks.size() > Pack.Index)
|
|
Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
|
|
else
|
|
Info.PendingDeducedPacks.resize(Pack.Index + 1);
|
|
Info.PendingDeducedPacks[Pack.Index] = &Pack;
|
|
|
|
if (PartialPackDepthIndex ==
|
|
std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
|
|
Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
|
|
// We pre-populate the deduced value of the partially-substituted
|
|
// pack with the specified value. This is not entirely correct: the
|
|
// value is supposed to have been substituted, not deduced, but the
|
|
// cases where this is observable require an exact type match anyway.
|
|
//
|
|
// FIXME: If we could represent a "depth i, index j, pack elem k"
|
|
// parameter, we could substitute the partially-substituted pack
|
|
// everywhere and avoid this.
|
|
if (!FinishingDeduction && !IsPartiallyExpanded)
|
|
Deduced[Pack.Index] = Pack.New[PackElements];
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
~PackDeductionScope() {
|
|
for (auto &Pack : Packs)
|
|
Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
|
|
}
|
|
|
|
// Return the size of the saved packs if all of them has the same size.
|
|
std::optional<unsigned> getSavedPackSizeIfAllEqual() const {
|
|
unsigned PackSize = Packs[0].Saved.pack_size();
|
|
|
|
if (std::all_of(Packs.begin() + 1, Packs.end(), [&PackSize](const auto &P) {
|
|
return P.Saved.pack_size() == PackSize;
|
|
}))
|
|
return PackSize;
|
|
return {};
|
|
}
|
|
|
|
/// Determine whether this pack has already been deduced from a previous
|
|
/// argument.
|
|
bool isDeducedFromEarlierParameter() const {
|
|
return DeducedFromEarlierParameter;
|
|
}
|
|
|
|
/// Determine whether this pack has already been partially expanded into a
|
|
/// sequence of (prior) function parameters / template arguments.
|
|
bool isPartiallyExpanded() { return IsPartiallyExpanded; }
|
|
|
|
/// Determine whether this pack expansion scope has a known, fixed arity.
|
|
/// This happens if it involves a pack from an outer template that has
|
|
/// (notionally) already been expanded.
|
|
bool hasFixedArity() { return FixedNumExpansions.has_value(); }
|
|
|
|
/// Determine whether the next element of the argument is still part of this
|
|
/// pack. This is the case unless the pack is already expanded to a fixed
|
|
/// length.
|
|
bool hasNextElement() {
|
|
return !FixedNumExpansions || *FixedNumExpansions > PackElements;
|
|
}
|
|
|
|
/// Move to deducing the next element in each pack that is being deduced.
|
|
void nextPackElement() {
|
|
// Capture the deduced template arguments for each parameter pack expanded
|
|
// by this pack expansion, add them to the list of arguments we've deduced
|
|
// for that pack, then clear out the deduced argument.
|
|
if (!FinishingDeduction) {
|
|
for (auto &Pack : Packs) {
|
|
DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
|
|
if (!Pack.New.empty() || !DeducedArg.isNull()) {
|
|
while (Pack.New.size() < PackElements)
|
|
Pack.New.push_back(DeducedTemplateArgument());
|
|
if (Pack.New.size() == PackElements)
|
|
Pack.New.push_back(DeducedArg);
|
|
else
|
|
Pack.New[PackElements] = DeducedArg;
|
|
DeducedArg = Pack.New.size() > PackElements + 1
|
|
? Pack.New[PackElements + 1]
|
|
: DeducedTemplateArgument();
|
|
}
|
|
}
|
|
}
|
|
++PackElements;
|
|
}
|
|
|
|
/// Finish template argument deduction for a set of argument packs,
|
|
/// producing the argument packs and checking for consistency with prior
|
|
/// deductions.
|
|
TemplateDeductionResult finish() {
|
|
if (FinishingDeduction)
|
|
return TemplateDeductionResult::Success;
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
for (auto &Pack : Packs) {
|
|
// Put back the old value for this pack.
|
|
if (!FinishingDeduction)
|
|
Deduced[Pack.Index] = Pack.Saved;
|
|
|
|
// Always make sure the size of this pack is correct, even if we didn't
|
|
// deduce any values for it.
|
|
//
|
|
// FIXME: This isn't required by the normative wording, but substitution
|
|
// and post-substitution checking will always fail if the arity of any
|
|
// pack is not equal to the number of elements we processed. (Either that
|
|
// or something else has gone *very* wrong.) We're permitted to skip any
|
|
// hard errors from those follow-on steps by the intent (but not the
|
|
// wording) of C++ [temp.inst]p8:
|
|
//
|
|
// If the function selected by overload resolution can be determined
|
|
// without instantiating a class template definition, it is unspecified
|
|
// whether that instantiation actually takes place
|
|
Pack.New.resize(PackElements);
|
|
|
|
// Build or find a new value for this pack.
|
|
DeducedTemplateArgument NewPack;
|
|
if (Pack.New.empty()) {
|
|
// If we deduced an empty argument pack, create it now.
|
|
NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
|
|
} else {
|
|
TemplateArgument *ArgumentPack =
|
|
new (S.Context) TemplateArgument[Pack.New.size()];
|
|
std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
|
|
NewPack = DeducedTemplateArgument(
|
|
TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())),
|
|
// FIXME: This is wrong, it's possible that some pack elements are
|
|
// deduced from an array bound and others are not:
|
|
// template<typename ...T, T ...V> void g(const T (&...p)[V]);
|
|
// g({1, 2, 3}, {{}, {}});
|
|
// ... should deduce T = {int, size_t (from array bound)}.
|
|
Pack.New[0].wasDeducedFromArrayBound());
|
|
}
|
|
|
|
// Pick where we're going to put the merged pack.
|
|
DeducedTemplateArgument *Loc;
|
|
if (Pack.Outer) {
|
|
if (Pack.Outer->DeferredDeduction.isNull()) {
|
|
// Defer checking this pack until we have a complete pack to compare
|
|
// it against.
|
|
Pack.Outer->DeferredDeduction = NewPack;
|
|
continue;
|
|
}
|
|
Loc = &Pack.Outer->DeferredDeduction;
|
|
} else {
|
|
Loc = &Deduced[Pack.Index];
|
|
}
|
|
|
|
// Check the new pack matches any previous value.
|
|
DeducedTemplateArgument OldPack = *Loc;
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(
|
|
S.Context, OldPack, NewPack, DeducePackIfNotAlreadyDeduced);
|
|
|
|
Info.AggregateDeductionCandidateHasMismatchedArity =
|
|
OldPack.getKind() == TemplateArgument::Pack &&
|
|
NewPack.getKind() == TemplateArgument::Pack &&
|
|
OldPack.pack_size() != NewPack.pack_size() && !Result.isNull();
|
|
|
|
// If we deferred a deduction of this pack, check that one now too.
|
|
if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
|
|
OldPack = Result;
|
|
NewPack = Pack.DeferredDeduction;
|
|
Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
|
|
}
|
|
|
|
NamedDecl *Param = TemplateParams->getParam(Pack.Index);
|
|
if (Result.isNull()) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
Info.FirstArg = OldPack;
|
|
Info.SecondArg = NewPack;
|
|
return TemplateDeductionResult::Inconsistent;
|
|
}
|
|
|
|
// If we have a pre-expanded pack and we didn't deduce enough elements
|
|
// for it, fail deduction.
|
|
if (std::optional<unsigned> Expansions = getExpandedPackSize(Param)) {
|
|
if (*Expansions != PackElements) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
Info.FirstArg = Result;
|
|
return TemplateDeductionResult::IncompletePack;
|
|
}
|
|
}
|
|
|
|
*Loc = Result;
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
TemplateParameterList *TemplateParams;
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced;
|
|
TemplateDeductionInfo &Info;
|
|
unsigned PackElements = 0;
|
|
bool IsPartiallyExpanded = false;
|
|
bool DeducePackIfNotAlreadyDeduced = false;
|
|
bool DeducedFromEarlierParameter = false;
|
|
bool FinishingDeduction = false;
|
|
/// The number of expansions, if we have a fully-expanded pack in this scope.
|
|
std::optional<unsigned> FixedNumExpansions;
|
|
|
|
SmallVector<DeducedPack, 2> Packs;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
template <class T>
|
|
static TemplateDeductionResult DeduceForEachType(
|
|
Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params,
|
|
ArrayRef<QualType> Args, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced, PartialOrderingKind POK,
|
|
bool FinishingDeduction, T &&DeductFunc) {
|
|
// C++0x [temp.deduct.type]p10:
|
|
// Similarly, if P has a form that contains (T), then each parameter type
|
|
// Pi of the respective parameter-type- list of P is compared with the
|
|
// corresponding parameter type Ai of the corresponding parameter-type-list
|
|
// of A. [...]
|
|
unsigned ArgIdx = 0, ParamIdx = 0;
|
|
for (; ParamIdx != Params.size(); ++ParamIdx) {
|
|
// Check argument types.
|
|
const PackExpansionType *Expansion
|
|
= dyn_cast<PackExpansionType>(Params[ParamIdx]);
|
|
if (!Expansion) {
|
|
// Simple case: compare the parameter and argument types at this point.
|
|
|
|
// Make sure we have an argument.
|
|
if (ArgIdx >= Args.size())
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
if (isa<PackExpansionType>(Args[ArgIdx])) {
|
|
// C++0x [temp.deduct.type]p22:
|
|
// If the original function parameter associated with A is a function
|
|
// parameter pack and the function parameter associated with P is not
|
|
// a function parameter pack, then template argument deduction fails.
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
}
|
|
|
|
if (TemplateDeductionResult Result =
|
|
DeductFunc(S, TemplateParams, ParamIdx, ArgIdx,
|
|
Params[ParamIdx].getUnqualifiedType(),
|
|
Args[ArgIdx].getUnqualifiedType(), Info, Deduced, POK);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
++ArgIdx;
|
|
continue;
|
|
}
|
|
|
|
// C++0x [temp.deduct.type]p10:
|
|
// If the parameter-declaration corresponding to Pi is a function
|
|
// parameter pack, then the type of its declarator- id is compared with
|
|
// each remaining parameter type in the parameter-type-list of A. Each
|
|
// comparison deduces template arguments for subsequent positions in the
|
|
// template parameter packs expanded by the function parameter pack.
|
|
|
|
QualType Pattern = Expansion->getPattern();
|
|
PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern,
|
|
/*DeducePackIfNotAlreadyDeduced=*/false,
|
|
FinishingDeduction);
|
|
|
|
// A pack scope with fixed arity is not really a pack any more, so is not
|
|
// a non-deduced context.
|
|
if (ParamIdx + 1 == Params.size() || PackScope.hasFixedArity()) {
|
|
for (; ArgIdx < Args.size() && PackScope.hasNextElement(); ++ArgIdx) {
|
|
// Deduce template arguments from the pattern.
|
|
if (TemplateDeductionResult Result = DeductFunc(
|
|
S, TemplateParams, ParamIdx, ArgIdx,
|
|
Pattern.getUnqualifiedType(), Args[ArgIdx].getUnqualifiedType(),
|
|
Info, Deduced, POK);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
PackScope.nextPackElement();
|
|
}
|
|
} else {
|
|
// C++0x [temp.deduct.type]p5:
|
|
// The non-deduced contexts are:
|
|
// - A function parameter pack that does not occur at the end of the
|
|
// parameter-declaration-clause.
|
|
//
|
|
// FIXME: There is no wording to say what we should do in this case. We
|
|
// choose to resolve this by applying the same rule that is applied for a
|
|
// function call: that is, deduce all contained packs to their
|
|
// explicitly-specified values (or to <> if there is no such value).
|
|
//
|
|
// This is seemingly-arbitrarily different from the case of a template-id
|
|
// with a non-trailing pack-expansion in its arguments, which renders the
|
|
// entire template-argument-list a non-deduced context.
|
|
|
|
// If the parameter type contains an explicitly-specified pack that we
|
|
// could not expand, skip the number of parameters notionally created
|
|
// by the expansion.
|
|
std::optional<unsigned> NumExpansions = Expansion->getNumExpansions();
|
|
if (NumExpansions && !PackScope.isPartiallyExpanded()) {
|
|
for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
|
|
++I, ++ArgIdx)
|
|
PackScope.nextPackElement();
|
|
}
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
if (auto Result = PackScope.finish();
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
// DR692, DR1395
|
|
// C++0x [temp.deduct.type]p10:
|
|
// If the parameter-declaration corresponding to P_i ...
|
|
// During partial ordering, if Ai was originally a function parameter pack:
|
|
// - if P does not contain a function parameter type corresponding to Ai then
|
|
// Ai is ignored;
|
|
if (POK == PartialOrderingKind::Call && ArgIdx + 1 == Args.size() &&
|
|
isa<PackExpansionType>(Args[ArgIdx]))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Make sure we don't have any extra arguments.
|
|
if (ArgIdx < Args.size())
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Deduce the template arguments by comparing the list of parameter
|
|
/// types to the list of argument types, as in the parameter-type-lists of
|
|
/// function types (C++ [temp.deduct.type]p10).
|
|
///
|
|
/// \param S The semantic analysis object within which we are deducing
|
|
///
|
|
/// \param TemplateParams The template parameters that we are deducing
|
|
///
|
|
/// \param Params The list of parameter types
|
|
///
|
|
/// \param Args The list of argument types
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
|
|
/// how template argument deduction is performed.
|
|
///
|
|
/// \param PartialOrdering If true, we are performing template argument
|
|
/// deduction for during partial ordering for a call
|
|
/// (C++0x [temp.deduct.partial]).
|
|
///
|
|
/// \param HasDeducedAnyParam If set, the object pointed at will indicate
|
|
/// whether any template parameter was deduced.
|
|
///
|
|
/// \param HasDeducedParam If set, the bit vector will be used to represent
|
|
/// which template parameters were deduced, in order.
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
static TemplateDeductionResult DeduceTemplateArguments(
|
|
Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params,
|
|
ArrayRef<QualType> Args, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
|
|
PartialOrderingKind POK, bool *HasDeducedAnyParam,
|
|
llvm::SmallBitVector *HasDeducedParam) {
|
|
return ::DeduceForEachType(
|
|
S, TemplateParams, Params, Args, Info, Deduced, POK,
|
|
/*FinishingDeduction=*/false,
|
|
[&](Sema &S, TemplateParameterList *TemplateParams, int ParamIdx,
|
|
int ArgIdx, QualType P, QualType A, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
PartialOrderingKind POK) {
|
|
bool HasDeducedAnyParamCopy = false;
|
|
TemplateDeductionResult TDR = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, P, A, Info, Deduced, TDF, POK,
|
|
/*DeducedFromArrayBound=*/false, &HasDeducedAnyParamCopy);
|
|
if (HasDeducedAnyParam && HasDeducedAnyParamCopy)
|
|
*HasDeducedAnyParam = true;
|
|
if (HasDeducedParam && HasDeducedAnyParamCopy)
|
|
(*HasDeducedParam)[ParamIdx] = true;
|
|
return TDR;
|
|
});
|
|
}
|
|
|
|
/// Determine whether the parameter has qualifiers that the argument
|
|
/// lacks. Put another way, determine whether there is no way to add
|
|
/// a deduced set of qualifiers to the ParamType that would result in
|
|
/// its qualifiers matching those of the ArgType.
|
|
static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
|
|
QualType ArgType) {
|
|
Qualifiers ParamQs = ParamType.getQualifiers();
|
|
Qualifiers ArgQs = ArgType.getQualifiers();
|
|
|
|
if (ParamQs == ArgQs)
|
|
return false;
|
|
|
|
// Mismatched (but not missing) Objective-C GC attributes.
|
|
if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
|
|
ParamQs.hasObjCGCAttr())
|
|
return true;
|
|
|
|
// Mismatched (but not missing) address spaces.
|
|
if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
|
|
ParamQs.hasAddressSpace())
|
|
return true;
|
|
|
|
// Mismatched (but not missing) Objective-C lifetime qualifiers.
|
|
if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
|
|
ParamQs.hasObjCLifetime())
|
|
return true;
|
|
|
|
// CVR qualifiers inconsistent or a superset.
|
|
return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
|
|
}
|
|
|
|
bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) {
|
|
const FunctionType *PF = P->getAs<FunctionType>(),
|
|
*AF = A->getAs<FunctionType>();
|
|
|
|
// Just compare if not functions.
|
|
if (!PF || !AF)
|
|
return Context.hasSameType(P, A);
|
|
|
|
// Noreturn and noexcept adjustment.
|
|
if (QualType AdjustedParam; IsFunctionConversion(P, A, AdjustedParam))
|
|
P = AdjustedParam;
|
|
|
|
// FIXME: Compatible calling conventions.
|
|
return Context.hasSameFunctionTypeIgnoringExceptionSpec(P, A);
|
|
}
|
|
|
|
/// Get the index of the first template parameter that was originally from the
|
|
/// innermost template-parameter-list. This is 0 except when we concatenate
|
|
/// the template parameter lists of a class template and a constructor template
|
|
/// when forming an implicit deduction guide.
|
|
static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
|
|
auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
|
|
if (!Guide || !Guide->isImplicit())
|
|
return 0;
|
|
return Guide->getDeducedTemplate()->getTemplateParameters()->size();
|
|
}
|
|
|
|
/// Determine whether a type denotes a forwarding reference.
|
|
static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
|
|
// C++1z [temp.deduct.call]p3:
|
|
// A forwarding reference is an rvalue reference to a cv-unqualified
|
|
// template parameter that does not represent a template parameter of a
|
|
// class template.
|
|
if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
|
|
if (ParamRef->getPointeeType().getQualifiers())
|
|
return false;
|
|
auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
|
|
return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Attempt to deduce the template arguments by checking the base types
|
|
/// according to (C++20 [temp.deduct.call] p4b3.
|
|
///
|
|
/// \param S the semantic analysis object within which we are deducing.
|
|
///
|
|
/// \param RD the top level record object we are deducing against.
|
|
///
|
|
/// \param TemplateParams the template parameters that we are deducing.
|
|
///
|
|
/// \param P the template specialization parameter type.
|
|
///
|
|
/// \param Info information about the template argument deduction itself.
|
|
///
|
|
/// \param Deduced the deduced template arguments.
|
|
///
|
|
/// \returns the result of template argument deduction with the bases. "invalid"
|
|
/// means no matches, "success" found a single item, and the
|
|
/// "MiscellaneousDeductionFailure" result happens when the match is ambiguous.
|
|
static TemplateDeductionResult
|
|
DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD,
|
|
TemplateParameterList *TemplateParams, QualType P,
|
|
TemplateDeductionInfo &Info, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
// C++14 [temp.deduct.call] p4b3:
|
|
// If P is a class and P has the form simple-template-id, then the
|
|
// transformed A can be a derived class of the deduced A. Likewise if
|
|
// P is a pointer to a class of the form simple-template-id, the
|
|
// transformed A can be a pointer to a derived class pointed to by the
|
|
// deduced A. However, if there is a class C that is a (direct or
|
|
// indirect) base class of D and derived (directly or indirectly) from a
|
|
// class B and that would be a valid deduced A, the deduced A cannot be
|
|
// B or pointer to B, respectively.
|
|
//
|
|
// These alternatives are considered only if type deduction would
|
|
// otherwise fail. If they yield more than one possible deduced A, the
|
|
// type deduction fails.
|
|
|
|
// Use a breadth-first search through the bases to collect the set of
|
|
// successful matches. Visited contains the set of nodes we have already
|
|
// visited, while ToVisit is our stack of records that we still need to
|
|
// visit. Matches contains a list of matches that have yet to be
|
|
// disqualified.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited;
|
|
SmallVector<QualType, 8> ToVisit;
|
|
// We iterate over this later, so we have to use MapVector to ensure
|
|
// determinism.
|
|
struct MatchValue {
|
|
SmallVector<DeducedTemplateArgument, 8> Deduced;
|
|
bool HasDeducedAnyParam;
|
|
};
|
|
llvm::MapVector<const CXXRecordDecl *, MatchValue> Matches;
|
|
|
|
auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) {
|
|
for (const auto &Base : RD->bases()) {
|
|
QualType T = Base.getType();
|
|
assert(T->isRecordType() && "Base class that isn't a record?");
|
|
if (Visited.insert(T->getAsCXXRecordDecl()).second)
|
|
ToVisit.push_back(T);
|
|
}
|
|
};
|
|
|
|
// Set up the loop by adding all the bases.
|
|
AddBases(RD);
|
|
|
|
// Search each path of bases until we either run into a successful match
|
|
// (where all bases of it are invalid), or we run out of bases.
|
|
while (!ToVisit.empty()) {
|
|
QualType NextT = ToVisit.pop_back_val();
|
|
|
|
SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(),
|
|
Deduced.end());
|
|
TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info);
|
|
bool HasDeducedAnyParamCopy = false;
|
|
TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments(
|
|
S, TemplateParams, P, NextT, BaseInfo, PartialOrdering, DeducedCopy,
|
|
&HasDeducedAnyParamCopy);
|
|
|
|
// If this was a successful deduction, add it to the list of matches,
|
|
// otherwise we need to continue searching its bases.
|
|
const CXXRecordDecl *RD = NextT->getAsCXXRecordDecl();
|
|
if (BaseResult == TemplateDeductionResult::Success)
|
|
Matches.insert({RD, {DeducedCopy, HasDeducedAnyParamCopy}});
|
|
else
|
|
AddBases(RD);
|
|
}
|
|
|
|
// At this point, 'Matches' contains a list of seemingly valid bases, however
|
|
// in the event that we have more than 1 match, it is possible that the base
|
|
// of one of the matches might be disqualified for being a base of another
|
|
// valid match. We can count on cyclical instantiations being invalid to
|
|
// simplify the disqualifications. That is, if A & B are both matches, and B
|
|
// inherits from A (disqualifying A), we know that A cannot inherit from B.
|
|
if (Matches.size() > 1) {
|
|
Visited.clear();
|
|
for (const auto &Match : Matches)
|
|
AddBases(Match.first);
|
|
|
|
// We can give up once we have a single item (or have run out of things to
|
|
// search) since cyclical inheritance isn't valid.
|
|
while (Matches.size() > 1 && !ToVisit.empty()) {
|
|
const CXXRecordDecl *RD = ToVisit.pop_back_val()->getAsCXXRecordDecl();
|
|
Matches.erase(RD);
|
|
|
|
// Always add all bases, since the inheritance tree can contain
|
|
// disqualifications for multiple matches.
|
|
AddBases(RD);
|
|
}
|
|
}
|
|
|
|
if (Matches.empty())
|
|
return TemplateDeductionResult::Invalid;
|
|
if (Matches.size() > 1)
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
std::swap(Matches.front().second.Deduced, Deduced);
|
|
if (bool HasDeducedAnyParamCopy = Matches.front().second.HasDeducedAnyParam;
|
|
HasDeducedAnyParamCopy && HasDeducedAnyParam)
|
|
*HasDeducedAnyParam = HasDeducedAnyParamCopy;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// When propagating a partial ordering kind into a NonCall context,
|
|
/// this is used to downgrade a 'Call' into a 'NonCall', so that
|
|
/// the kind still reflects whether we are in a partial ordering context.
|
|
static PartialOrderingKind
|
|
degradeCallPartialOrderingKind(PartialOrderingKind POK) {
|
|
return std::min(POK, PartialOrderingKind::NonCall);
|
|
}
|
|
|
|
/// Deduce the template arguments by comparing the parameter type and
|
|
/// the argument type (C++ [temp.deduct.type]).
|
|
///
|
|
/// \param S the semantic analysis object within which we are deducing
|
|
///
|
|
/// \param TemplateParams the template parameters that we are deducing
|
|
///
|
|
/// \param P the parameter type
|
|
///
|
|
/// \param A the argument type
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
|
|
/// how template argument deduction is performed.
|
|
///
|
|
/// \param PartialOrdering Whether we're performing template argument deduction
|
|
/// in the context of partial ordering (C++0x [temp.deduct.partial]).
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch(
|
|
Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
|
|
PartialOrderingKind POK, bool DeducedFromArrayBound,
|
|
bool *HasDeducedAnyParam) {
|
|
|
|
// If the argument type is a pack expansion, look at its pattern.
|
|
// This isn't explicitly called out
|
|
if (const auto *AExp = dyn_cast<PackExpansionType>(A))
|
|
A = AExp->getPattern();
|
|
assert(!isa<PackExpansionType>(A.getCanonicalType()));
|
|
|
|
if (POK == PartialOrderingKind::Call) {
|
|
// C++11 [temp.deduct.partial]p5:
|
|
// Before the partial ordering is done, certain transformations are
|
|
// performed on the types used for partial ordering:
|
|
// - If P is a reference type, P is replaced by the type referred to.
|
|
const ReferenceType *PRef = P->getAs<ReferenceType>();
|
|
if (PRef)
|
|
P = PRef->getPointeeType();
|
|
|
|
// - If A is a reference type, A is replaced by the type referred to.
|
|
const ReferenceType *ARef = A->getAs<ReferenceType>();
|
|
if (ARef)
|
|
A = A->getPointeeType();
|
|
|
|
if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) {
|
|
// C++11 [temp.deduct.partial]p9:
|
|
// If, for a given type, deduction succeeds in both directions (i.e.,
|
|
// the types are identical after the transformations above) and both
|
|
// P and A were reference types [...]:
|
|
// - if [one type] was an lvalue reference and [the other type] was
|
|
// not, [the other type] is not considered to be at least as
|
|
// specialized as [the first type]
|
|
// - if [one type] is more cv-qualified than [the other type],
|
|
// [the other type] is not considered to be at least as specialized
|
|
// as [the first type]
|
|
// Objective-C ARC adds:
|
|
// - [one type] has non-trivial lifetime, [the other type] has
|
|
// __unsafe_unretained lifetime, and the types are otherwise
|
|
// identical
|
|
//
|
|
// A is "considered to be at least as specialized" as P iff deduction
|
|
// succeeds, so we model this as a deduction failure. Note that
|
|
// [the first type] is P and [the other type] is A here; the standard
|
|
// gets this backwards.
|
|
Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers();
|
|
if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) ||
|
|
PQuals.isStrictSupersetOf(AQuals) ||
|
|
(PQuals.hasNonTrivialObjCLifetime() &&
|
|
AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
|
|
PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) {
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
}
|
|
Qualifiers DiscardedQuals;
|
|
// C++11 [temp.deduct.partial]p7:
|
|
// Remove any top-level cv-qualifiers:
|
|
// - If P is a cv-qualified type, P is replaced by the cv-unqualified
|
|
// version of P.
|
|
P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals);
|
|
// - If A is a cv-qualified type, A is replaced by the cv-unqualified
|
|
// version of A.
|
|
A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals);
|
|
} else {
|
|
// C++0x [temp.deduct.call]p4 bullet 1:
|
|
// - If the original P is a reference type, the deduced A (i.e., the type
|
|
// referred to by the reference) can be more cv-qualified than the
|
|
// transformed A.
|
|
if (TDF & TDF_ParamWithReferenceType) {
|
|
Qualifiers Quals;
|
|
QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals);
|
|
Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers());
|
|
P = S.Context.getQualifiedType(UnqualP, Quals);
|
|
}
|
|
|
|
if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) {
|
|
// C++0x [temp.deduct.type]p10:
|
|
// If P and A are function types that originated from deduction when
|
|
// taking the address of a function template (14.8.2.2) or when deducing
|
|
// template arguments from a function declaration (14.8.2.6) and Pi and
|
|
// Ai are parameters of the top-level parameter-type-list of P and A,
|
|
// respectively, Pi is adjusted if it is a forwarding reference and Ai
|
|
// is an lvalue reference, in
|
|
// which case the type of Pi is changed to be the template parameter
|
|
// type (i.e., T&& is changed to simply T). [ Note: As a result, when
|
|
// Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
|
|
// deduced as X&. - end note ]
|
|
TDF &= ~TDF_TopLevelParameterTypeList;
|
|
if (isForwardingReference(P, /*FirstInnerIndex=*/0) &&
|
|
A->isLValueReferenceType())
|
|
P = P->getPointeeType();
|
|
}
|
|
}
|
|
|
|
// C++ [temp.deduct.type]p9:
|
|
// A template type argument T, a template template argument TT or a
|
|
// template non-type argument i can be deduced if P and A have one of
|
|
// the following forms:
|
|
//
|
|
// T
|
|
// cv-list T
|
|
if (const auto *TTP = P->getAs<TemplateTypeParmType>()) {
|
|
// Just skip any attempts to deduce from a placeholder type or a parameter
|
|
// at a different depth.
|
|
if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
unsigned Index = TTP->getIndex();
|
|
|
|
// If the argument type is an array type, move the qualifiers up to the
|
|
// top level, so they can be matched with the qualifiers on the parameter.
|
|
if (A->isArrayType()) {
|
|
Qualifiers Quals;
|
|
A = S.Context.getUnqualifiedArrayType(A, Quals);
|
|
if (Quals)
|
|
A = S.Context.getQualifiedType(A, Quals);
|
|
}
|
|
|
|
// The argument type can not be less qualified than the parameter
|
|
// type.
|
|
if (!(TDF & TDF_IgnoreQualifiers) &&
|
|
hasInconsistentOrSupersetQualifiersOf(P, A)) {
|
|
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
return TemplateDeductionResult::Underqualified;
|
|
}
|
|
|
|
// Do not match a function type with a cv-qualified type.
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
|
|
if (A->isFunctionType() && P.hasQualifiers())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
assert(TTP->getDepth() == Info.getDeducedDepth() &&
|
|
"saw template type parameter with wrong depth");
|
|
assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy &&
|
|
"Unresolved overloaded function");
|
|
QualType DeducedType = A;
|
|
|
|
// Remove any qualifiers on the parameter from the deduced type.
|
|
// We checked the qualifiers for consistency above.
|
|
Qualifiers DeducedQs = DeducedType.getQualifiers();
|
|
Qualifiers ParamQs = P.getQualifiers();
|
|
DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
|
|
if (ParamQs.hasObjCGCAttr())
|
|
DeducedQs.removeObjCGCAttr();
|
|
if (ParamQs.hasAddressSpace())
|
|
DeducedQs.removeAddressSpace();
|
|
if (ParamQs.hasObjCLifetime())
|
|
DeducedQs.removeObjCLifetime();
|
|
|
|
// Objective-C ARC:
|
|
// If template deduction would produce a lifetime qualifier on a type
|
|
// that is not a lifetime type, template argument deduction fails.
|
|
if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
|
|
!DeducedType->isDependentType()) {
|
|
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
return TemplateDeductionResult::Underqualified;
|
|
}
|
|
|
|
// Objective-C ARC:
|
|
// If template deduction would produce an argument type with lifetime type
|
|
// but no lifetime qualifier, the __strong lifetime qualifier is inferred.
|
|
if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() &&
|
|
!DeducedQs.hasObjCLifetime())
|
|
DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
|
|
|
|
DeducedType =
|
|
S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs);
|
|
|
|
DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
|
|
DeducedTemplateArgument Result =
|
|
checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced);
|
|
if (Result.isNull()) {
|
|
// We can also get inconsistencies when matching NTTP type.
|
|
switch (NamedDecl *Param = TemplateParams->getParam(Index);
|
|
Param->getKind()) {
|
|
case Decl::TemplateTypeParm:
|
|
Info.Param = cast<TemplateTypeParmDecl>(Param);
|
|
break;
|
|
case Decl::NonTypeTemplateParm:
|
|
Info.Param = cast<NonTypeTemplateParmDecl>(Param);
|
|
break;
|
|
case Decl::TemplateTemplateParm:
|
|
Info.Param = cast<TemplateTemplateParmDecl>(Param);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected kind");
|
|
}
|
|
Info.FirstArg = Deduced[Index];
|
|
Info.SecondArg = NewDeduced;
|
|
return TemplateDeductionResult::Inconsistent;
|
|
}
|
|
|
|
Deduced[Index] = Result;
|
|
if (HasDeducedAnyParam)
|
|
*HasDeducedAnyParam = true;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Set up the template argument deduction information for a failure.
|
|
Info.FirstArg = TemplateArgument(P);
|
|
Info.SecondArg = TemplateArgument(A);
|
|
|
|
// If the parameter is an already-substituted template parameter
|
|
// pack, do nothing: we don't know which of its arguments to look
|
|
// at, so we have to wait until all of the parameter packs in this
|
|
// expansion have arguments.
|
|
if (P->getAs<SubstTemplateTypeParmPackType>())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Check the cv-qualifiers on the parameter and argument types.
|
|
if (!(TDF & TDF_IgnoreQualifiers)) {
|
|
if (TDF & TDF_ParamWithReferenceType) {
|
|
if (hasInconsistentOrSupersetQualifiersOf(P, A))
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
} else if (TDF & TDF_ArgWithReferenceType) {
|
|
// C++ [temp.deduct.conv]p4:
|
|
// If the original A is a reference type, A can be more cv-qualified
|
|
// than the deduced A
|
|
if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers(),
|
|
S.getASTContext()))
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Strip out all extra qualifiers from the argument to figure out the
|
|
// type we're converting to, prior to the qualification conversion.
|
|
Qualifiers Quals;
|
|
A = S.Context.getUnqualifiedArrayType(A, Quals);
|
|
A = S.Context.getQualifiedType(A, P.getQualifiers());
|
|
} else if (!IsPossiblyOpaquelyQualifiedType(P)) {
|
|
if (P.getCVRQualifiers() != A.getCVRQualifiers())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
}
|
|
|
|
// If the parameter type is not dependent, there is nothing to deduce.
|
|
if (!P->isDependentType()) {
|
|
if (TDF & TDF_SkipNonDependent)
|
|
return TemplateDeductionResult::Success;
|
|
if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A)
|
|
: S.Context.hasSameType(P, A))
|
|
return TemplateDeductionResult::Success;
|
|
if (TDF & TDF_AllowCompatibleFunctionType &&
|
|
S.isSameOrCompatibleFunctionType(P, A))
|
|
return TemplateDeductionResult::Success;
|
|
if (!(TDF & TDF_IgnoreQualifiers))
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
// Otherwise, when ignoring qualifiers, the types not having the same
|
|
// unqualified type does not mean they do not match, so in this case we
|
|
// must keep going and analyze with a non-dependent parameter type.
|
|
}
|
|
|
|
switch (P.getCanonicalType()->getTypeClass()) {
|
|
// Non-canonical types cannot appear here.
|
|
#define NON_CANONICAL_TYPE(Class, Base) \
|
|
case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
|
|
#define TYPE(Class, Base)
|
|
#include "clang/AST/TypeNodes.inc"
|
|
|
|
case Type::TemplateTypeParm:
|
|
case Type::SubstTemplateTypeParmPack:
|
|
llvm_unreachable("Type nodes handled above");
|
|
|
|
case Type::Auto:
|
|
// C++23 [temp.deduct.funcaddr]/3:
|
|
// A placeholder type in the return type of a function template is a
|
|
// non-deduced context.
|
|
// There's no corresponding wording for [temp.deduct.decl], but we treat
|
|
// it the same to match other compilers.
|
|
if (P->isDependentType())
|
|
return TemplateDeductionResult::Success;
|
|
[[fallthrough]];
|
|
case Type::Builtin:
|
|
case Type::VariableArray:
|
|
case Type::Vector:
|
|
case Type::FunctionNoProto:
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObjectPointer:
|
|
case Type::BitInt:
|
|
return (TDF & TDF_SkipNonDependent) ||
|
|
((TDF & TDF_IgnoreQualifiers)
|
|
? S.Context.hasSameUnqualifiedType(P, A)
|
|
: S.Context.hasSameType(P, A))
|
|
? TemplateDeductionResult::Success
|
|
: TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// _Complex T [placeholder extension]
|
|
case Type::Complex: {
|
|
const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>();
|
|
if (!CA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, CP->getElementType(), CA->getElementType(), Info,
|
|
Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// _Atomic T [extension]
|
|
case Type::Atomic: {
|
|
const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>();
|
|
if (!AA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, PA->getValueType(), AA->getValueType(), Info,
|
|
Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T *
|
|
case Type::Pointer: {
|
|
QualType PointeeType;
|
|
if (const auto *PA = A->getAs<PointerType>()) {
|
|
PointeeType = PA->getPointeeType();
|
|
} else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) {
|
|
PointeeType = PA->getPointeeType();
|
|
} else {
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, P->castAs<PointerType>()->getPointeeType(),
|
|
PointeeType, Info, Deduced,
|
|
TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass),
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T &
|
|
case Type::LValueReference: {
|
|
const auto *RP = P->castAs<LValueReferenceType>(),
|
|
*RA = A->getAs<LValueReferenceType>();
|
|
if (!RA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
|
|
Deduced, 0, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T && [C++0x]
|
|
case Type::RValueReference: {
|
|
const auto *RP = P->castAs<RValueReferenceType>(),
|
|
*RA = A->getAs<RValueReferenceType>();
|
|
if (!RA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
|
|
Deduced, 0, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T [] (implied, but not stated explicitly)
|
|
case Type::IncompleteArray: {
|
|
const auto *IAA = S.Context.getAsIncompleteArrayType(A);
|
|
if (!IAA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
const auto *IAP = S.Context.getAsIncompleteArrayType(P);
|
|
assert(IAP && "Template parameter not of incomplete array type");
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, IAP->getElementType(), IAA->getElementType(), Info,
|
|
Deduced, TDF & TDF_IgnoreQualifiers,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// T [integer-constant]
|
|
case Type::ConstantArray: {
|
|
const auto *CAA = S.Context.getAsConstantArrayType(A),
|
|
*CAP = S.Context.getAsConstantArrayType(P);
|
|
assert(CAP);
|
|
if (!CAA || CAA->getSize() != CAP->getSize())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info,
|
|
Deduced, TDF & TDF_IgnoreQualifiers,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// type [i]
|
|
case Type::DependentSizedArray: {
|
|
const auto *AA = S.Context.getAsArrayType(A);
|
|
if (!AA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Check the element type of the arrays
|
|
const auto *DAP = S.Context.getAsDependentSizedArrayType(P);
|
|
assert(DAP);
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, DAP->getElementType(), AA->getElementType(),
|
|
Info, Deduced, TDF & TDF_IgnoreQualifiers,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Determine the array bound is something we can deduce.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, DAP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// We can perform template argument deduction for the given non-type
|
|
// template parameter.
|
|
assert(NTTP->getDepth() == Info.getDeducedDepth() &&
|
|
"saw non-type template parameter with wrong depth");
|
|
if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) {
|
|
llvm::APSInt Size(CAA->getSize());
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, Size, S.Context.getSizeType(),
|
|
/*ArrayBound=*/true, Info, POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
}
|
|
if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA))
|
|
if (DAA->getSizeExpr())
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DAA->getSizeExpr(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
|
|
// Incomplete type does not match a dependently-sized array type
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
// type(*)(T)
|
|
// T(*)()
|
|
// T(*)(T)
|
|
case Type::FunctionProto: {
|
|
const auto *FPP = P->castAs<FunctionProtoType>(),
|
|
*FPA = A->getAs<FunctionProtoType>();
|
|
if (!FPA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
if (FPP->getMethodQuals() != FPA->getMethodQuals() ||
|
|
FPP->getRefQualifier() != FPA->getRefQualifier() ||
|
|
FPP->isVariadic() != FPA->isVariadic())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Check return types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(),
|
|
Info, Deduced, 0, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Check parameter types.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, FPP->param_types(), FPA->param_types(), Info,
|
|
Deduced, TDF & TDF_TopLevelParameterTypeList, POK,
|
|
HasDeducedAnyParam,
|
|
/*HasDeducedParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
if (TDF & TDF_AllowCompatibleFunctionType)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
|
|
// deducing through the noexcept-specifier if it's part of the canonical
|
|
// type. libstdc++ relies on this.
|
|
Expr *NoexceptExpr = FPP->getNoexceptExpr();
|
|
if (const NonTypeTemplateParmDecl *NTTP =
|
|
NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
|
|
: nullptr) {
|
|
assert(NTTP->getDepth() == Info.getDeducedDepth() &&
|
|
"saw non-type template parameter with wrong depth");
|
|
|
|
llvm::APSInt Noexcept(1);
|
|
switch (FPA->canThrow()) {
|
|
case CT_Cannot:
|
|
Noexcept = 1;
|
|
[[fallthrough]];
|
|
|
|
case CT_Can:
|
|
// We give E in noexcept(E) the "deduced from array bound" treatment.
|
|
// FIXME: Should we?
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
|
|
/*DeducedFromArrayBound=*/true, Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
|
|
case CT_Dependent:
|
|
if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr())
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgNoexceptExpr, Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
// Can't deduce anything from throw(T...).
|
|
break;
|
|
}
|
|
}
|
|
// FIXME: Detect non-deduced exception specification mismatches?
|
|
//
|
|
// Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
|
|
// top-level differences in noexcept-specifications.
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
case Type::InjectedClassName:
|
|
// Treat a template's injected-class-name as if the template
|
|
// specialization type had been used.
|
|
|
|
// template-name<T> (where template-name refers to a class template)
|
|
// template-name<i>
|
|
// TT<T>
|
|
// TT<i>
|
|
// TT<>
|
|
case Type::TemplateSpecialization: {
|
|
// When Arg cannot be a derived class, we can just try to deduce template
|
|
// arguments from the template-id.
|
|
if (!(TDF & TDF_DerivedClass) || !A->isRecordType())
|
|
return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info,
|
|
POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
|
|
SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
|
|
Deduced.end());
|
|
|
|
auto Result = DeduceTemplateSpecArguments(
|
|
S, TemplateParams, P, A, Info, POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
if (Result == TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// We cannot inspect base classes as part of deduction when the type
|
|
// is incomplete, so either instantiate any templates necessary to
|
|
// complete the type, or skip over it if it cannot be completed.
|
|
if (!S.isCompleteType(Info.getLocation(), A))
|
|
return Result;
|
|
|
|
const CXXRecordDecl *RD = A->getAsCXXRecordDecl();
|
|
if (RD->isInvalidDecl())
|
|
return Result;
|
|
|
|
// Reset the incorrectly deduced argument from above.
|
|
Deduced = DeducedOrig;
|
|
|
|
// Check bases according to C++14 [temp.deduct.call] p4b3:
|
|
auto BaseResult = DeduceTemplateBases(S, RD, TemplateParams, P, Info,
|
|
POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
return BaseResult != TemplateDeductionResult::Invalid ? BaseResult
|
|
: Result;
|
|
}
|
|
|
|
// T type::*
|
|
// T T::*
|
|
// T (type::*)()
|
|
// type (T::*)()
|
|
// type (type::*)(T)
|
|
// type (T::*)(T)
|
|
// T (type::*)(T)
|
|
// T (T::*)()
|
|
// T (T::*)(T)
|
|
case Type::MemberPointer: {
|
|
const auto *MPP = P->castAs<MemberPointerType>(),
|
|
*MPA = A->getAs<MemberPointerType>();
|
|
if (!MPA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
QualType PPT = MPP->getPointeeType();
|
|
if (PPT->isFunctionType())
|
|
S.adjustMemberFunctionCC(PPT, /*HasThisPointer=*/false,
|
|
/*IsCtorOrDtor=*/false, Info.getLocation());
|
|
QualType APT = MPA->getPointeeType();
|
|
if (APT->isFunctionType())
|
|
S.adjustMemberFunctionCC(APT, /*HasThisPointer=*/false,
|
|
/*IsCtorOrDtor=*/false, Info.getLocation());
|
|
|
|
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, PPT, APT, Info, Deduced, SubTDF,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
QualType TP;
|
|
if (MPP->isSugared()) {
|
|
TP = S.Context.getTypeDeclType(MPP->getMostRecentCXXRecordDecl());
|
|
} else {
|
|
NestedNameSpecifier *QP = MPP->getQualifier();
|
|
if (QP->getKind() == NestedNameSpecifier::Identifier)
|
|
// Skip translation if it's a non-deduced context anyway.
|
|
return TemplateDeductionResult::Success;
|
|
TP = QualType(QP->translateToType(S.Context), 0);
|
|
}
|
|
assert(!TP.isNull() && "member pointer with non-type class");
|
|
|
|
QualType TA;
|
|
if (MPA->isSugared()) {
|
|
TA = S.Context.getTypeDeclType(MPA->getMostRecentCXXRecordDecl());
|
|
} else {
|
|
NestedNameSpecifier *QA = MPA->getQualifier();
|
|
TA = QualType(QA->translateToType(S.Context), 0);
|
|
}
|
|
assert(!TA.isNull() && "member pointer with non-type class");
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, TP, TA, Info, Deduced, SubTDF,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// type(^)(T)
|
|
// T(^)()
|
|
// T(^)(T)
|
|
case Type::BlockPointer: {
|
|
const auto *BPP = P->castAs<BlockPointerType>(),
|
|
*BPA = A->getAs<BlockPointerType>();
|
|
if (!BPA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info,
|
|
Deduced, 0, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__(((ext_vector_type(<integral constant>))))
|
|
case Type::ExtVector: {
|
|
const auto *VP = P->castAs<ExtVectorType>();
|
|
QualType ElementType;
|
|
if (const auto *VA = A->getAs<ExtVectorType>()) {
|
|
// Make sure that the vectors have the same number of elements.
|
|
if (VP->getNumElements() != VA->getNumElements())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
ElementType = VA->getElementType();
|
|
} else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
|
|
// We can't check the number of elements, since the argument has a
|
|
// dependent number of elements. This can only occur during partial
|
|
// ordering.
|
|
ElementType = VA->getElementType();
|
|
} else {
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
// Perform deduction on the element types.
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced,
|
|
TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
case Type::DependentVector: {
|
|
const auto *VP = P->castAs<DependentVectorType>();
|
|
|
|
if (const auto *VA = A->getAs<VectorType>()) {
|
|
// Perform deduction on the element types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), VA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, VP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
|
|
ArgSize = VA->getNumElements();
|
|
// Note that we use the "array bound" rules here; just like in that
|
|
// case, we don't have any particular type for the vector size, but
|
|
// we can provide one if necessary.
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgSize, S.Context.UnsignedIntTy, true,
|
|
Info, POK != PartialOrderingKind::None, Deduced,
|
|
HasDeducedAnyParam);
|
|
}
|
|
|
|
if (const auto *VA = A->getAs<DependentVectorType>()) {
|
|
// Perform deduction on the element types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), VA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, VP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, VA->getSizeExpr(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__(((ext_vector_type(N))))
|
|
case Type::DependentSizedExtVector: {
|
|
const auto *VP = P->castAs<DependentSizedExtVectorType>();
|
|
|
|
if (const auto *VA = A->getAs<ExtVectorType>()) {
|
|
// Perform deduction on the element types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), VA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, VP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
|
|
ArgSize = VA->getNumElements();
|
|
// Note that we use the "array bound" rules here; just like in that
|
|
// case, we don't have any particular type for the vector size, but
|
|
// we can provide one if necessary.
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
|
|
// Perform deduction on the element types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, VP->getElementType(), VA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, VP->getSizeExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, VA->getSizeExpr(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__((matrix_type(<integral constant>,
|
|
// <integral constant>)))
|
|
case Type::ConstantMatrix: {
|
|
const auto *MP = P->castAs<ConstantMatrixType>(),
|
|
*MA = A->getAs<ConstantMatrixType>();
|
|
if (!MA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Check that the dimensions are the same
|
|
if (MP->getNumRows() != MA->getNumRows() ||
|
|
MP->getNumColumns() != MA->getNumColumns()) {
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
// Perform deduction on element types.
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, MP->getElementType(), MA->getElementType(), Info,
|
|
Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
|
|
case Type::DependentSizedMatrix: {
|
|
const auto *MP = P->castAs<DependentSizedMatrixType>();
|
|
const auto *MA = A->getAs<MatrixType>();
|
|
if (!MA)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
// Check the element type of the matrixes.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, MP->getElementType(), MA->getElementType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Try to deduce a matrix dimension.
|
|
auto DeduceMatrixArg =
|
|
[&S, &Info, &Deduced, &TemplateParams, &HasDeducedAnyParam, POK](
|
|
Expr *ParamExpr, const MatrixType *A,
|
|
unsigned (ConstantMatrixType::*GetArgDimension)() const,
|
|
Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) {
|
|
const auto *ACM = dyn_cast<ConstantMatrixType>(A);
|
|
const auto *ADM = dyn_cast<DependentSizedMatrixType>(A);
|
|
if (!ParamExpr->isValueDependent()) {
|
|
std::optional<llvm::APSInt> ParamConst =
|
|
ParamExpr->getIntegerConstantExpr(S.Context);
|
|
if (!ParamConst)
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
if (ACM) {
|
|
if ((ACM->*GetArgDimension)() == *ParamConst)
|
|
return TemplateDeductionResult::Success;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
Expr *ArgExpr = (ADM->*GetArgDimensionExpr)();
|
|
if (std::optional<llvm::APSInt> ArgConst =
|
|
ArgExpr->getIntegerConstantExpr(S.Context))
|
|
if (*ArgConst == *ParamConst)
|
|
return TemplateDeductionResult::Success;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, ParamExpr);
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
if (ACM) {
|
|
llvm::APSInt ArgConst(
|
|
S.Context.getTypeSize(S.Context.getSizeType()));
|
|
ArgConst = (ACM->*GetArgDimension)();
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(),
|
|
/*ArrayBound=*/true, Info, POK != PartialOrderingKind::None,
|
|
Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, (ADM->*GetArgDimensionExpr)(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
};
|
|
|
|
if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA,
|
|
&ConstantMatrixType::getNumRows,
|
|
&DependentSizedMatrixType::getRowExpr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
return DeduceMatrixArg(MP->getColumnExpr(), MA,
|
|
&ConstantMatrixType::getNumColumns,
|
|
&DependentSizedMatrixType::getColumnExpr);
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__(((address_space(N))))
|
|
case Type::DependentAddressSpace: {
|
|
const auto *ASP = P->castAs<DependentAddressSpaceType>();
|
|
|
|
if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) {
|
|
// Perform deduction on the pointer type.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(),
|
|
Info, Deduced, TDF, degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the address space, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
if (isTargetAddressSpace(A.getAddressSpace())) {
|
|
llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
|
|
false);
|
|
ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace());
|
|
|
|
// Perform deduction on the pointer types.
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ASP->getPointeeType(),
|
|
S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Perform deduction on the address space, if we can.
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgAddressSpace, S.Context.IntTy, true,
|
|
Info, POK != PartialOrderingKind::None, Deduced,
|
|
HasDeducedAnyParam);
|
|
}
|
|
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
case Type::DependentBitInt: {
|
|
const auto *IP = P->castAs<DependentBitIntType>();
|
|
|
|
if (const auto *IA = A->getAs<BitIntType>()) {
|
|
if (IP->isUnsigned() != IA->isUnsigned())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, IP->getNumBitsExpr());
|
|
if (!NTTP)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
|
|
ArgSize = IA->getNumBits();
|
|
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info,
|
|
POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam);
|
|
}
|
|
|
|
if (const auto *IA = A->getAs<DependentBitIntType>()) {
|
|
if (IP->isUnsigned() != IA->isUnsigned())
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::DependentName:
|
|
case Type::UnresolvedUsing:
|
|
case Type::Decltype:
|
|
case Type::UnaryTransform:
|
|
case Type::DeducedTemplateSpecialization:
|
|
case Type::DependentTemplateSpecialization:
|
|
case Type::PackExpansion:
|
|
case Type::Pipe:
|
|
case Type::ArrayParameter:
|
|
case Type::HLSLAttributedResource:
|
|
// No template argument deduction for these types
|
|
return TemplateDeductionResult::Success;
|
|
|
|
case Type::PackIndexing: {
|
|
const PackIndexingType *PIT = P->getAs<PackIndexingType>();
|
|
if (PIT->hasSelectedType()) {
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, PIT->getSelectedType(), A, Info, Deduced, TDF,
|
|
degradeCallPartialOrderingKind(POK),
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
}
|
|
return TemplateDeductionResult::IncompletePack;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid Type Class!");
|
|
}
|
|
|
|
static TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
|
|
const TemplateArgument &P, TemplateArgument A,
|
|
TemplateDeductionInfo &Info, bool PartialOrdering,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool *HasDeducedAnyParam) {
|
|
// If the template argument is a pack expansion, perform template argument
|
|
// deduction against the pattern of that expansion. This only occurs during
|
|
// partial ordering.
|
|
if (A.isPackExpansion())
|
|
A = A.getPackExpansionPattern();
|
|
|
|
switch (P.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Null template argument in parameter list");
|
|
|
|
case TemplateArgument::Type:
|
|
if (A.getKind() == TemplateArgument::Type)
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0,
|
|
PartialOrdering ? PartialOrderingKind::NonCall
|
|
: PartialOrderingKind::None,
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Template:
|
|
// PartialOrdering does not matter here, since template specializations are
|
|
// not being deduced.
|
|
if (A.getKind() == TemplateArgument::Template)
|
|
return DeduceTemplateArguments(
|
|
S, TemplateParams, P.getAsTemplate(), A.getAsTemplate(), Info,
|
|
/*DefaultArguments=*/{}, /*PartialOrdering=*/false, Deduced,
|
|
HasDeducedAnyParam);
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::TemplateExpansion:
|
|
llvm_unreachable("caller should handle pack expansions");
|
|
|
|
case TemplateArgument::Declaration:
|
|
if (A.getKind() == TemplateArgument::Declaration &&
|
|
isSameDeclaration(P.getAsDecl(), A.getAsDecl()))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::NullPtr:
|
|
// 'nullptr' has only one possible value, so it always matches.
|
|
if (A.getKind() == TemplateArgument::NullPtr)
|
|
return TemplateDeductionResult::Success;
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Integral:
|
|
if (A.getKind() == TemplateArgument::Integral) {
|
|
if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral()))
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::StructuralValue:
|
|
// FIXME: structural equality will also compare types,
|
|
// but they should match iff they have the same value.
|
|
if (A.getKind() == TemplateArgument::StructuralValue &&
|
|
A.structurallyEquals(P))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Expression:
|
|
if (const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, P.getAsExpr())) {
|
|
switch (A.getKind()) {
|
|
case TemplateArgument::Expression: {
|
|
const Expr *E = A.getAsExpr();
|
|
// When checking NTTP, if either the parameter or the argument is
|
|
// dependent, as there would be otherwise nothing to deduce, we force
|
|
// the argument to the parameter type using this dependent implicit
|
|
// cast, in order to maintain invariants. Now we can deduce the
|
|
// resulting type from the original type, and deduce the original type
|
|
// against the parameter we are checking.
|
|
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
|
|
ICE && ICE->getCastKind() == clang::CK_Dependent) {
|
|
E = ICE->getSubExpr();
|
|
if (auto Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ICE->getType(), E->getType(), Info,
|
|
Deduced, TDF_SkipNonDependent,
|
|
PartialOrdering ? PartialOrderingKind::NonCall
|
|
: PartialOrderingKind::None,
|
|
/*DeducedFromArrayBound=*/false, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DeducedTemplateArgument(A), E->getType(),
|
|
Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
}
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::StructuralValue:
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, DeducedTemplateArgument(A),
|
|
A.getNonTypeTemplateArgumentType(), Info, PartialOrdering, Deduced,
|
|
HasDeducedAnyParam);
|
|
|
|
case TemplateArgument::NullPtr:
|
|
return DeduceNullPtrTemplateArgument(
|
|
S, TemplateParams, NTTP, A.getNullPtrType(), Info, PartialOrdering,
|
|
Deduced, HasDeducedAnyParam);
|
|
|
|
case TemplateArgument::Declaration:
|
|
return DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(),
|
|
Info, PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Type:
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
case TemplateArgument::Pack:
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
llvm_unreachable("Unknown template argument kind");
|
|
}
|
|
|
|
// Can't deduce anything, but that's okay.
|
|
return TemplateDeductionResult::Success;
|
|
case TemplateArgument::Pack:
|
|
llvm_unreachable("Argument packs should be expanded by the caller!");
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
/// Determine whether there is a template argument to be used for
|
|
/// deduction.
|
|
///
|
|
/// This routine "expands" argument packs in-place, overriding its input
|
|
/// parameters so that \c Args[ArgIdx] will be the available template argument.
|
|
///
|
|
/// \returns true if there is another template argument (which will be at
|
|
/// \c Args[ArgIdx]), false otherwise.
|
|
static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
|
|
unsigned &ArgIdx) {
|
|
if (ArgIdx == Args.size())
|
|
return false;
|
|
|
|
const TemplateArgument &Arg = Args[ArgIdx];
|
|
if (Arg.getKind() != TemplateArgument::Pack)
|
|
return true;
|
|
|
|
assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
|
|
Args = Arg.pack_elements();
|
|
ArgIdx = 0;
|
|
return ArgIdx < Args.size();
|
|
}
|
|
|
|
/// Determine whether the given set of template arguments has a pack
|
|
/// expansion that is not the last template argument.
|
|
static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
|
|
bool FoundPackExpansion = false;
|
|
for (const auto &A : Args) {
|
|
if (FoundPackExpansion)
|
|
return true;
|
|
|
|
if (A.getKind() == TemplateArgument::Pack)
|
|
return hasPackExpansionBeforeEnd(A.pack_elements());
|
|
|
|
// FIXME: If this is a fixed-arity pack expansion from an outer level of
|
|
// templates, it should not be treated as a pack expansion.
|
|
if (A.isPackExpansion())
|
|
FoundPackExpansion = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
|
|
ArrayRef<TemplateArgument> Ps,
|
|
ArrayRef<TemplateArgument> As,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool NumberOfArgumentsMustMatch, bool PartialOrdering,
|
|
PackFold PackFold, bool *HasDeducedAnyParam) {
|
|
bool FoldPackParameter = PackFold == PackFold::ParameterToArgument ||
|
|
PackFold == PackFold::Both,
|
|
FoldPackArgument = PackFold == PackFold::ArgumentToParameter ||
|
|
PackFold == PackFold::Both;
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is not
|
|
// the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (FoldPackParameter && hasPackExpansionBeforeEnd(Ps))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If P has a form that contains <T> or <i>, then each argument Pi of the
|
|
// respective template argument list P is compared with the corresponding
|
|
// argument Ai of the corresponding template argument list of A.
|
|
for (unsigned ArgIdx = 0, ParamIdx = 0; /**/; /**/) {
|
|
if (!hasTemplateArgumentForDeduction(Ps, ParamIdx))
|
|
return !FoldPackParameter && hasTemplateArgumentForDeduction(As, ArgIdx)
|
|
? TemplateDeductionResult::MiscellaneousDeductionFailure
|
|
: TemplateDeductionResult::Success;
|
|
|
|
if (!Ps[ParamIdx].isPackExpansion()) {
|
|
// The simple case: deduce template arguments by matching Pi and Ai.
|
|
|
|
// Check whether we have enough arguments.
|
|
if (!hasTemplateArgumentForDeduction(As, ArgIdx))
|
|
return !FoldPackArgument && NumberOfArgumentsMustMatch
|
|
? TemplateDeductionResult::MiscellaneousDeductionFailure
|
|
: TemplateDeductionResult::Success;
|
|
|
|
if (As[ArgIdx].isPackExpansion()) {
|
|
// C++1z [temp.deduct.type]p9:
|
|
// During partial ordering, if Ai was originally a pack expansion
|
|
// [and] Pi is not a pack expansion, template argument deduction
|
|
// fails.
|
|
if (!FoldPackArgument)
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
TemplateArgument Pattern = As[ArgIdx].getPackExpansionPattern();
|
|
for (;;) {
|
|
// Deduce template parameters from the pattern.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, Ps[ParamIdx], Pattern, Info,
|
|
PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
++ParamIdx;
|
|
if (!hasTemplateArgumentForDeduction(Ps, ParamIdx))
|
|
return TemplateDeductionResult::Success;
|
|
if (Ps[ParamIdx].isPackExpansion())
|
|
break;
|
|
}
|
|
} else {
|
|
// Perform deduction for this Pi/Ai pair.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, Ps[ParamIdx], As[ArgIdx], Info,
|
|
PartialOrdering, Deduced, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
++ArgIdx;
|
|
++ParamIdx;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// The parameter is a pack expansion.
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If Pi is a pack expansion, then the pattern of Pi is compared with
|
|
// each remaining argument in the template argument list of A. Each
|
|
// comparison deduces template arguments for subsequent positions in the
|
|
// template parameter packs expanded by Pi.
|
|
TemplateArgument Pattern = Ps[ParamIdx].getPackExpansionPattern();
|
|
|
|
// Prepare to deduce the packs within the pattern.
|
|
PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
|
|
|
|
// Keep track of the deduced template arguments for each parameter pack
|
|
// expanded by this pack expansion (the outer index) and for each
|
|
// template argument (the inner SmallVectors).
|
|
for (; hasTemplateArgumentForDeduction(As, ArgIdx) &&
|
|
PackScope.hasNextElement();
|
|
++ArgIdx) {
|
|
if (!As[ArgIdx].isPackExpansion()) {
|
|
if (!FoldPackParameter)
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
if (FoldPackArgument)
|
|
Info.setStrictPackMatch();
|
|
}
|
|
// Deduce template arguments from the pattern.
|
|
if (auto Result = DeduceTemplateArguments(
|
|
S, TemplateParams, Pattern, As[ArgIdx], Info, PartialOrdering,
|
|
Deduced, HasDeducedAnyParam);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
PackScope.nextPackElement();
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
return PackScope.finish();
|
|
}
|
|
}
|
|
|
|
TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
TemplateParameterList *TemplateParams, ArrayRef<TemplateArgument> Ps,
|
|
ArrayRef<TemplateArgument> As, sema::TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
bool NumberOfArgumentsMustMatch) {
|
|
return ::DeduceTemplateArguments(
|
|
*this, TemplateParams, Ps, As, Info, Deduced, NumberOfArgumentsMustMatch,
|
|
/*PartialOrdering=*/false, PackFold::ParameterToArgument,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
}
|
|
|
|
/// Determine whether two template arguments are the same.
|
|
static bool isSameTemplateArg(ASTContext &Context,
|
|
TemplateArgument X,
|
|
const TemplateArgument &Y,
|
|
bool PartialOrdering,
|
|
bool PackExpansionMatchesPack = false) {
|
|
// If we're checking deduced arguments (X) against original arguments (Y),
|
|
// we will have flattened packs to non-expansions in X.
|
|
if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
|
|
X = X.getPackExpansionPattern();
|
|
|
|
if (X.getKind() != Y.getKind())
|
|
return false;
|
|
|
|
switch (X.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Comparing NULL template argument");
|
|
|
|
case TemplateArgument::Type:
|
|
return Context.getCanonicalType(X.getAsType()) ==
|
|
Context.getCanonicalType(Y.getAsType());
|
|
|
|
case TemplateArgument::Declaration:
|
|
return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
|
|
|
|
case TemplateArgument::NullPtr:
|
|
return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
return Context.getCanonicalTemplateName(
|
|
X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
|
|
Context.getCanonicalTemplateName(
|
|
Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
|
|
|
|
case TemplateArgument::Integral:
|
|
return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
|
|
|
|
case TemplateArgument::StructuralValue:
|
|
return X.structurallyEquals(Y);
|
|
|
|
case TemplateArgument::Expression: {
|
|
llvm::FoldingSetNodeID XID, YID;
|
|
X.getAsExpr()->Profile(XID, Context, true);
|
|
Y.getAsExpr()->Profile(YID, Context, true);
|
|
return XID == YID;
|
|
}
|
|
|
|
case TemplateArgument::Pack: {
|
|
unsigned PackIterationSize = X.pack_size();
|
|
if (X.pack_size() != Y.pack_size()) {
|
|
if (!PartialOrdering)
|
|
return false;
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// During partial ordering, if Ai was originally a pack expansion:
|
|
// - if P does not contain a template argument corresponding to Ai
|
|
// then Ai is ignored;
|
|
bool XHasMoreArg = X.pack_size() > Y.pack_size();
|
|
if (!(XHasMoreArg && X.pack_elements().back().isPackExpansion()) &&
|
|
!(!XHasMoreArg && Y.pack_elements().back().isPackExpansion()))
|
|
return false;
|
|
|
|
if (XHasMoreArg)
|
|
PackIterationSize = Y.pack_size();
|
|
}
|
|
|
|
ArrayRef<TemplateArgument> XP = X.pack_elements();
|
|
ArrayRef<TemplateArgument> YP = Y.pack_elements();
|
|
for (unsigned i = 0; i < PackIterationSize; ++i)
|
|
if (!isSameTemplateArg(Context, XP[i], YP[i], PartialOrdering,
|
|
PackExpansionMatchesPack))
|
|
return false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
TemplateArgumentLoc
|
|
Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
|
|
QualType NTTPType, SourceLocation Loc,
|
|
NamedDecl *TemplateParam) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Can't get a NULL template argument here");
|
|
|
|
case TemplateArgument::Type:
|
|
return TemplateArgumentLoc(
|
|
Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
|
|
|
|
case TemplateArgument::Declaration: {
|
|
if (NTTPType.isNull())
|
|
NTTPType = Arg.getParamTypeForDecl();
|
|
Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc,
|
|
TemplateParam)
|
|
.getAs<Expr>();
|
|
return TemplateArgumentLoc(TemplateArgument(E), E);
|
|
}
|
|
|
|
case TemplateArgument::NullPtr: {
|
|
if (NTTPType.isNull())
|
|
NTTPType = Arg.getNullPtrType();
|
|
Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
|
|
.getAs<Expr>();
|
|
return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
|
|
E);
|
|
}
|
|
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::StructuralValue: {
|
|
Expr *E = BuildExpressionFromNonTypeTemplateArgument(Arg, Loc).get();
|
|
return TemplateArgumentLoc(TemplateArgument(E), E);
|
|
}
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion: {
|
|
NestedNameSpecifierLocBuilder Builder;
|
|
TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
|
|
Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
|
|
else if (QualifiedTemplateName *QTN =
|
|
Template.getAsQualifiedTemplateName())
|
|
Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
|
|
|
|
if (Arg.getKind() == TemplateArgument::Template)
|
|
return TemplateArgumentLoc(Context, Arg,
|
|
Builder.getWithLocInContext(Context), Loc);
|
|
|
|
return TemplateArgumentLoc(
|
|
Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc);
|
|
}
|
|
|
|
case TemplateArgument::Expression:
|
|
return TemplateArgumentLoc(Arg, Arg.getAsExpr());
|
|
|
|
case TemplateArgument::Pack:
|
|
return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
TemplateArgumentLoc
|
|
Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm,
|
|
SourceLocation Location) {
|
|
return getTrivialTemplateArgumentLoc(
|
|
Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
|
|
}
|
|
|
|
/// Convert the given deduced template argument and add it to the set of
|
|
/// fully-converted template arguments.
|
|
static bool
|
|
ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
|
|
DeducedTemplateArgument Arg, NamedDecl *Template,
|
|
TemplateDeductionInfo &Info, bool IsDeduced,
|
|
Sema::CheckTemplateArgumentInfo &CTAI) {
|
|
auto ConvertArg = [&](DeducedTemplateArgument Arg,
|
|
unsigned ArgumentPackIndex) {
|
|
// Convert the deduced template argument into a template
|
|
// argument that we can check, almost as if the user had written
|
|
// the template argument explicitly.
|
|
TemplateArgumentLoc ArgLoc = S.getTrivialTemplateArgumentLoc(
|
|
Arg, QualType(), Info.getLocation(), Param);
|
|
|
|
SaveAndRestore _1(CTAI.MatchingTTP, false);
|
|
SaveAndRestore _2(CTAI.StrictPackMatch, false);
|
|
// Check the template argument, converting it as necessary.
|
|
auto Res = S.CheckTemplateArgument(
|
|
Param, ArgLoc, Template, Template->getLocation(),
|
|
Template->getSourceRange().getEnd(), ArgumentPackIndex, CTAI,
|
|
IsDeduced
|
|
? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
|
|
: Sema::CTAK_Deduced)
|
|
: Sema::CTAK_Specified);
|
|
if (CTAI.StrictPackMatch)
|
|
Info.setStrictPackMatch();
|
|
return Res;
|
|
};
|
|
|
|
if (Arg.getKind() == TemplateArgument::Pack) {
|
|
// This is a template argument pack, so check each of its arguments against
|
|
// the template parameter.
|
|
SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder,
|
|
CanonicalPackedArgsBuilder;
|
|
for (const auto &P : Arg.pack_elements()) {
|
|
// When converting the deduced template argument, append it to the
|
|
// general output list. We need to do this so that the template argument
|
|
// checking logic has all of the prior template arguments available.
|
|
DeducedTemplateArgument InnerArg(P);
|
|
InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
|
|
assert(InnerArg.getKind() != TemplateArgument::Pack &&
|
|
"deduced nested pack");
|
|
if (P.isNull()) {
|
|
// We deduced arguments for some elements of this pack, but not for
|
|
// all of them. This happens if we get a conditionally-non-deduced
|
|
// context in a pack expansion (such as an overload set in one of the
|
|
// arguments).
|
|
S.Diag(Param->getLocation(),
|
|
diag::err_template_arg_deduced_incomplete_pack)
|
|
<< Arg << Param;
|
|
return true;
|
|
}
|
|
if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size()))
|
|
return true;
|
|
|
|
// Move the converted template argument into our argument pack.
|
|
SugaredPackedArgsBuilder.push_back(CTAI.SugaredConverted.pop_back_val());
|
|
CanonicalPackedArgsBuilder.push_back(
|
|
CTAI.CanonicalConverted.pop_back_val());
|
|
}
|
|
|
|
// If the pack is empty, we still need to substitute into the parameter
|
|
// itself, in case that substitution fails.
|
|
if (SugaredPackedArgsBuilder.empty()) {
|
|
LocalInstantiationScope Scope(S);
|
|
MultiLevelTemplateArgumentList Args(Template, CTAI.SugaredConverted,
|
|
/*Final=*/true);
|
|
|
|
if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
|
|
NTTP, CTAI.SugaredConverted,
|
|
Template->getSourceRange());
|
|
if (Inst.isInvalid() ||
|
|
S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
|
|
NTTP->getDeclName()).isNull())
|
|
return true;
|
|
} else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
|
|
Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
|
|
TTP, CTAI.SugaredConverted,
|
|
Template->getSourceRange());
|
|
if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
|
|
return true;
|
|
}
|
|
// For type parameters, no substitution is ever required.
|
|
}
|
|
|
|
// Create the resulting argument pack.
|
|
CTAI.SugaredConverted.push_back(
|
|
TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder));
|
|
CTAI.CanonicalConverted.push_back(TemplateArgument::CreatePackCopy(
|
|
S.Context, CanonicalPackedArgsBuilder));
|
|
return false;
|
|
}
|
|
|
|
return ConvertArg(Arg, 0);
|
|
}
|
|
|
|
// FIXME: This should not be a template, but
|
|
// ClassTemplatePartialSpecializationDecl sadly does not derive from
|
|
// TemplateDecl.
|
|
/// \param IsIncomplete When used, we only consider template parameters that
|
|
/// were deduced, disregarding any default arguments. After the function
|
|
/// finishes, the object pointed at will contain a value indicating if the
|
|
/// conversion was actually incomplete.
|
|
template <typename TemplateDeclT>
|
|
static TemplateDeductionResult ConvertDeducedTemplateArguments(
|
|
Sema &S, TemplateDeclT *Template, bool IsDeduced,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, Sema::CheckTemplateArgumentInfo &CTAI,
|
|
LocalInstantiationScope *CurrentInstantiationScope,
|
|
unsigned NumAlreadyConverted, bool *IsIncomplete) {
|
|
TemplateParameterList *TemplateParams = Template->getTemplateParameters();
|
|
|
|
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
|
|
NamedDecl *Param = TemplateParams->getParam(I);
|
|
|
|
// C++0x [temp.arg.explicit]p3:
|
|
// A trailing template parameter pack (14.5.3) not otherwise deduced will
|
|
// be deduced to an empty sequence of template arguments.
|
|
// FIXME: Where did the word "trailing" come from?
|
|
if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
|
|
if (auto Result =
|
|
PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish();
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
if (!Deduced[I].isNull()) {
|
|
if (I < NumAlreadyConverted) {
|
|
// We may have had explicitly-specified template arguments for a
|
|
// template parameter pack (that may or may not have been extended
|
|
// via additional deduced arguments).
|
|
if (Param->isParameterPack() && CurrentInstantiationScope &&
|
|
CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
|
|
// Forget the partially-substituted pack; its substitution is now
|
|
// complete.
|
|
CurrentInstantiationScope->ResetPartiallySubstitutedPack();
|
|
// We still need to check the argument in case it was extended by
|
|
// deduction.
|
|
} else {
|
|
// We have already fully type-checked and converted this
|
|
// argument, because it was explicitly-specified. Just record the
|
|
// presence of this argument.
|
|
CTAI.SugaredConverted.push_back(Deduced[I]);
|
|
CTAI.CanonicalConverted.push_back(
|
|
S.Context.getCanonicalTemplateArgument(Deduced[I]));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We may have deduced this argument, so it still needs to be
|
|
// checked and converted.
|
|
if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
|
|
IsDeduced, CTAI)) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted),
|
|
TemplateArgumentList::CreateCopy(S.Context,
|
|
CTAI.CanonicalConverted));
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// [C++26][temp.deduct.partial]p12 - When partial ordering, it's ok for
|
|
// template parameters to remain not deduced. As a provisional fix for a
|
|
// core issue that does not exist yet, which may be related to CWG2160, only
|
|
// consider template parameters that were deduced, disregarding any default
|
|
// arguments.
|
|
if (IsIncomplete) {
|
|
*IsIncomplete = true;
|
|
CTAI.SugaredConverted.push_back({});
|
|
CTAI.CanonicalConverted.push_back({});
|
|
continue;
|
|
}
|
|
|
|
// Substitute into the default template argument, if available.
|
|
bool HasDefaultArg = false;
|
|
TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
|
|
if (!TD) {
|
|
assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
|
|
isa<VarTemplatePartialSpecializationDecl>(Template));
|
|
return TemplateDeductionResult::Incomplete;
|
|
}
|
|
|
|
TemplateArgumentLoc DefArg;
|
|
{
|
|
Qualifiers ThisTypeQuals;
|
|
CXXRecordDecl *ThisContext = nullptr;
|
|
if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext()))
|
|
if (Rec->isLambda())
|
|
if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) {
|
|
ThisContext = Method->getParent();
|
|
ThisTypeQuals = Method->getMethodQualifiers();
|
|
}
|
|
|
|
Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals,
|
|
S.getLangOpts().CPlusPlus17);
|
|
|
|
DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
|
|
TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param,
|
|
CTAI.SugaredConverted, CTAI.CanonicalConverted, HasDefaultArg);
|
|
}
|
|
|
|
// If there was no default argument, deduction is incomplete.
|
|
if (DefArg.getArgument().isNull()) {
|
|
Info.Param = makeTemplateParameter(
|
|
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
|
|
Info.reset(
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted),
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted));
|
|
|
|
return HasDefaultArg ? TemplateDeductionResult::SubstitutionFailure
|
|
: TemplateDeductionResult::Incomplete;
|
|
}
|
|
|
|
SaveAndRestore _1(CTAI.PartialOrdering, false);
|
|
SaveAndRestore _2(CTAI.MatchingTTP, false);
|
|
SaveAndRestore _3(CTAI.StrictPackMatch, false);
|
|
// Check whether we can actually use the default argument.
|
|
if (S.CheckTemplateArgument(
|
|
Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(),
|
|
/*ArgumentPackIndex=*/0, CTAI, Sema::CTAK_Specified)) {
|
|
Info.Param = makeTemplateParameter(
|
|
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted),
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted));
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
// If we get here, we successfully used the default template argument.
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
|
|
if (auto *DC = dyn_cast<DeclContext>(D))
|
|
return DC;
|
|
return D->getDeclContext();
|
|
}
|
|
|
|
template<typename T> struct IsPartialSpecialization {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<>
|
|
struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
|
|
static constexpr bool value = true;
|
|
};
|
|
template<>
|
|
struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
|
|
static constexpr bool value = true;
|
|
};
|
|
template <typename TemplateDeclT>
|
|
static bool DeducedArgsNeedReplacement(TemplateDeclT *Template) {
|
|
return false;
|
|
}
|
|
template <>
|
|
bool DeducedArgsNeedReplacement<VarTemplatePartialSpecializationDecl>(
|
|
VarTemplatePartialSpecializationDecl *Spec) {
|
|
return !Spec->isClassScopeExplicitSpecialization();
|
|
}
|
|
template <>
|
|
bool DeducedArgsNeedReplacement<ClassTemplatePartialSpecializationDecl>(
|
|
ClassTemplatePartialSpecializationDecl *Spec) {
|
|
return !Spec->isClassScopeExplicitSpecialization();
|
|
}
|
|
|
|
template <typename TemplateDeclT>
|
|
static TemplateDeductionResult
|
|
CheckDeducedArgumentConstraints(Sema &S, TemplateDeclT *Template,
|
|
ArrayRef<TemplateArgument> SugaredDeducedArgs,
|
|
ArrayRef<TemplateArgument> CanonicalDeducedArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
|
|
Template->getAssociatedConstraints(AssociatedConstraints);
|
|
|
|
std::optional<ArrayRef<TemplateArgument>> Innermost;
|
|
// If we don't need to replace the deduced template arguments,
|
|
// we can add them immediately as the inner-most argument list.
|
|
if (!DeducedArgsNeedReplacement(Template))
|
|
Innermost = CanonicalDeducedArgs;
|
|
|
|
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
|
|
Template, Template->getDeclContext(), /*Final=*/false, Innermost,
|
|
/*RelativeToPrimary=*/true, /*Pattern=*/
|
|
nullptr, /*ForConstraintInstantiation=*/true);
|
|
|
|
// getTemplateInstantiationArgs picks up the non-deduced version of the
|
|
// template args when this is a variable template partial specialization and
|
|
// not class-scope explicit specialization, so replace with Deduced Args
|
|
// instead of adding to inner-most.
|
|
if (!Innermost)
|
|
MLTAL.replaceInnermostTemplateArguments(Template, CanonicalDeducedArgs);
|
|
|
|
if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL,
|
|
Info.getLocation(),
|
|
Info.AssociatedConstraintsSatisfaction) ||
|
|
!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
|
|
Info.reset(
|
|
TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs),
|
|
TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs));
|
|
return TemplateDeductionResult::ConstraintsNotSatisfied;
|
|
}
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Complete template argument deduction for a partial specialization.
|
|
template <typename T>
|
|
static std::enable_if_t<IsPartialSpecialization<T>::value,
|
|
TemplateDeductionResult>
|
|
FinishTemplateArgumentDeduction(
|
|
Sema &S, T *Partial, bool IsPartialOrdering,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
Sema::CheckTemplateArgumentInfo CTAI(IsPartialOrdering);
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
S, Partial, IsPartialOrdering, Deduced, Info, CTAI,
|
|
/*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0,
|
|
/*IsIncomplete=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *SugaredDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted);
|
|
TemplateArgumentList *CanonicalDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted);
|
|
|
|
Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
|
|
|
|
// Substitute the deduced template arguments into the template
|
|
// arguments of the class template partial specialization, and
|
|
// verify that the instantiated template arguments are both valid
|
|
// and are equivalent to the template arguments originally provided
|
|
// to the class template.
|
|
LocalInstantiationScope InstScope(S);
|
|
auto *Template = Partial->getSpecializedTemplate();
|
|
const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
|
|
Partial->getTemplateArgsAsWritten();
|
|
|
|
TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
|
|
PartialTemplArgInfo->RAngleLoc);
|
|
|
|
if (S.SubstTemplateArguments(
|
|
PartialTemplArgInfo->arguments(),
|
|
MultiLevelTemplateArgumentList(Partial, CTAI.SugaredConverted,
|
|
/*Final=*/true),
|
|
InstArgs)) {
|
|
unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
|
|
if (ParamIdx >= Partial->getTemplateParameters()->size())
|
|
ParamIdx = Partial->getTemplateParameters()->size() - 1;
|
|
|
|
Decl *Param = const_cast<NamedDecl *>(
|
|
Partial->getTemplateParameters()->getParam(ParamIdx));
|
|
Info.Param = makeTemplateParameter(Param);
|
|
Info.FirstArg = (*PartialTemplArgInfo)[ArgIdx].getArgument();
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
bool ConstraintsNotSatisfied;
|
|
Sema::CheckTemplateArgumentInfo InstCTAI;
|
|
if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs,
|
|
/*DefaultArgs=*/{}, false, InstCTAI,
|
|
/*UpdateArgsWithConversions=*/true,
|
|
&ConstraintsNotSatisfied))
|
|
return ConstraintsNotSatisfied
|
|
? TemplateDeductionResult::ConstraintsNotSatisfied
|
|
: TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
TemplateParameterList *TemplateParams = Template->getTemplateParameters();
|
|
for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
|
|
TemplateArgument InstArg = InstCTAI.SugaredConverted.data()[I];
|
|
if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
|
|
IsPartialOrdering)) {
|
|
Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
|
|
Info.FirstArg = TemplateArgs[I];
|
|
Info.SecondArg = InstArg;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
}
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
if (!IsPartialOrdering) {
|
|
if (auto Result = CheckDeducedArgumentConstraints(
|
|
S, Partial, CTAI.SugaredConverted, CTAI.CanonicalConverted, Info);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Complete template argument deduction for a class or variable template,
|
|
/// when partial ordering against a partial specialization.
|
|
// FIXME: Factor out duplication with partial specialization version above.
|
|
static TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
Sema &S, TemplateDecl *Template, bool PartialOrdering,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
Sema::CheckTemplateArgumentInfo CTAI(PartialOrdering);
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
S, Template, /*IsDeduced=*/PartialOrdering, Deduced, Info, CTAI,
|
|
/*CurrentInstantiationScope=*/nullptr,
|
|
/*NumAlreadyConverted=*/0U, /*IsIncomplete=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Check that we produced the correct argument list.
|
|
SmallVector<ArrayRef<TemplateArgument>, 4> PsStack{TemplateArgs},
|
|
AsStack{CTAI.CanonicalConverted};
|
|
for (;;) {
|
|
auto take = [](SmallVectorImpl<ArrayRef<TemplateArgument>> &Stack)
|
|
-> std::tuple<ArrayRef<TemplateArgument> &, TemplateArgument> {
|
|
while (!Stack.empty()) {
|
|
auto &Xs = Stack.back();
|
|
if (Xs.empty()) {
|
|
Stack.pop_back();
|
|
continue;
|
|
}
|
|
auto &X = Xs.front();
|
|
if (X.getKind() == TemplateArgument::Pack) {
|
|
Stack.emplace_back(X.getPackAsArray());
|
|
Xs = Xs.drop_front();
|
|
continue;
|
|
}
|
|
assert(!X.isNull());
|
|
return {Xs, X};
|
|
}
|
|
static constexpr ArrayRef<TemplateArgument> None;
|
|
return {const_cast<ArrayRef<TemplateArgument> &>(None),
|
|
TemplateArgument()};
|
|
};
|
|
auto [Ps, P] = take(PsStack);
|
|
auto [As, A] = take(AsStack);
|
|
if (P.isNull() && A.isNull())
|
|
break;
|
|
TemplateArgument PP = P.isPackExpansion() ? P.getPackExpansionPattern() : P,
|
|
PA = A.isPackExpansion() ? A.getPackExpansionPattern() : A;
|
|
if (!isSameTemplateArg(S.Context, PP, PA, /*PartialOrdering=*/false)) {
|
|
if (!P.isPackExpansion() && !A.isPackExpansion()) {
|
|
Info.Param =
|
|
makeTemplateParameter(Template->getTemplateParameters()->getParam(
|
|
(AsStack.empty() ? CTAI.CanonicalConverted.end()
|
|
: AsStack.front().begin()) -
|
|
1 - CTAI.CanonicalConverted.begin()));
|
|
Info.FirstArg = P;
|
|
Info.SecondArg = A;
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
if (P.isPackExpansion()) {
|
|
Ps = Ps.drop_front();
|
|
continue;
|
|
}
|
|
if (A.isPackExpansion()) {
|
|
As = As.drop_front();
|
|
continue;
|
|
}
|
|
}
|
|
Ps = Ps.drop_front(P.isPackExpansion() ? 0 : 1);
|
|
As = As.drop_front(A.isPackExpansion() && !P.isPackExpansion() ? 0 : 1);
|
|
}
|
|
assert(PsStack.empty());
|
|
assert(AsStack.empty());
|
|
|
|
if (!PartialOrdering) {
|
|
if (auto Result = CheckDeducedArgumentConstraints(
|
|
S, Template, CTAI.SugaredConverted, CTAI.CanonicalConverted, Info);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Complete template argument deduction for DeduceTemplateArgumentsFromType.
|
|
/// FIXME: this is mostly duplicated with the above two versions. Deduplicate
|
|
/// the three implementations.
|
|
static TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
Sema &S, TemplateDecl *TD,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
|
|
Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(TD));
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
Sema::CheckTemplateArgumentInfo CTAI;
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
S, TD, /*IsDeduced=*/false, Deduced, Info, CTAI,
|
|
/*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0,
|
|
/*IsIncomplete=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
return ::CheckDeducedArgumentConstraints(S, TD, CTAI.SugaredConverted,
|
|
CTAI.CanonicalConverted, Info);
|
|
}
|
|
|
|
/// Perform template argument deduction to determine whether the given template
|
|
/// arguments match the given class or variable template partial specialization
|
|
/// per C++ [temp.class.spec.match].
|
|
template <typename T>
|
|
static std::enable_if_t<IsPartialSpecialization<T>::value,
|
|
TemplateDeductionResult>
|
|
DeduceTemplateArguments(Sema &S, T *Partial,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
if (Partial->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
// C++ [temp.class.spec.match]p2:
|
|
// A partial specialization matches a given actual template
|
|
// argument list if the template arguments of the partial
|
|
// specialization can be deduced from the actual template argument
|
|
// list (14.8.2).
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
// This deduction has no relation to any outer instantiation we might be
|
|
// performing.
|
|
LocalInstantiationScope InstantiationScope(S);
|
|
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(Partial->getTemplateParameters()->size());
|
|
if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
|
|
S, Partial->getTemplateParameters(),
|
|
Partial->getTemplateArgs().asArray(), TemplateArgs, Info, Deduced,
|
|
/*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/false,
|
|
PackFold::ParameterToArgument,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
Sema::InstantiatingTemplate Inst(S, Info.getLocation(), Partial, DeducedArgs,
|
|
Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
|
|
TemplateDeductionResult Result;
|
|
S.runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = ::FinishTemplateArgumentDeduction(S, Partial,
|
|
/*IsPartialOrdering=*/false,
|
|
TemplateArgs, Deduced, Info);
|
|
});
|
|
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info);
|
|
}
|
|
TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info);
|
|
}
|
|
|
|
TemplateDeductionResult
|
|
Sema::DeduceTemplateArgumentsFromType(TemplateDecl *TD, QualType FromType,
|
|
sema::TemplateDeductionInfo &Info) {
|
|
if (TD->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
QualType PType;
|
|
if (const auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
|
|
// Use the InjectedClassNameType.
|
|
PType = Context.getTypeDeclType(CTD->getTemplatedDecl());
|
|
} else if (const auto *AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(TD)) {
|
|
PType = AliasTemplate->getTemplatedDecl()->getUnderlyingType();
|
|
} else {
|
|
assert(false && "Expected a class or alias template");
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// This deduction has no relation to any outer instantiation we might be
|
|
// performing.
|
|
LocalInstantiationScope InstantiationScope(*this);
|
|
|
|
SmallVector<DeducedTemplateArgument> Deduced(
|
|
TD->getTemplateParameters()->size());
|
|
SmallVector<TemplateArgument> PArgs = {TemplateArgument(PType)};
|
|
SmallVector<TemplateArgument> AArgs = {TemplateArgument(FromType)};
|
|
if (auto DeducedResult = DeduceTemplateArguments(
|
|
TD->getTemplateParameters(), PArgs, AArgs, Info, Deduced, false);
|
|
DeducedResult != TemplateDeductionResult::Success) {
|
|
return DeducedResult;
|
|
}
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Info.getLocation(), TD, DeducedArgs, Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = ::FinishTemplateArgumentDeduction(*this, TD, Deduced, Info);
|
|
});
|
|
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Determine whether the given type T is a simple-template-id type.
|
|
static bool isSimpleTemplateIdType(QualType T) {
|
|
if (const TemplateSpecializationType *Spec
|
|
= T->getAs<TemplateSpecializationType>())
|
|
return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
|
|
|
|
// C++17 [temp.local]p2:
|
|
// the injected-class-name [...] is equivalent to the template-name followed
|
|
// by the template-arguments of the class template specialization or partial
|
|
// specialization enclosed in <>
|
|
// ... which means it's equivalent to a simple-template-id.
|
|
//
|
|
// This only arises during class template argument deduction for a copy
|
|
// deduction candidate, where it permits slicing.
|
|
if (T->getAs<InjectedClassNameType>())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo &ExplicitTemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
|
|
TemplateDeductionInfo &Info) {
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
|
|
if (ExplicitTemplateArgs.size() == 0) {
|
|
// No arguments to substitute; just copy over the parameter types and
|
|
// fill in the function type.
|
|
for (auto *P : Function->parameters())
|
|
ParamTypes.push_back(P->getType());
|
|
|
|
if (FunctionType)
|
|
*FunctionType = Function->getType();
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// C++ [temp.arg.explicit]p3:
|
|
// Template arguments that are present shall be specified in the
|
|
// declaration order of their corresponding template-parameters. The
|
|
// template argument list shall not specify more template-arguments than
|
|
// there are corresponding template-parameters.
|
|
|
|
// Enter a new template instantiation context where we check the
|
|
// explicitly-specified template arguments against this function template,
|
|
// and then substitute them into the function parameter types.
|
|
SmallVector<TemplateArgument, 4> DeducedArgs;
|
|
InstantiatingTemplate Inst(
|
|
*this, Info.getLocation(), FunctionTemplate, DeducedArgs,
|
|
CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
|
|
CheckTemplateArgumentInfo CTAI;
|
|
if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
|
|
ExplicitTemplateArgs, /*DefaultArgs=*/{},
|
|
/*PartialTemplateArgs=*/true, CTAI,
|
|
/*UpdateArgsWithConversions=*/false) ||
|
|
Trap.hasErrorOccurred()) {
|
|
unsigned Index = CTAI.SugaredConverted.size();
|
|
if (Index >= TemplateParams->size())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
|
|
return TemplateDeductionResult::InvalidExplicitArguments;
|
|
}
|
|
|
|
// Form the template argument list from the explicitly-specified
|
|
// template arguments.
|
|
TemplateArgumentList *SugaredExplicitArgumentList =
|
|
TemplateArgumentList::CreateCopy(Context, CTAI.SugaredConverted);
|
|
TemplateArgumentList *CanonicalExplicitArgumentList =
|
|
TemplateArgumentList::CreateCopy(Context, CTAI.CanonicalConverted);
|
|
Info.setExplicitArgs(SugaredExplicitArgumentList,
|
|
CanonicalExplicitArgumentList);
|
|
|
|
// Template argument deduction and the final substitution should be
|
|
// done in the context of the templated declaration. Explicit
|
|
// argument substitution, on the other hand, needs to happen in the
|
|
// calling context.
|
|
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
|
|
|
|
// If we deduced template arguments for a template parameter pack,
|
|
// note that the template argument pack is partially substituted and record
|
|
// the explicit template arguments. They'll be used as part of deduction
|
|
// for this template parameter pack.
|
|
unsigned PartiallySubstitutedPackIndex = -1u;
|
|
if (!CTAI.SugaredConverted.empty()) {
|
|
const TemplateArgument &Arg = CTAI.SugaredConverted.back();
|
|
if (Arg.getKind() == TemplateArgument::Pack) {
|
|
auto *Param = TemplateParams->getParam(CTAI.SugaredConverted.size() - 1);
|
|
// If this is a fully-saturated fixed-size pack, it should be
|
|
// fully-substituted, not partially-substituted.
|
|
std::optional<unsigned> Expansions = getExpandedPackSize(Param);
|
|
if (!Expansions || Arg.pack_size() < *Expansions) {
|
|
PartiallySubstitutedPackIndex = CTAI.SugaredConverted.size() - 1;
|
|
CurrentInstantiationScope->SetPartiallySubstitutedPack(
|
|
Param, Arg.pack_begin(), Arg.pack_size());
|
|
}
|
|
}
|
|
}
|
|
|
|
const FunctionProtoType *Proto
|
|
= Function->getType()->getAs<FunctionProtoType>();
|
|
assert(Proto && "Function template does not have a prototype?");
|
|
|
|
// Isolate our substituted parameters from our caller.
|
|
LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
|
|
|
|
ExtParameterInfoBuilder ExtParamInfos;
|
|
|
|
MultiLevelTemplateArgumentList MLTAL(FunctionTemplate,
|
|
SugaredExplicitArgumentList->asArray(),
|
|
/*Final=*/true);
|
|
|
|
// Instantiate the types of each of the function parameters given the
|
|
// explicitly-specified template arguments. If the function has a trailing
|
|
// return type, substitute it after the arguments to ensure we substitute
|
|
// in lexical order.
|
|
if (Proto->hasTrailingReturn()) {
|
|
if (SubstParmTypes(Function->getLocation(), Function->parameters(),
|
|
Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
|
|
/*params=*/nullptr, ExtParamInfos))
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
// Instantiate the return type.
|
|
QualType ResultType;
|
|
{
|
|
// C++11 [expr.prim.general]p3:
|
|
// If a declaration declares a member function or member function
|
|
// template of a class X, the expression this is a prvalue of type
|
|
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
|
|
// and the end of the function-definition, member-declarator, or
|
|
// declarator.
|
|
Qualifiers ThisTypeQuals;
|
|
CXXRecordDecl *ThisContext = nullptr;
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
|
|
ThisContext = Method->getParent();
|
|
ThisTypeQuals = Method->getMethodQualifiers();
|
|
}
|
|
|
|
CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
|
|
getLangOpts().CPlusPlus11);
|
|
|
|
ResultType =
|
|
SubstType(Proto->getReturnType(), MLTAL,
|
|
Function->getTypeSpecStartLoc(), Function->getDeclName());
|
|
if (ResultType.isNull() || Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
// CUDA: Kernel function must have 'void' return type.
|
|
if (getLangOpts().CUDA)
|
|
if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
|
|
Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
|
|
<< Function->getType() << Function->getSourceRange();
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
}
|
|
|
|
// Instantiate the types of each of the function parameters given the
|
|
// explicitly-specified template arguments if we didn't do so earlier.
|
|
if (!Proto->hasTrailingReturn() &&
|
|
SubstParmTypes(Function->getLocation(), Function->parameters(),
|
|
Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
|
|
/*params*/ nullptr, ExtParamInfos))
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
if (FunctionType) {
|
|
auto EPI = Proto->getExtProtoInfo();
|
|
EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
|
|
*FunctionType = BuildFunctionType(ResultType, ParamTypes,
|
|
Function->getLocation(),
|
|
Function->getDeclName(),
|
|
EPI);
|
|
if (FunctionType->isNull() || Trap.hasErrorOccurred())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
// C++ [temp.arg.explicit]p2:
|
|
// Trailing template arguments that can be deduced (14.8.2) may be
|
|
// omitted from the list of explicit template-arguments. If all of the
|
|
// template arguments can be deduced, they may all be omitted; in this
|
|
// case, the empty template argument list <> itself may also be omitted.
|
|
//
|
|
// Take all of the explicitly-specified arguments and put them into
|
|
// the set of deduced template arguments. The partially-substituted
|
|
// parameter pack, however, will be set to NULL since the deduction
|
|
// mechanism handles the partially-substituted argument pack directly.
|
|
Deduced.reserve(TemplateParams->size());
|
|
for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) {
|
|
const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I);
|
|
if (I == PartiallySubstitutedPackIndex)
|
|
Deduced.push_back(DeducedTemplateArgument());
|
|
else
|
|
Deduced.push_back(Arg);
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Check whether the deduced argument type for a call to a function
|
|
/// template matches the actual argument type per C++ [temp.deduct.call]p4.
|
|
static TemplateDeductionResult
|
|
CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
|
|
Sema::OriginalCallArg OriginalArg,
|
|
QualType DeducedA) {
|
|
ASTContext &Context = S.Context;
|
|
|
|
auto Failed = [&]() -> TemplateDeductionResult {
|
|
Info.FirstArg = TemplateArgument(DeducedA);
|
|
Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
|
|
Info.CallArgIndex = OriginalArg.ArgIdx;
|
|
return OriginalArg.DecomposedParam
|
|
? TemplateDeductionResult::DeducedMismatchNested
|
|
: TemplateDeductionResult::DeducedMismatch;
|
|
};
|
|
|
|
QualType A = OriginalArg.OriginalArgType;
|
|
QualType OriginalParamType = OriginalArg.OriginalParamType;
|
|
|
|
// Check for type equality (top-level cv-qualifiers are ignored).
|
|
if (Context.hasSameUnqualifiedType(A, DeducedA))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Strip off references on the argument types; they aren't needed for
|
|
// the following checks.
|
|
if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
|
|
DeducedA = DeducedARef->getPointeeType();
|
|
if (const ReferenceType *ARef = A->getAs<ReferenceType>())
|
|
A = ARef->getPointeeType();
|
|
|
|
// C++ [temp.deduct.call]p4:
|
|
// [...] However, there are three cases that allow a difference:
|
|
// - If the original P is a reference type, the deduced A (i.e., the
|
|
// type referred to by the reference) can be more cv-qualified than
|
|
// the transformed A.
|
|
if (const ReferenceType *OriginalParamRef
|
|
= OriginalParamType->getAs<ReferenceType>()) {
|
|
// We don't want to keep the reference around any more.
|
|
OriginalParamType = OriginalParamRef->getPointeeType();
|
|
|
|
// FIXME: Resolve core issue (no number yet): if the original P is a
|
|
// reference type and the transformed A is function type "noexcept F",
|
|
// the deduced A can be F.
|
|
QualType Tmp;
|
|
if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
Qualifiers AQuals = A.getQualifiers();
|
|
Qualifiers DeducedAQuals = DeducedA.getQualifiers();
|
|
|
|
// Under Objective-C++ ARC, the deduced type may have implicitly
|
|
// been given strong or (when dealing with a const reference)
|
|
// unsafe_unretained lifetime. If so, update the original
|
|
// qualifiers to include this lifetime.
|
|
if (S.getLangOpts().ObjCAutoRefCount &&
|
|
((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
|
|
AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
|
|
(DeducedAQuals.hasConst() &&
|
|
DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
|
|
AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
|
|
}
|
|
|
|
if (AQuals == DeducedAQuals) {
|
|
// Qualifiers match; there's nothing to do.
|
|
} else if (!DeducedAQuals.compatiblyIncludes(AQuals, S.getASTContext())) {
|
|
return Failed();
|
|
} else {
|
|
// Qualifiers are compatible, so have the argument type adopt the
|
|
// deduced argument type's qualifiers as if we had performed the
|
|
// qualification conversion.
|
|
A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
|
|
}
|
|
}
|
|
|
|
// - The transformed A can be another pointer or pointer to member
|
|
// type that can be converted to the deduced A via a function pointer
|
|
// conversion and/or a qualification conversion.
|
|
//
|
|
// Also allow conversions which merely strip __attribute__((noreturn)) from
|
|
// function types (recursively).
|
|
bool ObjCLifetimeConversion = false;
|
|
QualType ResultTy;
|
|
if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
|
|
(S.IsQualificationConversion(A, DeducedA, false,
|
|
ObjCLifetimeConversion) ||
|
|
S.IsFunctionConversion(A, DeducedA, ResultTy)))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// - If P is a class and P has the form simple-template-id, then the
|
|
// transformed A can be a derived class of the deduced A. [...]
|
|
// [...] Likewise, if P is a pointer to a class of the form
|
|
// simple-template-id, the transformed A can be a pointer to a
|
|
// derived class pointed to by the deduced A.
|
|
if (const PointerType *OriginalParamPtr
|
|
= OriginalParamType->getAs<PointerType>()) {
|
|
if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
|
|
if (const PointerType *APtr = A->getAs<PointerType>()) {
|
|
if (A->getPointeeType()->isRecordType()) {
|
|
OriginalParamType = OriginalParamPtr->getPointeeType();
|
|
DeducedA = DeducedAPtr->getPointeeType();
|
|
A = APtr->getPointeeType();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Context.hasSameUnqualifiedType(A, DeducedA))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
|
|
S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return Failed();
|
|
}
|
|
|
|
/// Find the pack index for a particular parameter index in an instantiation of
|
|
/// a function template with specific arguments.
|
|
///
|
|
/// \return The pack index for whichever pack produced this parameter, or -1
|
|
/// if this was not produced by a parameter. Intended to be used as the
|
|
/// ArgumentPackSubstitutionIndex for further substitutions.
|
|
// FIXME: We should track this in OriginalCallArgs so we don't need to
|
|
// reconstruct it here.
|
|
static unsigned getPackIndexForParam(Sema &S,
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
const MultiLevelTemplateArgumentList &Args,
|
|
unsigned ParamIdx) {
|
|
unsigned Idx = 0;
|
|
for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
|
|
if (PD->isParameterPack()) {
|
|
unsigned NumExpansions =
|
|
S.getNumArgumentsInExpansion(PD->getType(), Args).value_or(1);
|
|
if (Idx + NumExpansions > ParamIdx)
|
|
return ParamIdx - Idx;
|
|
Idx += NumExpansions;
|
|
} else {
|
|
if (Idx == ParamIdx)
|
|
return -1; // Not a pack expansion
|
|
++Idx;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("parameter index would not be produced from template");
|
|
}
|
|
|
|
// if `Specialization` is a `CXXConstructorDecl` or `CXXConversionDecl`,
|
|
// we'll try to instantiate and update its explicit specifier after constraint
|
|
// checking.
|
|
static TemplateDeductionResult instantiateExplicitSpecifierDeferred(
|
|
Sema &S, FunctionDecl *Specialization,
|
|
const MultiLevelTemplateArgumentList &SubstArgs,
|
|
TemplateDeductionInfo &Info, FunctionTemplateDecl *FunctionTemplate,
|
|
ArrayRef<TemplateArgument> DeducedArgs) {
|
|
auto GetExplicitSpecifier = [](FunctionDecl *D) {
|
|
return isa<CXXConstructorDecl>(D)
|
|
? cast<CXXConstructorDecl>(D)->getExplicitSpecifier()
|
|
: cast<CXXConversionDecl>(D)->getExplicitSpecifier();
|
|
};
|
|
auto SetExplicitSpecifier = [](FunctionDecl *D, ExplicitSpecifier ES) {
|
|
isa<CXXConstructorDecl>(D)
|
|
? cast<CXXConstructorDecl>(D)->setExplicitSpecifier(ES)
|
|
: cast<CXXConversionDecl>(D)->setExplicitSpecifier(ES);
|
|
};
|
|
|
|
ExplicitSpecifier ES = GetExplicitSpecifier(Specialization);
|
|
Expr *ExplicitExpr = ES.getExpr();
|
|
if (!ExplicitExpr)
|
|
return TemplateDeductionResult::Success;
|
|
if (!ExplicitExpr->isValueDependent())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
Sema::InstantiatingTemplate Inst(
|
|
S, Info.getLocation(), FunctionTemplate, DeducedArgs,
|
|
Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
Sema::SFINAETrap Trap(S);
|
|
const ExplicitSpecifier InstantiatedES =
|
|
S.instantiateExplicitSpecifier(SubstArgs, ES);
|
|
if (InstantiatedES.isInvalid() || Trap.hasErrorOccurred()) {
|
|
Specialization->setInvalidDecl(true);
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
SetExplicitSpecifier(Specialization, InstantiatedES);
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
|
|
bool PartialOverloading, bool PartialOrdering,
|
|
llvm::function_ref<bool()> CheckNonDependent) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// Enter a new template instantiation context while we instantiate the
|
|
// actual function declaration.
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
InstantiatingTemplate Inst(
|
|
*this, Info.getLocation(), FunctionTemplate, DeducedArgs,
|
|
CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return TemplateDeductionResult::InstantiationDepth;
|
|
|
|
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
bool IsIncomplete = false;
|
|
CheckTemplateArgumentInfo CTAI(PartialOrdering);
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
*this, FunctionTemplate, /*IsDeduced=*/true, Deduced, Info, CTAI,
|
|
CurrentInstantiationScope, NumExplicitlySpecified,
|
|
PartialOverloading ? &IsIncomplete : nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// C++ [temp.deduct.call]p10: [DR1391]
|
|
// If deduction succeeds for all parameters that contain
|
|
// template-parameters that participate in template argument deduction,
|
|
// and all template arguments are explicitly specified, deduced, or
|
|
// obtained from default template arguments, remaining parameters are then
|
|
// compared with the corresponding arguments. For each remaining parameter
|
|
// P with a type that was non-dependent before substitution of any
|
|
// explicitly-specified template arguments, if the corresponding argument
|
|
// A cannot be implicitly converted to P, deduction fails.
|
|
if (CheckNonDependent())
|
|
return TemplateDeductionResult::NonDependentConversionFailure;
|
|
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *SugaredDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(Context, CTAI.SugaredConverted);
|
|
TemplateArgumentList *CanonicalDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(Context, CTAI.CanonicalConverted);
|
|
Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
|
|
|
|
// Substitute the deduced template arguments into the function template
|
|
// declaration to produce the function template specialization.
|
|
DeclContext *Owner = FunctionTemplate->getDeclContext();
|
|
if (FunctionTemplate->getFriendObjectKind())
|
|
Owner = FunctionTemplate->getLexicalDeclContext();
|
|
FunctionDecl *FD = FunctionTemplate->getTemplatedDecl();
|
|
|
|
MultiLevelTemplateArgumentList SubstArgs(
|
|
FunctionTemplate, CanonicalDeducedArgumentList->asArray(),
|
|
/*Final=*/false);
|
|
Specialization = cast_or_null<FunctionDecl>(
|
|
SubstDecl(FD, Owner, SubstArgs));
|
|
if (!Specialization || Specialization->isInvalidDecl())
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
|
|
assert(isSameDeclaration(Specialization->getPrimaryTemplate(),
|
|
FunctionTemplate));
|
|
|
|
// If the template argument list is owned by the function template
|
|
// specialization, release it.
|
|
if (Specialization->getTemplateSpecializationArgs() ==
|
|
CanonicalDeducedArgumentList &&
|
|
!Trap.hasErrorOccurred())
|
|
Info.takeCanonical();
|
|
|
|
// There may have been an error that did not prevent us from constructing a
|
|
// declaration. Mark the declaration invalid and return with a substitution
|
|
// failure.
|
|
if (Trap.hasErrorOccurred()) {
|
|
Specialization->setInvalidDecl(true);
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
|
|
// C++2a [temp.deduct]p5
|
|
// [...] When all template arguments have been deduced [...] all uses of
|
|
// template parameters [...] are replaced with the corresponding deduced
|
|
// or default argument values.
|
|
// [...] If the function template has associated constraints
|
|
// ([temp.constr.decl]), those constraints are checked for satisfaction
|
|
// ([temp.constr.constr]). If the constraints are not satisfied, type
|
|
// deduction fails.
|
|
if (!IsIncomplete) {
|
|
if (CheckInstantiatedFunctionTemplateConstraints(
|
|
Info.getLocation(), Specialization, CTAI.CanonicalConverted,
|
|
Info.AssociatedConstraintsSatisfaction))
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
|
|
Info.reset(Info.takeSugared(), TemplateArgumentList::CreateCopy(
|
|
Context, CTAI.CanonicalConverted));
|
|
return TemplateDeductionResult::ConstraintsNotSatisfied;
|
|
}
|
|
}
|
|
|
|
// We skipped the instantiation of the explicit-specifier during the
|
|
// substitution of `FD` before. So, we try to instantiate it back if
|
|
// `Specialization` is either a constructor or a conversion function.
|
|
if (isa<CXXConstructorDecl, CXXConversionDecl>(Specialization)) {
|
|
if (TemplateDeductionResult::Success !=
|
|
instantiateExplicitSpecifierDeferred(*this, Specialization, SubstArgs,
|
|
Info, FunctionTemplate,
|
|
DeducedArgs)) {
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
}
|
|
}
|
|
|
|
if (OriginalCallArgs) {
|
|
// C++ [temp.deduct.call]p4:
|
|
// In general, the deduction process attempts to find template argument
|
|
// values that will make the deduced A identical to A (after the type A
|
|
// is transformed as described above). [...]
|
|
llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
|
|
for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
|
|
OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
|
|
|
|
auto ParamIdx = OriginalArg.ArgIdx;
|
|
unsigned ExplicitOffset =
|
|
Specialization->hasCXXExplicitFunctionObjectParameter() ? 1 : 0;
|
|
if (ParamIdx >= Specialization->getNumParams() - ExplicitOffset)
|
|
// FIXME: This presumably means a pack ended up smaller than we
|
|
// expected while deducing. Should this not result in deduction
|
|
// failure? Can it even happen?
|
|
continue;
|
|
|
|
QualType DeducedA;
|
|
if (!OriginalArg.DecomposedParam) {
|
|
// P is one of the function parameters, just look up its substituted
|
|
// type.
|
|
DeducedA =
|
|
Specialization->getParamDecl(ParamIdx + ExplicitOffset)->getType();
|
|
} else {
|
|
// P is a decomposed element of a parameter corresponding to a
|
|
// braced-init-list argument. Substitute back into P to find the
|
|
// deduced A.
|
|
QualType &CacheEntry =
|
|
DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
|
|
if (CacheEntry.isNull()) {
|
|
ArgumentPackSubstitutionIndexRAII PackIndex(
|
|
*this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
|
|
ParamIdx));
|
|
CacheEntry =
|
|
SubstType(OriginalArg.OriginalParamType, SubstArgs,
|
|
Specialization->getTypeSpecStartLoc(),
|
|
Specialization->getDeclName());
|
|
}
|
|
DeducedA = CacheEntry;
|
|
}
|
|
|
|
if (auto TDK =
|
|
CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA);
|
|
TDK != TemplateDeductionResult::Success)
|
|
return TDK;
|
|
}
|
|
}
|
|
|
|
// If we suppressed any diagnostics while performing template argument
|
|
// deduction, and if we haven't already instantiated this declaration,
|
|
// keep track of these diagnostics. They'll be emitted if this specialization
|
|
// is actually used.
|
|
if (Info.diag_begin() != Info.diag_end()) {
|
|
auto [Pos, Inserted] =
|
|
SuppressedDiagnostics.try_emplace(Specialization->getCanonicalDecl());
|
|
if (Inserted)
|
|
Pos->second.append(Info.diag_begin(), Info.diag_end());
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Gets the type of a function for template-argument-deducton
|
|
/// purposes when it's considered as part of an overload set.
|
|
static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
|
|
FunctionDecl *Fn) {
|
|
// We may need to deduce the return type of the function now.
|
|
if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
|
|
S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
|
|
return {};
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
|
|
if (Method->isImplicitObjectMemberFunction()) {
|
|
// An instance method that's referenced in a form that doesn't
|
|
// look like a member pointer is just invalid.
|
|
if (!R.HasFormOfMemberPointer)
|
|
return {};
|
|
|
|
return S.Context.getMemberPointerType(
|
|
Fn->getType(), /*Qualifier=*/nullptr, Method->getParent());
|
|
}
|
|
|
|
if (!R.IsAddressOfOperand) return Fn->getType();
|
|
return S.Context.getPointerType(Fn->getType());
|
|
}
|
|
|
|
/// Apply the deduction rules for overload sets.
|
|
///
|
|
/// \return the null type if this argument should be treated as an
|
|
/// undeduced context
|
|
static QualType
|
|
ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
|
|
Expr *Arg, QualType ParamType,
|
|
bool ParamWasReference,
|
|
TemplateSpecCandidateSet *FailedTSC = nullptr) {
|
|
|
|
OverloadExpr::FindResult R = OverloadExpr::find(Arg);
|
|
|
|
OverloadExpr *Ovl = R.Expression;
|
|
|
|
// C++0x [temp.deduct.call]p4
|
|
unsigned TDF = 0;
|
|
if (ParamWasReference)
|
|
TDF |= TDF_ParamWithReferenceType;
|
|
if (R.IsAddressOfOperand)
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
|
|
// C++0x [temp.deduct.call]p6:
|
|
// When P is a function type, pointer to function type, or pointer
|
|
// to member function type:
|
|
|
|
if (!ParamType->isFunctionType() &&
|
|
!ParamType->isFunctionPointerType() &&
|
|
!ParamType->isMemberFunctionPointerType()) {
|
|
if (Ovl->hasExplicitTemplateArgs()) {
|
|
// But we can still look for an explicit specialization.
|
|
if (FunctionDecl *ExplicitSpec =
|
|
S.ResolveSingleFunctionTemplateSpecialization(
|
|
Ovl, /*Complain=*/false,
|
|
/*Found=*/nullptr, FailedTSC,
|
|
/*ForTypeDeduction=*/true))
|
|
return GetTypeOfFunction(S, R, ExplicitSpec);
|
|
}
|
|
|
|
DeclAccessPair DAP;
|
|
if (FunctionDecl *Viable =
|
|
S.resolveAddressOfSingleOverloadCandidate(Arg, DAP))
|
|
return GetTypeOfFunction(S, R, Viable);
|
|
|
|
return {};
|
|
}
|
|
|
|
// Gather the explicit template arguments, if any.
|
|
TemplateArgumentListInfo ExplicitTemplateArgs;
|
|
if (Ovl->hasExplicitTemplateArgs())
|
|
Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
|
|
QualType Match;
|
|
for (UnresolvedSetIterator I = Ovl->decls_begin(),
|
|
E = Ovl->decls_end(); I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
|
|
// - If the argument is an overload set containing one or more
|
|
// function templates, the parameter is treated as a
|
|
// non-deduced context.
|
|
if (!Ovl->hasExplicitTemplateArgs())
|
|
return {};
|
|
|
|
// Otherwise, see if we can resolve a function type
|
|
FunctionDecl *Specialization = nullptr;
|
|
TemplateDeductionInfo Info(Ovl->getNameLoc());
|
|
if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
|
|
Specialization,
|
|
Info) != TemplateDeductionResult::Success)
|
|
continue;
|
|
|
|
D = Specialization;
|
|
}
|
|
|
|
FunctionDecl *Fn = cast<FunctionDecl>(D);
|
|
QualType ArgType = GetTypeOfFunction(S, R, Fn);
|
|
if (ArgType.isNull()) continue;
|
|
|
|
// Function-to-pointer conversion.
|
|
if (!ParamWasReference && ParamType->isPointerType() &&
|
|
ArgType->isFunctionType())
|
|
ArgType = S.Context.getPointerType(ArgType);
|
|
|
|
// - If the argument is an overload set (not containing function
|
|
// templates), trial argument deduction is attempted using each
|
|
// of the members of the set. If deduction succeeds for only one
|
|
// of the overload set members, that member is used as the
|
|
// argument value for the deduction. If deduction succeeds for
|
|
// more than one member of the overload set the parameter is
|
|
// treated as a non-deduced context.
|
|
|
|
// We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
|
|
// Type deduction is done independently for each P/A pair, and
|
|
// the deduced template argument values are then combined.
|
|
// So we do not reject deductions which were made elsewhere.
|
|
SmallVector<DeducedTemplateArgument, 8>
|
|
Deduced(TemplateParams->size());
|
|
TemplateDeductionInfo Info(Ovl->getNameLoc());
|
|
TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF,
|
|
PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
if (Result != TemplateDeductionResult::Success)
|
|
continue;
|
|
// C++ [temp.deduct.call]p6:
|
|
// [...] If all successful deductions yield the same deduced A, that
|
|
// deduced A is the result of deduction; otherwise, the parameter is
|
|
// treated as a non-deduced context. [...]
|
|
if (!Match.isNull() && !S.isSameOrCompatibleFunctionType(Match, ArgType))
|
|
return {};
|
|
Match = ArgType;
|
|
}
|
|
|
|
return Match;
|
|
}
|
|
|
|
/// Perform the adjustments to the parameter and argument types
|
|
/// described in C++ [temp.deduct.call].
|
|
///
|
|
/// \returns true if the caller should not attempt to perform any template
|
|
/// argument deduction based on this P/A pair because the argument is an
|
|
/// overloaded function set that could not be resolved.
|
|
static bool AdjustFunctionParmAndArgTypesForDeduction(
|
|
Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
|
|
QualType &ParamType, QualType &ArgType,
|
|
Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF,
|
|
TemplateSpecCandidateSet *FailedTSC = nullptr) {
|
|
// C++0x [temp.deduct.call]p3:
|
|
// If P is a cv-qualified type, the top level cv-qualifiers of P's type
|
|
// are ignored for type deduction.
|
|
if (ParamType.hasQualifiers())
|
|
ParamType = ParamType.getUnqualifiedType();
|
|
|
|
// [...] If P is a reference type, the type referred to by P is
|
|
// used for type deduction.
|
|
const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
|
|
if (ParamRefType)
|
|
ParamType = ParamRefType->getPointeeType();
|
|
|
|
// Overload sets usually make this parameter an undeduced context,
|
|
// but there are sometimes special circumstances. Typically
|
|
// involving a template-id-expr.
|
|
if (ArgType == S.Context.OverloadTy) {
|
|
assert(Arg && "expected a non-null arg expression");
|
|
ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType,
|
|
ParamRefType != nullptr, FailedTSC);
|
|
if (ArgType.isNull())
|
|
return true;
|
|
}
|
|
|
|
if (ParamRefType) {
|
|
// If the argument has incomplete array type, try to complete its type.
|
|
if (ArgType->isIncompleteArrayType()) {
|
|
assert(Arg && "expected a non-null arg expression");
|
|
ArgType = S.getCompletedType(Arg);
|
|
}
|
|
|
|
// C++1z [temp.deduct.call]p3:
|
|
// If P is a forwarding reference and the argument is an lvalue, the type
|
|
// "lvalue reference to A" is used in place of A for type deduction.
|
|
if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
|
|
ArgClassification.isLValue()) {
|
|
if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace())
|
|
ArgType = S.Context.getAddrSpaceQualType(
|
|
ArgType, S.Context.getDefaultOpenCLPointeeAddrSpace());
|
|
ArgType = S.Context.getLValueReferenceType(ArgType);
|
|
}
|
|
} else {
|
|
// C++ [temp.deduct.call]p2:
|
|
// If P is not a reference type:
|
|
// - If A is an array type, the pointer type produced by the
|
|
// array-to-pointer standard conversion (4.2) is used in place of
|
|
// A for type deduction; otherwise,
|
|
// - If A is a function type, the pointer type produced by the
|
|
// function-to-pointer standard conversion (4.3) is used in place
|
|
// of A for type deduction; otherwise,
|
|
if (ArgType->canDecayToPointerType())
|
|
ArgType = S.Context.getDecayedType(ArgType);
|
|
else {
|
|
// - If A is a cv-qualified type, the top level cv-qualifiers of A's
|
|
// type are ignored for type deduction.
|
|
ArgType = ArgType.getUnqualifiedType();
|
|
}
|
|
}
|
|
|
|
// C++0x [temp.deduct.call]p4:
|
|
// In general, the deduction process attempts to find template argument
|
|
// values that will make the deduced A identical to A (after the type A
|
|
// is transformed as described above). [...]
|
|
TDF = TDF_SkipNonDependent;
|
|
|
|
// - If the original P is a reference type, the deduced A (i.e., the
|
|
// type referred to by the reference) can be more cv-qualified than
|
|
// the transformed A.
|
|
if (ParamRefType)
|
|
TDF |= TDF_ParamWithReferenceType;
|
|
// - The transformed A can be another pointer or pointer to member
|
|
// type that can be converted to the deduced A via a qualification
|
|
// conversion (4.4).
|
|
if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
|
|
ArgType->isObjCObjectPointerType())
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
// - If P is a class and P has the form simple-template-id, then the
|
|
// transformed A can be a derived class of the deduced A. Likewise,
|
|
// if P is a pointer to a class of the form simple-template-id, the
|
|
// transformed A can be a pointer to a derived class pointed to by
|
|
// the deduced A.
|
|
if (isSimpleTemplateIdType(ParamType) ||
|
|
(isa<PointerType>(ParamType) &&
|
|
isSimpleTemplateIdType(
|
|
ParamType->castAs<PointerType>()->getPointeeType())))
|
|
TDF |= TDF_DerivedClass;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
|
|
QualType T);
|
|
|
|
static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
|
|
Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
|
|
QualType ParamType, QualType ArgType,
|
|
Expr::Classification ArgClassification, Expr *Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
|
|
bool DecomposedParam, unsigned ArgIdx, unsigned TDF,
|
|
TemplateSpecCandidateSet *FailedTSC = nullptr);
|
|
|
|
/// Attempt template argument deduction from an initializer list
|
|
/// deemed to be an argument in a function call.
|
|
static TemplateDeductionResult DeduceFromInitializerList(
|
|
Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
|
|
InitListExpr *ILE, TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
|
|
unsigned TDF) {
|
|
// C++ [temp.deduct.call]p1: (CWG 1591)
|
|
// If removing references and cv-qualifiers from P gives
|
|
// std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
|
|
// a non-empty initializer list, then deduction is performed instead for
|
|
// each element of the initializer list, taking P0 as a function template
|
|
// parameter type and the initializer element as its argument
|
|
//
|
|
// We've already removed references and cv-qualifiers here.
|
|
if (!ILE->getNumInits())
|
|
return TemplateDeductionResult::Success;
|
|
|
|
QualType ElTy;
|
|
auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
|
|
if (ArrTy)
|
|
ElTy = ArrTy->getElementType();
|
|
else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
|
|
// Otherwise, an initializer list argument causes the parameter to be
|
|
// considered a non-deduced context
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Resolving a core issue: a braced-init-list containing any designators is
|
|
// a non-deduced context.
|
|
for (Expr *E : ILE->inits())
|
|
if (isa<DesignatedInitExpr>(E))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// Deduction only needs to be done for dependent types.
|
|
if (ElTy->isDependentType()) {
|
|
for (Expr *E : ILE->inits()) {
|
|
if (auto Result = DeduceTemplateArgumentsFromCallArgument(
|
|
S, TemplateParams, 0, ElTy, E->getType(),
|
|
E->Classify(S.getASTContext()), E, Info, Deduced,
|
|
OriginalCallArgs, true, ArgIdx, TDF);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// in the P0[N] case, if N is a non-type template parameter, N is deduced
|
|
// from the length of the initializer list.
|
|
if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
|
|
// Determine the array bound is something we can deduce.
|
|
if (const NonTypeTemplateParmDecl *NTTP =
|
|
getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
|
|
// We can perform template argument deduction for the given non-type
|
|
// template parameter.
|
|
// C++ [temp.deduct.type]p13:
|
|
// The type of N in the type T[N] is std::size_t.
|
|
QualType T = S.Context.getSizeType();
|
|
llvm::APInt Size(S.Context.getIntWidth(T),
|
|
ILE->getNumInitsWithEmbedExpanded());
|
|
if (auto Result = DeduceNonTypeTemplateArgument(
|
|
S, TemplateParams, NTTP, llvm::APSInt(Size), T,
|
|
/*ArrayBound=*/true, Info, /*PartialOrdering=*/false, Deduced,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Perform template argument deduction per [temp.deduct.call] for a
|
|
/// single parameter / argument pair.
|
|
static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
|
|
Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
|
|
QualType ParamType, QualType ArgType,
|
|
Expr::Classification ArgClassification, Expr *Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
|
|
bool DecomposedParam, unsigned ArgIdx, unsigned TDF,
|
|
TemplateSpecCandidateSet *FailedTSC) {
|
|
|
|
QualType OrigParamType = ParamType;
|
|
|
|
// If P is a reference type [...]
|
|
// If P is a cv-qualified type [...]
|
|
if (AdjustFunctionParmAndArgTypesForDeduction(
|
|
S, TemplateParams, FirstInnerIndex, ParamType, ArgType,
|
|
ArgClassification, Arg, TDF, FailedTSC))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
// If [...] the argument is a non-empty initializer list [...]
|
|
if (InitListExpr *ILE = dyn_cast_if_present<InitListExpr>(Arg))
|
|
return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
|
|
Deduced, OriginalCallArgs, ArgIdx, TDF);
|
|
|
|
// [...] the deduction process attempts to find template argument values
|
|
// that will make the deduced A identical to A
|
|
//
|
|
// Keep track of the argument type and corresponding parameter index,
|
|
// so we can check for compatibility between the deduced A and A.
|
|
if (Arg)
|
|
OriginalCallArgs.push_back(
|
|
Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
|
|
return DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF,
|
|
PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
}
|
|
|
|
TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
|
|
bool PartialOverloading, bool AggregateDeductionCandidate,
|
|
bool PartialOrdering, QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
|
|
if (FunctionTemplate->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
unsigned NumParams = Function->getNumParams();
|
|
bool HasExplicitObject = false;
|
|
int ExplicitObjectOffset = 0;
|
|
if (Function->hasCXXExplicitFunctionObjectParameter()) {
|
|
HasExplicitObject = true;
|
|
ExplicitObjectOffset = 1;
|
|
}
|
|
|
|
unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
|
|
|
|
// C++ [temp.deduct.call]p1:
|
|
// Template argument deduction is done by comparing each function template
|
|
// parameter type (call it P) with the type of the corresponding argument
|
|
// of the call (call it A) as described below.
|
|
if (Args.size() < Function->getMinRequiredExplicitArguments() &&
|
|
!PartialOverloading)
|
|
return TemplateDeductionResult::TooFewArguments;
|
|
else if (TooManyArguments(NumParams, Args.size() + ExplicitObjectOffset,
|
|
PartialOverloading)) {
|
|
const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
|
|
if (Proto->isTemplateVariadic())
|
|
/* Do nothing */;
|
|
else if (!Proto->isVariadic())
|
|
return TemplateDeductionResult::TooManyArguments;
|
|
}
|
|
|
|
// The types of the parameters from which we will perform template argument
|
|
// deduction.
|
|
LocalInstantiationScope InstScope(*this);
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
SmallVector<QualType, 8> ParamTypes;
|
|
unsigned NumExplicitlySpecified = 0;
|
|
if (ExplicitTemplateArgs) {
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = SubstituteExplicitTemplateArguments(
|
|
FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr,
|
|
Info);
|
|
});
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
NumExplicitlySpecified = Deduced.size();
|
|
} else {
|
|
// Just fill in the parameter types from the function declaration.
|
|
for (unsigned I = 0; I != NumParams; ++I)
|
|
ParamTypes.push_back(Function->getParamDecl(I)->getType());
|
|
}
|
|
|
|
SmallVector<OriginalCallArg, 8> OriginalCallArgs;
|
|
|
|
// Deduce an argument of type ParamType from an expression with index ArgIdx.
|
|
auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx,
|
|
bool ExplicitObjectArgument) {
|
|
// C++ [demp.deduct.call]p1: (DR1391)
|
|
// Template argument deduction is done by comparing each function template
|
|
// parameter that contains template-parameters that participate in
|
|
// template argument deduction ...
|
|
if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
|
|
return TemplateDeductionResult::Success;
|
|
|
|
if (ExplicitObjectArgument) {
|
|
// ... with the type of the corresponding argument
|
|
return DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParams, FirstInnerIndex, ParamType, ObjectType,
|
|
ObjectClassification,
|
|
/*Arg=*/nullptr, Info, Deduced, OriginalCallArgs,
|
|
/*Decomposed*/ false, ArgIdx, /*TDF*/ 0);
|
|
}
|
|
|
|
// ... with the type of the corresponding argument
|
|
return DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParams, FirstInnerIndex, ParamType,
|
|
Args[ArgIdx]->getType(), Args[ArgIdx]->Classify(getASTContext()),
|
|
Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/ false,
|
|
ArgIdx, /*TDF*/ 0);
|
|
};
|
|
|
|
// Deduce template arguments from the function parameters.
|
|
Deduced.resize(TemplateParams->size());
|
|
SmallVector<QualType, 8> ParamTypesForArgChecking;
|
|
for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
|
|
ParamIdx != NumParamTypes; ++ParamIdx) {
|
|
QualType ParamType = ParamTypes[ParamIdx];
|
|
|
|
const PackExpansionType *ParamExpansion =
|
|
dyn_cast<PackExpansionType>(ParamType);
|
|
if (!ParamExpansion) {
|
|
// Simple case: matching a function parameter to a function argument.
|
|
if (ArgIdx >= Args.size() && !(HasExplicitObject && ParamIdx == 0))
|
|
break;
|
|
|
|
ParamTypesForArgChecking.push_back(ParamType);
|
|
|
|
if (ParamIdx == 0 && HasExplicitObject) {
|
|
if (ObjectType.isNull())
|
|
return TemplateDeductionResult::InvalidExplicitArguments;
|
|
|
|
if (auto Result = DeduceCallArgument(ParamType, 0,
|
|
/*ExplicitObjectArgument=*/true);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
continue;
|
|
}
|
|
|
|
if (auto Result = DeduceCallArgument(ParamType, ArgIdx++,
|
|
/*ExplicitObjectArgument=*/false);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
continue;
|
|
}
|
|
|
|
bool IsTrailingPack = ParamIdx + 1 == NumParamTypes;
|
|
|
|
QualType ParamPattern = ParamExpansion->getPattern();
|
|
PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
|
|
ParamPattern,
|
|
AggregateDeductionCandidate && IsTrailingPack);
|
|
|
|
// C++0x [temp.deduct.call]p1:
|
|
// For a function parameter pack that occurs at the end of the
|
|
// parameter-declaration-list, the type A of each remaining argument of
|
|
// the call is compared with the type P of the declarator-id of the
|
|
// function parameter pack. Each comparison deduces template arguments
|
|
// for subsequent positions in the template parameter packs expanded by
|
|
// the function parameter pack. When a function parameter pack appears
|
|
// in a non-deduced context [not at the end of the list], the type of
|
|
// that parameter pack is never deduced.
|
|
//
|
|
// FIXME: The above rule allows the size of the parameter pack to change
|
|
// after we skip it (in the non-deduced case). That makes no sense, so
|
|
// we instead notionally deduce the pack against N arguments, where N is
|
|
// the length of the explicitly-specified pack if it's expanded by the
|
|
// parameter pack and 0 otherwise, and we treat each deduction as a
|
|
// non-deduced context.
|
|
if (IsTrailingPack || PackScope.hasFixedArity()) {
|
|
for (; ArgIdx < Args.size() && PackScope.hasNextElement();
|
|
PackScope.nextPackElement(), ++ArgIdx) {
|
|
ParamTypesForArgChecking.push_back(ParamPattern);
|
|
if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx,
|
|
/*ExplicitObjectArgument=*/false);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
} else {
|
|
// If the parameter type contains an explicitly-specified pack that we
|
|
// could not expand, skip the number of parameters notionally created
|
|
// by the expansion.
|
|
std::optional<unsigned> NumExpansions =
|
|
ParamExpansion->getNumExpansions();
|
|
if (NumExpansions && !PackScope.isPartiallyExpanded()) {
|
|
for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
|
|
++I, ++ArgIdx) {
|
|
ParamTypesForArgChecking.push_back(ParamPattern);
|
|
// FIXME: Should we add OriginalCallArgs for these? What if the
|
|
// corresponding argument is a list?
|
|
PackScope.nextPackElement();
|
|
}
|
|
} else if (!IsTrailingPack && !PackScope.isPartiallyExpanded() &&
|
|
PackScope.isDeducedFromEarlierParameter()) {
|
|
// [temp.deduct.general#3]
|
|
// When all template arguments have been deduced
|
|
// or obtained from default template arguments, all uses of template
|
|
// parameters in the template parameter list of the template are
|
|
// replaced with the corresponding deduced or default argument values
|
|
//
|
|
// If we have a trailing parameter pack, that has been deduced
|
|
// previously we substitute the pack here in a similar fashion as
|
|
// above with the trailing parameter packs. The main difference here is
|
|
// that, in this case we are not processing all of the remaining
|
|
// arguments. We are only process as many arguments as we have in
|
|
// the already deduced parameter.
|
|
std::optional<unsigned> ArgPosAfterSubstitution =
|
|
PackScope.getSavedPackSizeIfAllEqual();
|
|
if (!ArgPosAfterSubstitution)
|
|
continue;
|
|
|
|
unsigned PackArgEnd = ArgIdx + *ArgPosAfterSubstitution;
|
|
for (; ArgIdx < PackArgEnd && ArgIdx < Args.size(); ArgIdx++) {
|
|
ParamTypesForArgChecking.push_back(ParamPattern);
|
|
if (auto Result =
|
|
DeduceCallArgument(ParamPattern, ArgIdx,
|
|
/*ExplicitObjectArgument=*/false);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
PackScope.nextPackElement();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
if (auto Result = PackScope.finish();
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
// Capture the context in which the function call is made. This is the context
|
|
// that is needed when the accessibility of template arguments is checked.
|
|
DeclContext *CallingCtx = CurContext;
|
|
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = FinishTemplateArgumentDeduction(
|
|
FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
|
|
&OriginalCallArgs, PartialOverloading, PartialOrdering,
|
|
[&, CallingCtx]() {
|
|
ContextRAII SavedContext(*this, CallingCtx);
|
|
return CheckNonDependent(ParamTypesForArgChecking);
|
|
});
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
|
|
QualType FunctionType,
|
|
bool AdjustExceptionSpec) {
|
|
if (ArgFunctionType.isNull())
|
|
return ArgFunctionType;
|
|
|
|
const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
|
|
const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
|
|
bool Rebuild = false;
|
|
|
|
CallingConv CC = FunctionTypeP->getCallConv();
|
|
if (EPI.ExtInfo.getCC() != CC) {
|
|
EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
|
|
Rebuild = true;
|
|
}
|
|
|
|
bool NoReturn = FunctionTypeP->getNoReturnAttr();
|
|
if (EPI.ExtInfo.getNoReturn() != NoReturn) {
|
|
EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
|
|
Rebuild = true;
|
|
}
|
|
|
|
if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
|
|
ArgFunctionTypeP->hasExceptionSpec())) {
|
|
EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
|
|
Rebuild = true;
|
|
}
|
|
|
|
if (!Rebuild)
|
|
return ArgFunctionType;
|
|
|
|
return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
|
|
ArgFunctionTypeP->getParamTypes(), EPI);
|
|
}
|
|
|
|
TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
|
|
FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
|
|
bool IsAddressOfFunction) {
|
|
if (FunctionTemplate->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
QualType FunctionType = Function->getType();
|
|
|
|
// Substitute any explicit template arguments.
|
|
LocalInstantiationScope InstScope(*this);
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
unsigned NumExplicitlySpecified = 0;
|
|
SmallVector<QualType, 4> ParamTypes;
|
|
if (ExplicitTemplateArgs) {
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = SubstituteExplicitTemplateArguments(
|
|
FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes,
|
|
&FunctionType, Info);
|
|
});
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
NumExplicitlySpecified = Deduced.size();
|
|
}
|
|
|
|
// When taking the address of a function, we require convertibility of
|
|
// the resulting function type. Otherwise, we allow arbitrary mismatches
|
|
// of calling convention and noreturn.
|
|
if (!IsAddressOfFunction)
|
|
ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
|
|
/*AdjustExceptionSpec*/false);
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
// If the function has a deduced return type, substitute it for a dependent
|
|
// type so that we treat it as a non-deduced context in what follows.
|
|
bool HasDeducedReturnType = false;
|
|
if (getLangOpts().CPlusPlus14 &&
|
|
Function->getReturnType()->getContainedAutoType()) {
|
|
FunctionType = SubstAutoTypeDependent(FunctionType);
|
|
HasDeducedReturnType = true;
|
|
}
|
|
|
|
if (!ArgFunctionType.isNull() && !FunctionType.isNull()) {
|
|
unsigned TDF =
|
|
TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
|
|
// Deduce template arguments from the function type.
|
|
if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(
|
|
*this, TemplateParams, FunctionType, ArgFunctionType, Info, Deduced,
|
|
TDF, PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = FinishTemplateArgumentDeduction(
|
|
FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
|
|
/*OriginalCallArgs=*/nullptr, /*PartialOverloading=*/false,
|
|
/*PartialOrdering=*/true);
|
|
});
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// If the function has a deduced return type, deduce it now, so we can check
|
|
// that the deduced function type matches the requested type.
|
|
if (HasDeducedReturnType && IsAddressOfFunction &&
|
|
Specialization->getReturnType()->isUndeducedType() &&
|
|
DeduceReturnType(Specialization, Info.getLocation(), false))
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
// [C++26][expr.const]/p17
|
|
// An expression or conversion is immediate-escalating if it is not initially
|
|
// in an immediate function context and it is [...]
|
|
// a potentially-evaluated id-expression that denotes an immediate function.
|
|
if (IsAddressOfFunction && getLangOpts().CPlusPlus20 &&
|
|
Specialization->isImmediateEscalating() &&
|
|
parentEvaluationContext().isPotentiallyEvaluated() &&
|
|
CheckIfFunctionSpecializationIsImmediate(Specialization,
|
|
Info.getLocation()))
|
|
return TemplateDeductionResult::MiscellaneousDeductionFailure;
|
|
|
|
// Adjust the exception specification of the argument to match the
|
|
// substituted and resolved type we just formed. (Calling convention and
|
|
// noreturn can't be dependent, so we don't actually need this for them
|
|
// right now.)
|
|
QualType SpecializationType = Specialization->getType();
|
|
if (!IsAddressOfFunction) {
|
|
ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
|
|
/*AdjustExceptionSpec*/true);
|
|
|
|
// Revert placeholder types in the return type back to undeduced types so
|
|
// that the comparison below compares the declared return types.
|
|
if (HasDeducedReturnType) {
|
|
SpecializationType = SubstAutoType(SpecializationType, QualType());
|
|
ArgFunctionType = SubstAutoType(ArgFunctionType, QualType());
|
|
}
|
|
}
|
|
|
|
// If the requested function type does not match the actual type of the
|
|
// specialization with respect to arguments of compatible pointer to function
|
|
// types, template argument deduction fails.
|
|
if (!ArgFunctionType.isNull()) {
|
|
if (IsAddressOfFunction ? !isSameOrCompatibleFunctionType(
|
|
SpecializationType, ArgFunctionType)
|
|
: !Context.hasSameFunctionTypeIgnoringExceptionSpec(
|
|
SpecializationType, ArgFunctionType)) {
|
|
Info.FirstArg = TemplateArgument(SpecializationType);
|
|
Info.SecondArg = TemplateArgument(ArgFunctionType);
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
}
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
FunctionTemplateDecl *ConversionTemplate, QualType ObjectType,
|
|
Expr::Classification ObjectClassification, QualType A,
|
|
CXXConversionDecl *&Specialization, TemplateDeductionInfo &Info) {
|
|
if (ConversionTemplate->isInvalidDecl())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
CXXConversionDecl *ConversionGeneric
|
|
= cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
|
|
|
|
QualType P = ConversionGeneric->getConversionType();
|
|
bool IsReferenceP = P->isReferenceType();
|
|
bool IsReferenceA = A->isReferenceType();
|
|
|
|
// C++0x [temp.deduct.conv]p2:
|
|
// If P is a reference type, the type referred to by P is used for
|
|
// type deduction.
|
|
if (const ReferenceType *PRef = P->getAs<ReferenceType>())
|
|
P = PRef->getPointeeType();
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// [...] If A is a reference type, the type referred to by A is used
|
|
// for type deduction.
|
|
if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
|
|
A = ARef->getPointeeType();
|
|
// We work around a defect in the standard here: cv-qualifiers are also
|
|
// removed from P and A in this case, unless P was a reference type. This
|
|
// seems to mostly match what other compilers are doing.
|
|
if (!IsReferenceP) {
|
|
A = A.getUnqualifiedType();
|
|
P = P.getUnqualifiedType();
|
|
}
|
|
|
|
// C++ [temp.deduct.conv]p3:
|
|
//
|
|
// If A is not a reference type:
|
|
} else {
|
|
assert(!A->isReferenceType() && "Reference types were handled above");
|
|
|
|
// - If P is an array type, the pointer type produced by the
|
|
// array-to-pointer standard conversion (4.2) is used in place
|
|
// of P for type deduction; otherwise,
|
|
if (P->isArrayType())
|
|
P = Context.getArrayDecayedType(P);
|
|
// - If P is a function type, the pointer type produced by the
|
|
// function-to-pointer standard conversion (4.3) is used in
|
|
// place of P for type deduction; otherwise,
|
|
else if (P->isFunctionType())
|
|
P = Context.getPointerType(P);
|
|
// - If P is a cv-qualified type, the top level cv-qualifiers of
|
|
// P's type are ignored for type deduction.
|
|
else
|
|
P = P.getUnqualifiedType();
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// If A is a cv-qualified type, the top level cv-qualifiers of A's
|
|
// type are ignored for type deduction. If A is a reference type, the type
|
|
// referred to by A is used for type deduction.
|
|
A = A.getUnqualifiedType();
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// C++ [temp.deduct.conv]p1:
|
|
// Template argument deduction is done by comparing the return
|
|
// type of the template conversion function (call it P) with the
|
|
// type that is required as the result of the conversion (call it
|
|
// A) as described in 14.8.2.4.
|
|
TemplateParameterList *TemplateParams
|
|
= ConversionTemplate->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// In general, the deduction process attempts to find template
|
|
// argument values that will make the deduced A identical to
|
|
// A. However, there are two cases that allow a difference:
|
|
unsigned TDF = 0;
|
|
// - If the original A is a reference type, A can be more
|
|
// cv-qualified than the deduced A (i.e., the type referred to
|
|
// by the reference)
|
|
if (IsReferenceA)
|
|
TDF |= TDF_ArgWithReferenceType;
|
|
// - The deduced A can be another pointer or pointer to member
|
|
// type that can be converted to A via a qualification
|
|
// conversion.
|
|
//
|
|
// (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
|
|
// both P and A are pointers or member pointers. In this case, we
|
|
// just ignore cv-qualifiers completely).
|
|
if ((P->isPointerType() && A->isPointerType()) ||
|
|
(P->isMemberPointerType() && A->isMemberPointerType()))
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
|
|
SmallVector<Sema::OriginalCallArg, 1> OriginalCallArgs;
|
|
if (ConversionGeneric->isExplicitObjectMemberFunction()) {
|
|
QualType ParamType = ConversionGeneric->getParamDecl(0)->getType();
|
|
if (TemplateDeductionResult Result =
|
|
DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParams, getFirstInnerIndex(ConversionTemplate),
|
|
ParamType, ObjectType, ObjectClassification,
|
|
/*Arg=*/nullptr, Info, Deduced, OriginalCallArgs,
|
|
/*Decomposed*/ false, 0, /*TDF*/ 0);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
}
|
|
|
|
if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch(
|
|
*this, TemplateParams, P, A, Info, Deduced, TDF,
|
|
PartialOrderingKind::None, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Create an Instantiation Scope for finalizing the operator.
|
|
LocalInstantiationScope InstScope(*this);
|
|
// Finish template argument deduction.
|
|
FunctionDecl *ConversionSpecialized = nullptr;
|
|
TemplateDeductionResult Result;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = FinishTemplateArgumentDeduction(
|
|
ConversionTemplate, Deduced, 0, ConversionSpecialized, Info,
|
|
&OriginalCallArgs, /*PartialOverloading=*/false,
|
|
/*PartialOrdering=*/false);
|
|
});
|
|
Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
|
|
return Result;
|
|
}
|
|
|
|
TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
FunctionDecl *&Specialization,
|
|
TemplateDeductionInfo &Info,
|
|
bool IsAddressOfFunction) {
|
|
return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
|
|
QualType(), Specialization, Info,
|
|
IsAddressOfFunction);
|
|
}
|
|
|
|
namespace {
|
|
struct DependentAuto { bool IsPack; };
|
|
|
|
/// Substitute the 'auto' specifier or deduced template specialization type
|
|
/// specifier within a type for a given replacement type.
|
|
class SubstituteDeducedTypeTransform :
|
|
public TreeTransform<SubstituteDeducedTypeTransform> {
|
|
QualType Replacement;
|
|
bool ReplacementIsPack;
|
|
bool UseTypeSugar;
|
|
using inherited = TreeTransform<SubstituteDeducedTypeTransform>;
|
|
|
|
public:
|
|
SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
|
|
: TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
|
|
ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
|
|
|
|
SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
|
|
bool UseTypeSugar = true)
|
|
: TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
|
|
Replacement(Replacement), ReplacementIsPack(false),
|
|
UseTypeSugar(UseTypeSugar) {}
|
|
|
|
QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
|
|
assert(isa<TemplateTypeParmType>(Replacement) &&
|
|
"unexpected unsugared replacement kind");
|
|
QualType Result = Replacement;
|
|
TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
return Result;
|
|
}
|
|
|
|
QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
|
|
// If we're building the type pattern to deduce against, don't wrap the
|
|
// substituted type in an AutoType. Certain template deduction rules
|
|
// apply only when a template type parameter appears directly (and not if
|
|
// the parameter is found through desugaring). For instance:
|
|
// auto &&lref = lvalue;
|
|
// must transform into "rvalue reference to T" not "rvalue reference to
|
|
// auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
|
|
//
|
|
// FIXME: Is this still necessary?
|
|
if (!UseTypeSugar)
|
|
return TransformDesugared(TLB, TL);
|
|
|
|
QualType Result = SemaRef.Context.getAutoType(
|
|
Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
|
|
ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
|
|
TL.getTypePtr()->getTypeConstraintArguments());
|
|
auto NewTL = TLB.push<AutoTypeLoc>(Result);
|
|
NewTL.copy(TL);
|
|
return Result;
|
|
}
|
|
|
|
QualType TransformDeducedTemplateSpecializationType(
|
|
TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
|
|
if (!UseTypeSugar)
|
|
return TransformDesugared(TLB, TL);
|
|
|
|
QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
|
|
TL.getTypePtr()->getTemplateName(),
|
|
Replacement, Replacement.isNull());
|
|
auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
return Result;
|
|
}
|
|
|
|
ExprResult TransformLambdaExpr(LambdaExpr *E) {
|
|
// Lambdas never need to be transformed.
|
|
return E;
|
|
}
|
|
bool TransformExceptionSpec(SourceLocation Loc,
|
|
FunctionProtoType::ExceptionSpecInfo &ESI,
|
|
SmallVectorImpl<QualType> &Exceptions,
|
|
bool &Changed) {
|
|
if (ESI.Type == EST_Uninstantiated) {
|
|
ESI.instantiate();
|
|
Changed = true;
|
|
}
|
|
return inherited::TransformExceptionSpec(Loc, ESI, Exceptions, Changed);
|
|
}
|
|
|
|
QualType Apply(TypeLoc TL) {
|
|
// Create some scratch storage for the transformed type locations.
|
|
// FIXME: We're just going to throw this information away. Don't build it.
|
|
TypeLocBuilder TLB;
|
|
TLB.reserve(TL.getFullDataSize());
|
|
return TransformType(TLB, TL);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
|
|
AutoTypeLoc TypeLoc,
|
|
QualType Deduced) {
|
|
ConstraintSatisfaction Satisfaction;
|
|
ConceptDecl *Concept = Type.getTypeConstraintConcept();
|
|
TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
|
|
TypeLoc.getRAngleLoc());
|
|
TemplateArgs.addArgument(
|
|
TemplateArgumentLoc(TemplateArgument(Deduced),
|
|
S.Context.getTrivialTypeSourceInfo(
|
|
Deduced, TypeLoc.getNameLoc())));
|
|
for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
|
|
TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
|
|
|
|
Sema::CheckTemplateArgumentInfo CTAI;
|
|
if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs,
|
|
/*DefaultArgs=*/{},
|
|
/*PartialTemplateArgs=*/false, CTAI))
|
|
return true;
|
|
MultiLevelTemplateArgumentList MLTAL(Concept, CTAI.CanonicalConverted,
|
|
/*Final=*/false);
|
|
// Build up an EvaluationContext with an ImplicitConceptSpecializationDecl so
|
|
// that the template arguments of the constraint can be preserved. For
|
|
// example:
|
|
//
|
|
// template <class T>
|
|
// concept C = []<D U = void>() { return true; }();
|
|
//
|
|
// We need the argument for T while evaluating type constraint D in
|
|
// building the CallExpr to the lambda.
|
|
EnterExpressionEvaluationContext EECtx(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated,
|
|
ImplicitConceptSpecializationDecl::Create(
|
|
S.getASTContext(), Concept->getDeclContext(), Concept->getLocation(),
|
|
CTAI.CanonicalConverted));
|
|
if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()},
|
|
MLTAL, TypeLoc.getLocalSourceRange(),
|
|
Satisfaction))
|
|
return true;
|
|
if (!Satisfaction.IsSatisfied) {
|
|
std::string Buf;
|
|
llvm::raw_string_ostream OS(Buf);
|
|
OS << "'" << Concept->getName();
|
|
if (TypeLoc.hasExplicitTemplateArgs()) {
|
|
printTemplateArgumentList(
|
|
OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(),
|
|
Type.getTypeConstraintConcept()->getTemplateParameters());
|
|
}
|
|
OS << "'";
|
|
S.Diag(TypeLoc.getConceptNameLoc(),
|
|
diag::err_placeholder_constraints_not_satisfied)
|
|
<< Deduced << Buf << TypeLoc.getLocalSourceRange();
|
|
S.DiagnoseUnsatisfiedConstraint(Satisfaction);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
TemplateDeductionResult
|
|
Sema::DeduceAutoType(TypeLoc Type, Expr *Init, QualType &Result,
|
|
TemplateDeductionInfo &Info, bool DependentDeduction,
|
|
bool IgnoreConstraints,
|
|
TemplateSpecCandidateSet *FailedTSC) {
|
|
assert(DependentDeduction || Info.getDeducedDepth() == 0);
|
|
if (Init->containsErrors())
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
|
|
const AutoType *AT = Type.getType()->getContainedAutoType();
|
|
assert(AT);
|
|
|
|
if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) {
|
|
ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
|
|
if (NonPlaceholder.isInvalid())
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
Init = NonPlaceholder.get();
|
|
}
|
|
|
|
DependentAuto DependentResult = {
|
|
/*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
|
|
|
|
if (!DependentDeduction &&
|
|
(Type.getType()->isDependentType() || Init->isTypeDependent() ||
|
|
Init->containsUnexpandedParameterPack())) {
|
|
Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
|
|
assert(!Result.isNull() && "substituting DependentTy can't fail");
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Make sure that we treat 'char[]' equaly as 'char*' in C23 mode.
|
|
auto *String = dyn_cast<StringLiteral>(Init);
|
|
if (getLangOpts().C23 && String && Type.getType()->isArrayType()) {
|
|
Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier);
|
|
TypeLoc TL = TypeLoc(Init->getType(), Type.getOpaqueData());
|
|
Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL);
|
|
assert(!Result.isNull() && "substituting DependentTy can't fail");
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
// Emit a warning if 'auto*' is used in pedantic and in C23 mode.
|
|
if (getLangOpts().C23 && Type.getType()->isPointerType()) {
|
|
Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier);
|
|
}
|
|
|
|
auto *InitList = dyn_cast<InitListExpr>(Init);
|
|
if (!getLangOpts().CPlusPlus && InitList) {
|
|
Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c)
|
|
<< (int)AT->getKeyword() << getLangOpts().C23;
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
}
|
|
|
|
// Deduce type of TemplParam in Func(Init)
|
|
SmallVector<DeducedTemplateArgument, 1> Deduced;
|
|
Deduced.resize(1);
|
|
|
|
// If deduction failed, don't diagnose if the initializer is dependent; it
|
|
// might acquire a matching type in the instantiation.
|
|
auto DeductionFailed = [&](TemplateDeductionResult TDK) {
|
|
if (Init->isTypeDependent()) {
|
|
Result =
|
|
SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
|
|
assert(!Result.isNull() && "substituting DependentTy can't fail");
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
return TDK;
|
|
};
|
|
|
|
SmallVector<OriginalCallArg, 4> OriginalCallArgs;
|
|
|
|
QualType DeducedType;
|
|
// If this is a 'decltype(auto)' specifier, do the decltype dance.
|
|
if (AT->isDecltypeAuto()) {
|
|
if (InitList) {
|
|
Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
}
|
|
|
|
DeducedType = getDecltypeForExpr(Init);
|
|
assert(!DeducedType.isNull());
|
|
} else {
|
|
LocalInstantiationScope InstScope(*this);
|
|
|
|
// Build template<class TemplParam> void Func(FuncParam);
|
|
SourceLocation Loc = Init->getExprLoc();
|
|
TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
|
|
Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0,
|
|
nullptr, false, false, false);
|
|
QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
|
|
NamedDecl *TemplParamPtr = TemplParam;
|
|
FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
|
|
Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
|
|
|
|
if (InitList) {
|
|
// Notionally, we substitute std::initializer_list<T> for 'auto' and
|
|
// deduce against that. Such deduction only succeeds if removing
|
|
// cv-qualifiers and references results in std::initializer_list<T>.
|
|
if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
|
|
return TemplateDeductionResult::Invalid;
|
|
|
|
SourceRange DeducedFromInitRange;
|
|
for (Expr *Init : InitList->inits()) {
|
|
// Resolving a core issue: a braced-init-list containing any designators
|
|
// is a non-deduced context.
|
|
if (isa<DesignatedInitExpr>(Init))
|
|
return TemplateDeductionResult::Invalid;
|
|
if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParamsSt.get(), 0, TemplArg, Init->getType(),
|
|
Init->Classify(getASTContext()), Init, Info, Deduced,
|
|
OriginalCallArgs,
|
|
/*Decomposed=*/true,
|
|
/*ArgIdx=*/0, /*TDF=*/0);
|
|
TDK != TemplateDeductionResult::Success) {
|
|
if (TDK == TemplateDeductionResult::Inconsistent) {
|
|
Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction)
|
|
<< Info.FirstArg << Info.SecondArg << DeducedFromInitRange
|
|
<< Init->getSourceRange();
|
|
return DeductionFailed(TemplateDeductionResult::AlreadyDiagnosed);
|
|
}
|
|
return DeductionFailed(TDK);
|
|
}
|
|
|
|
if (DeducedFromInitRange.isInvalid() &&
|
|
Deduced[0].getKind() != TemplateArgument::Null)
|
|
DeducedFromInitRange = Init->getSourceRange();
|
|
}
|
|
} else {
|
|
if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
|
|
Diag(Loc, diag::err_auto_bitfield);
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
}
|
|
QualType FuncParam =
|
|
SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type);
|
|
assert(!FuncParam.isNull() &&
|
|
"substituting template parameter for 'auto' failed");
|
|
if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
|
|
*this, TemplateParamsSt.get(), 0, FuncParam, Init->getType(),
|
|
Init->Classify(getASTContext()), Init, Info, Deduced,
|
|
OriginalCallArgs,
|
|
/*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0, FailedTSC);
|
|
TDK != TemplateDeductionResult::Success)
|
|
return DeductionFailed(TDK);
|
|
}
|
|
|
|
// Could be null if somehow 'auto' appears in a non-deduced context.
|
|
if (Deduced[0].getKind() != TemplateArgument::Type)
|
|
return DeductionFailed(TemplateDeductionResult::Incomplete);
|
|
DeducedType = Deduced[0].getAsType();
|
|
|
|
if (InitList) {
|
|
DeducedType = BuildStdInitializerList(DeducedType, Loc);
|
|
if (DeducedType.isNull())
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
}
|
|
}
|
|
|
|
if (!Result.isNull()) {
|
|
if (!Context.hasSameType(DeducedType, Result)) {
|
|
Info.FirstArg = Result;
|
|
Info.SecondArg = DeducedType;
|
|
return DeductionFailed(TemplateDeductionResult::Inconsistent);
|
|
}
|
|
DeducedType = Context.getCommonSugaredType(Result, DeducedType);
|
|
}
|
|
|
|
if (AT->isConstrained() && !IgnoreConstraints &&
|
|
CheckDeducedPlaceholderConstraints(
|
|
*this, *AT, Type.getContainedAutoTypeLoc(), DeducedType))
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
|
|
Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
|
|
if (Result.isNull())
|
|
return TemplateDeductionResult::AlreadyDiagnosed;
|
|
|
|
// Check that the deduced argument type is compatible with the original
|
|
// argument type per C++ [temp.deduct.call]p4.
|
|
QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
|
|
for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
|
|
assert((bool)InitList == OriginalArg.DecomposedParam &&
|
|
"decomposed non-init-list in auto deduction?");
|
|
if (auto TDK =
|
|
CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA);
|
|
TDK != TemplateDeductionResult::Success) {
|
|
Result = QualType();
|
|
return DeductionFailed(TDK);
|
|
}
|
|
}
|
|
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
QualType Sema::SubstAutoType(QualType TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
assert(TypeToReplaceAuto != Context.DependentTy);
|
|
return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
assert(TypeToReplaceAuto != Context.DependentTy);
|
|
return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) {
|
|
return SubstituteDeducedTypeTransform(*this, DependentAuto{false})
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
TypeSourceInfo *
|
|
Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) {
|
|
return SubstituteDeducedTypeTransform(*this, DependentAuto{false})
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
|
|
/*UseTypeSugar*/ false)
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
|
|
/*UseTypeSugar*/ false)
|
|
.TransformType(TypeWithAuto);
|
|
}
|
|
|
|
void Sema::DiagnoseAutoDeductionFailure(const VarDecl *VDecl,
|
|
const Expr *Init) {
|
|
if (isa<InitListExpr>(Init))
|
|
Diag(VDecl->getLocation(),
|
|
VDecl->isInitCapture()
|
|
? diag::err_init_capture_deduction_failure_from_init_list
|
|
: diag::err_auto_var_deduction_failure_from_init_list)
|
|
<< VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
|
|
else
|
|
Diag(VDecl->getLocation(),
|
|
VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
|
|
: diag::err_auto_var_deduction_failure)
|
|
<< VDecl->getDeclName() << VDecl->getType() << Init->getType()
|
|
<< Init->getSourceRange();
|
|
}
|
|
|
|
bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
|
|
bool Diagnose) {
|
|
assert(FD->getReturnType()->isUndeducedType());
|
|
|
|
// For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
|
|
// within the return type from the call operator's type.
|
|
if (isLambdaConversionOperator(FD)) {
|
|
CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
|
|
FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
|
|
|
|
// For a generic lambda, instantiate the call operator if needed.
|
|
if (auto *Args = FD->getTemplateSpecializationArgs()) {
|
|
CallOp = InstantiateFunctionDeclaration(
|
|
CallOp->getDescribedFunctionTemplate(), Args, Loc);
|
|
if (!CallOp || CallOp->isInvalidDecl())
|
|
return true;
|
|
|
|
// We might need to deduce the return type by instantiating the definition
|
|
// of the operator() function.
|
|
if (CallOp->getReturnType()->isUndeducedType()) {
|
|
runWithSufficientStackSpace(Loc, [&] {
|
|
InstantiateFunctionDefinition(Loc, CallOp);
|
|
});
|
|
}
|
|
}
|
|
|
|
if (CallOp->isInvalidDecl())
|
|
return true;
|
|
assert(!CallOp->getReturnType()->isUndeducedType() &&
|
|
"failed to deduce lambda return type");
|
|
|
|
// Build the new return type from scratch.
|
|
CallingConv RetTyCC = FD->getReturnType()
|
|
->getPointeeType()
|
|
->castAs<FunctionType>()
|
|
->getCallConv();
|
|
QualType RetType = getLambdaConversionFunctionResultType(
|
|
CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC);
|
|
if (FD->getReturnType()->getAs<PointerType>())
|
|
RetType = Context.getPointerType(RetType);
|
|
else {
|
|
assert(FD->getReturnType()->getAs<BlockPointerType>());
|
|
RetType = Context.getBlockPointerType(RetType);
|
|
}
|
|
Context.adjustDeducedFunctionResultType(FD, RetType);
|
|
return false;
|
|
}
|
|
|
|
if (FD->getTemplateInstantiationPattern()) {
|
|
runWithSufficientStackSpace(Loc, [&] {
|
|
InstantiateFunctionDefinition(Loc, FD);
|
|
});
|
|
}
|
|
|
|
bool StillUndeduced = FD->getReturnType()->isUndeducedType();
|
|
if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
|
|
Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
|
|
Diag(FD->getLocation(), diag::note_callee_decl) << FD;
|
|
}
|
|
|
|
return StillUndeduced;
|
|
}
|
|
|
|
bool Sema::CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD,
|
|
SourceLocation Loc) {
|
|
assert(FD->isImmediateEscalating());
|
|
|
|
if (isLambdaConversionOperator(FD)) {
|
|
CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
|
|
FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
|
|
|
|
// For a generic lambda, instantiate the call operator if needed.
|
|
if (auto *Args = FD->getTemplateSpecializationArgs()) {
|
|
CallOp = InstantiateFunctionDeclaration(
|
|
CallOp->getDescribedFunctionTemplate(), Args, Loc);
|
|
if (!CallOp || CallOp->isInvalidDecl())
|
|
return true;
|
|
runWithSufficientStackSpace(
|
|
Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); });
|
|
}
|
|
return CallOp->isInvalidDecl();
|
|
}
|
|
|
|
if (FD->getTemplateInstantiationPattern()) {
|
|
runWithSufficientStackSpace(
|
|
Loc, [&] { InstantiateFunctionDefinition(Loc, FD); });
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static QualType GetImplicitObjectParameterType(ASTContext &Context,
|
|
const CXXMethodDecl *Method,
|
|
QualType RawType,
|
|
bool IsOtherRvr) {
|
|
// C++20 [temp.func.order]p3.1, p3.2:
|
|
// - The type X(M) is "rvalue reference to cv A" if the optional
|
|
// ref-qualifier of M is && or if M has no ref-qualifier and the
|
|
// positionally-corresponding parameter of the other transformed template
|
|
// has rvalue reference type; if this determination depends recursively
|
|
// upon whether X(M) is an rvalue reference type, it is not considered to
|
|
// have rvalue reference type.
|
|
//
|
|
// - Otherwise, X(M) is "lvalue reference to cv A".
|
|
assert(Method && !Method->isExplicitObjectMemberFunction() &&
|
|
"expected a member function with no explicit object parameter");
|
|
|
|
RawType = Context.getQualifiedType(RawType, Method->getMethodQualifiers());
|
|
if (Method->getRefQualifier() == RQ_RValue ||
|
|
(IsOtherRvr && Method->getRefQualifier() == RQ_None))
|
|
return Context.getRValueReferenceType(RawType);
|
|
return Context.getLValueReferenceType(RawType);
|
|
}
|
|
|
|
static TemplateDeductionResult CheckDeductionConsistency(
|
|
Sema &S, FunctionTemplateDecl *FTD, int ArgIdx, QualType P, QualType A,
|
|
ArrayRef<TemplateArgument> DeducedArgs, bool CheckConsistency) {
|
|
MultiLevelTemplateArgumentList MLTAL(FTD, DeducedArgs,
|
|
/*Final=*/true);
|
|
Sema::ArgumentPackSubstitutionIndexRAII PackIndex(
|
|
S, ArgIdx != -1 ? ::getPackIndexForParam(S, FTD, MLTAL, ArgIdx) : -1);
|
|
bool IsIncompleteSubstitution = false;
|
|
// FIXME: A substitution can be incomplete on a non-structural part of the
|
|
// type. Use the canonical type for now, until the TemplateInstantiator can
|
|
// deal with that.
|
|
QualType InstP = S.SubstType(P.getCanonicalType(), MLTAL, FTD->getLocation(),
|
|
FTD->getDeclName(), &IsIncompleteSubstitution);
|
|
if (InstP.isNull() && !IsIncompleteSubstitution)
|
|
return TemplateDeductionResult::SubstitutionFailure;
|
|
if (!CheckConsistency)
|
|
return TemplateDeductionResult::Success;
|
|
if (IsIncompleteSubstitution)
|
|
return TemplateDeductionResult::Incomplete;
|
|
|
|
// [temp.deduct.call]/4 - Check we produced a consistent deduction.
|
|
// This handles just the cases that can appear when partial ordering.
|
|
if (auto *PA = dyn_cast<PackExpansionType>(A);
|
|
PA && !isa<PackExpansionType>(InstP))
|
|
A = PA->getPattern();
|
|
if (!S.Context.hasSameType(
|
|
S.Context.getUnqualifiedArrayType(InstP.getNonReferenceType()),
|
|
S.Context.getUnqualifiedArrayType(A.getNonReferenceType())))
|
|
return TemplateDeductionResult::NonDeducedMismatch;
|
|
return TemplateDeductionResult::Success;
|
|
}
|
|
|
|
template <class T>
|
|
static TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
Sema &S, FunctionTemplateDecl *FTD,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info, T &&CheckDeductionConsistency) {
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(FTD));
|
|
|
|
// C++26 [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
bool IsIncomplete = false;
|
|
Sema::CheckTemplateArgumentInfo CTAI(/*PartialOrdering=*/true);
|
|
if (auto Result = ConvertDeducedTemplateArguments(
|
|
S, FTD, /*IsDeduced=*/true, Deduced, Info, CTAI,
|
|
/*CurrentInstantiationScope=*/nullptr,
|
|
/*NumAlreadyConverted=*/0, &IsIncomplete);
|
|
Result != TemplateDeductionResult::Success)
|
|
return Result;
|
|
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *SugaredDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted);
|
|
TemplateArgumentList *CanonicalDeducedArgumentList =
|
|
TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted);
|
|
|
|
Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
|
|
|
|
// Substitute the deduced template arguments into the argument
|
|
// and verify that the instantiated argument is both valid
|
|
// and equivalent to the parameter.
|
|
LocalInstantiationScope InstScope(S);
|
|
|
|
if (auto TDR = CheckDeductionConsistency(S, FTD, CTAI.SugaredConverted);
|
|
TDR != TemplateDeductionResult::Success)
|
|
return TDR;
|
|
|
|
return Trap.hasErrorOccurred() ? TemplateDeductionResult::SubstitutionFailure
|
|
: TemplateDeductionResult::Success;
|
|
}
|
|
|
|
/// Determine whether the function template \p FT1 is at least as
|
|
/// specialized as \p FT2.
|
|
static bool isAtLeastAsSpecializedAs(
|
|
Sema &S, SourceLocation Loc, FunctionTemplateDecl *FT1,
|
|
FunctionTemplateDecl *FT2, TemplatePartialOrderingContext TPOC,
|
|
ArrayRef<QualType> Args1, ArrayRef<QualType> Args2, bool Args1Offset) {
|
|
FunctionDecl *FD1 = FT1->getTemplatedDecl();
|
|
FunctionDecl *FD2 = FT2->getTemplatedDecl();
|
|
const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
|
|
assert(Proto1 && Proto2 && "Function templates must have prototypes");
|
|
|
|
// C++26 [temp.deduct.partial]p3:
|
|
// The types used to determine the ordering depend on the context in which
|
|
// the partial ordering is done:
|
|
// - In the context of a function call, the types used are those function
|
|
// parameter types for which the function call has arguments.
|
|
// - In the context of a call to a conversion operator, the return types
|
|
// of the conversion function templates are used.
|
|
// - In other contexts (14.6.6.2) the function template's function type
|
|
// is used.
|
|
|
|
if (TPOC == TPOC_Other) {
|
|
// We wouldn't be partial ordering these candidates if these didn't match.
|
|
assert(Proto1->getMethodQuals() == Proto2->getMethodQuals() &&
|
|
Proto1->getRefQualifier() == Proto2->getRefQualifier() &&
|
|
Proto1->isVariadic() == Proto2->isVariadic() &&
|
|
"shouldn't partial order functions with different qualifiers in a "
|
|
"context where the function type is used");
|
|
|
|
assert(Args1.empty() && Args2.empty() &&
|
|
"Only call context should have arguments");
|
|
Args1 = Proto1->getParamTypes();
|
|
Args2 = Proto2->getParamTypes();
|
|
}
|
|
|
|
TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced(TemplateParams->size());
|
|
TemplateDeductionInfo Info(Loc);
|
|
|
|
bool HasDeducedAnyParamFromReturnType = false;
|
|
if (TPOC != TPOC_Call) {
|
|
if (DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
|
|
Info, Deduced, TDF_None, PartialOrderingKind::Call,
|
|
/*DeducedFromArrayBound=*/false,
|
|
&HasDeducedAnyParamFromReturnType) !=
|
|
TemplateDeductionResult::Success)
|
|
return false;
|
|
}
|
|
|
|
llvm::SmallBitVector HasDeducedParam;
|
|
if (TPOC != TPOC_Conversion) {
|
|
HasDeducedParam.resize(Args2.size());
|
|
if (DeduceTemplateArguments(S, TemplateParams, Args2, Args1, Info, Deduced,
|
|
TDF_None, PartialOrderingKind::Call,
|
|
/*HasDeducedAnyParam=*/nullptr,
|
|
&HasDeducedParam) !=
|
|
TemplateDeductionResult::Success)
|
|
return false;
|
|
}
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
Sema::InstantiatingTemplate Inst(
|
|
S, Info.getLocation(), FT2, DeducedArgs,
|
|
Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return false;
|
|
|
|
bool AtLeastAsSpecialized;
|
|
S.runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
AtLeastAsSpecialized =
|
|
::FinishTemplateArgumentDeduction(
|
|
S, FT2, Deduced, Info,
|
|
[&](Sema &S, FunctionTemplateDecl *FTD,
|
|
ArrayRef<TemplateArgument> DeducedArgs) {
|
|
// As a provisional fix for a core issue that does not
|
|
// exist yet, which may be related to CWG2160, only check the
|
|
// consistency of parameters and return types which participated
|
|
// in deduction. We will still try to substitute them though.
|
|
if (TPOC != TPOC_Call) {
|
|
if (auto TDR = ::CheckDeductionConsistency(
|
|
S, FTD, /*ArgIdx=*/-1, Proto2->getReturnType(),
|
|
Proto1->getReturnType(), DeducedArgs,
|
|
/*CheckConsistency=*/HasDeducedAnyParamFromReturnType);
|
|
TDR != TemplateDeductionResult::Success)
|
|
return TDR;
|
|
}
|
|
|
|
if (TPOC == TPOC_Conversion)
|
|
return TemplateDeductionResult::Success;
|
|
|
|
return ::DeduceForEachType(
|
|
S, TemplateParams, Args2, Args1, Info, Deduced,
|
|
PartialOrderingKind::Call, /*FinishingDeduction=*/true,
|
|
[&](Sema &S, TemplateParameterList *, int ParamIdx,
|
|
int ArgIdx, QualType P, QualType A,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
PartialOrderingKind) {
|
|
if (ArgIdx != -1)
|
|
ArgIdx -= Args1Offset;
|
|
return ::CheckDeductionConsistency(
|
|
S, FTD, ArgIdx, P, A, DeducedArgs,
|
|
/*CheckConsistency=*/HasDeducedParam[ParamIdx]);
|
|
});
|
|
}) == TemplateDeductionResult::Success;
|
|
});
|
|
if (!AtLeastAsSpecialized)
|
|
return false;
|
|
|
|
// C++0x [temp.deduct.partial]p11:
|
|
// In most cases, all template parameters must have values in order for
|
|
// deduction to succeed, but for partial ordering purposes a template
|
|
// parameter may remain without a value provided it is not used in the
|
|
// types being used for partial ordering. [ Note: a template parameter used
|
|
// in a non-deduced context is considered used. -end note]
|
|
unsigned ArgIdx = 0, NumArgs = Deduced.size();
|
|
for (; ArgIdx != NumArgs; ++ArgIdx)
|
|
if (Deduced[ArgIdx].isNull())
|
|
break;
|
|
|
|
if (ArgIdx == NumArgs) {
|
|
// All template arguments were deduced. FT1 is at least as specialized
|
|
// as FT2.
|
|
return true;
|
|
}
|
|
|
|
// Figure out which template parameters were used.
|
|
llvm::SmallBitVector UsedParameters(TemplateParams->size());
|
|
switch (TPOC) {
|
|
case TPOC_Call:
|
|
for (unsigned I = 0, N = Args2.size(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(S.Context, Args2[I], /*OnlyDeduced=*/false,
|
|
TemplateParams->getDepth(), UsedParameters);
|
|
break;
|
|
|
|
case TPOC_Conversion:
|
|
::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(),
|
|
/*OnlyDeduced=*/false,
|
|
TemplateParams->getDepth(), UsedParameters);
|
|
break;
|
|
|
|
case TPOC_Other:
|
|
// We do not deduce template arguments from the exception specification
|
|
// when determining the primary template of a function template
|
|
// specialization or when taking the address of a function template.
|
|
// Therefore, we do not mark template parameters in the exception
|
|
// specification as used during partial ordering to prevent the following
|
|
// from being ambiguous:
|
|
//
|
|
// template<typename T, typename U>
|
|
// void f(U) noexcept(noexcept(T())); // #1
|
|
//
|
|
// template<typename T>
|
|
// void f(T*) noexcept; // #2
|
|
//
|
|
// template<>
|
|
// void f<int>(int*) noexcept; // explicit specialization of #2
|
|
//
|
|
// Although there is no corresponding wording in the standard, this seems
|
|
// to be the intended behavior given the definition of
|
|
// 'deduction substitution loci' in [temp.deduct].
|
|
::MarkUsedTemplateParameters(
|
|
S.Context,
|
|
S.Context.getFunctionTypeWithExceptionSpec(FD2->getType(), EST_None),
|
|
/*OnlyDeduced=*/false, TemplateParams->getDepth(), UsedParameters);
|
|
break;
|
|
}
|
|
|
|
for (; ArgIdx != NumArgs; ++ArgIdx)
|
|
// If this argument had no value deduced but was used in one of the types
|
|
// used for partial ordering, then deduction fails.
|
|
if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
enum class MoreSpecializedTrailingPackTieBreakerResult { Equal, Less, More };
|
|
|
|
// This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that
|
|
// there is no wording or even resolution for this issue.
|
|
static MoreSpecializedTrailingPackTieBreakerResult
|
|
getMoreSpecializedTrailingPackTieBreaker(
|
|
const TemplateSpecializationType *TST1,
|
|
const TemplateSpecializationType *TST2) {
|
|
ArrayRef<TemplateArgument> As1 = TST1->template_arguments(),
|
|
As2 = TST2->template_arguments();
|
|
const TemplateArgument &TA1 = As1.back(), &TA2 = As2.back();
|
|
bool IsPack = TA1.getKind() == TemplateArgument::Pack;
|
|
assert(IsPack == (TA2.getKind() == TemplateArgument::Pack));
|
|
if (!IsPack)
|
|
return MoreSpecializedTrailingPackTieBreakerResult::Equal;
|
|
assert(As1.size() == As2.size());
|
|
|
|
unsigned PackSize1 = TA1.pack_size(), PackSize2 = TA2.pack_size();
|
|
bool IsPackExpansion1 =
|
|
PackSize1 && TA1.pack_elements().back().isPackExpansion();
|
|
bool IsPackExpansion2 =
|
|
PackSize2 && TA2.pack_elements().back().isPackExpansion();
|
|
if (PackSize1 == PackSize2 && IsPackExpansion1 == IsPackExpansion2)
|
|
return MoreSpecializedTrailingPackTieBreakerResult::Equal;
|
|
if (PackSize1 > PackSize2 && IsPackExpansion1)
|
|
return MoreSpecializedTrailingPackTieBreakerResult::More;
|
|
if (PackSize1 < PackSize2 && IsPackExpansion2)
|
|
return MoreSpecializedTrailingPackTieBreakerResult::Less;
|
|
return MoreSpecializedTrailingPackTieBreakerResult::Equal;
|
|
}
|
|
|
|
FunctionTemplateDecl *Sema::getMoreSpecializedTemplate(
|
|
FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
|
|
TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
|
|
QualType RawObj1Ty, QualType RawObj2Ty, bool Reversed,
|
|
bool PartialOverloading) {
|
|
SmallVector<QualType> Args1;
|
|
SmallVector<QualType> Args2;
|
|
const FunctionDecl *FD1 = FT1->getTemplatedDecl();
|
|
const FunctionDecl *FD2 = FT2->getTemplatedDecl();
|
|
bool ShouldConvert1 = false;
|
|
bool ShouldConvert2 = false;
|
|
bool Args1Offset = false;
|
|
bool Args2Offset = false;
|
|
QualType Obj1Ty;
|
|
QualType Obj2Ty;
|
|
if (TPOC == TPOC_Call) {
|
|
const FunctionProtoType *Proto1 =
|
|
FD1->getType()->castAs<FunctionProtoType>();
|
|
const FunctionProtoType *Proto2 =
|
|
FD2->getType()->castAs<FunctionProtoType>();
|
|
|
|
// - In the context of a function call, the function parameter types are
|
|
// used.
|
|
const CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
|
|
const CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
|
|
// C++20 [temp.func.order]p3
|
|
// [...] Each function template M that is a member function is
|
|
// considered to have a new first parameter of type
|
|
// X(M), described below, inserted in its function parameter list.
|
|
//
|
|
// Note that we interpret "that is a member function" as
|
|
// "that is a member function with no expicit object argument".
|
|
// Otherwise the ordering rules for methods with expicit objet arguments
|
|
// against anything else make no sense.
|
|
|
|
bool NonStaticMethod1 = Method1 && !Method1->isStatic(),
|
|
NonStaticMethod2 = Method2 && !Method2->isStatic();
|
|
|
|
auto Params1Begin = Proto1->param_type_begin(),
|
|
Params2Begin = Proto2->param_type_begin();
|
|
|
|
size_t NumComparedArguments = NumCallArguments1;
|
|
|
|
if (auto OO = FD1->getOverloadedOperator();
|
|
(NonStaticMethod1 && NonStaticMethod2) ||
|
|
(OO != OO_None && OO != OO_Call && OO != OO_Subscript)) {
|
|
ShouldConvert1 =
|
|
NonStaticMethod1 && !Method1->hasCXXExplicitFunctionObjectParameter();
|
|
ShouldConvert2 =
|
|
NonStaticMethod2 && !Method2->hasCXXExplicitFunctionObjectParameter();
|
|
NumComparedArguments += 1;
|
|
|
|
if (ShouldConvert1) {
|
|
bool IsRValRef2 =
|
|
ShouldConvert2
|
|
? Method2->getRefQualifier() == RQ_RValue
|
|
: Proto2->param_type_begin()[0]->isRValueReferenceType();
|
|
// Compare 'this' from Method1 against first parameter from Method2.
|
|
Obj1Ty = GetImplicitObjectParameterType(this->Context, Method1,
|
|
RawObj1Ty, IsRValRef2);
|
|
Args1.push_back(Obj1Ty);
|
|
Args1Offset = true;
|
|
}
|
|
if (ShouldConvert2) {
|
|
bool IsRValRef1 =
|
|
ShouldConvert1
|
|
? Method1->getRefQualifier() == RQ_RValue
|
|
: Proto1->param_type_begin()[0]->isRValueReferenceType();
|
|
// Compare 'this' from Method2 against first parameter from Method1.
|
|
Obj2Ty = GetImplicitObjectParameterType(this->Context, Method2,
|
|
RawObj2Ty, IsRValRef1);
|
|
Args2.push_back(Obj2Ty);
|
|
Args2Offset = true;
|
|
}
|
|
} else {
|
|
if (NonStaticMethod1 && Method1->hasCXXExplicitFunctionObjectParameter())
|
|
Params1Begin += 1;
|
|
if (NonStaticMethod2 && Method2->hasCXXExplicitFunctionObjectParameter())
|
|
Params2Begin += 1;
|
|
}
|
|
Args1.insert(Args1.end(), Params1Begin, Proto1->param_type_end());
|
|
Args2.insert(Args2.end(), Params2Begin, Proto2->param_type_end());
|
|
|
|
// C++ [temp.func.order]p5:
|
|
// The presence of unused ellipsis and default arguments has no effect on
|
|
// the partial ordering of function templates.
|
|
Args1.resize(std::min(Args1.size(), NumComparedArguments));
|
|
Args2.resize(std::min(Args2.size(), NumComparedArguments));
|
|
|
|
if (Reversed)
|
|
std::reverse(Args2.begin(), Args2.end());
|
|
} else {
|
|
assert(!Reversed && "Only call context could have reversed arguments");
|
|
}
|
|
bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, Args1,
|
|
Args2, Args2Offset);
|
|
bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, Args2,
|
|
Args1, Args1Offset);
|
|
// C++ [temp.deduct.partial]p10:
|
|
// F is more specialized than G if F is at least as specialized as G and G
|
|
// is not at least as specialized as F.
|
|
if (Better1 != Better2) // We have a clear winner
|
|
return Better1 ? FT1 : FT2;
|
|
|
|
if (!Better1 && !Better2) // Neither is better than the other
|
|
return nullptr;
|
|
|
|
// C++ [temp.deduct.partial]p11:
|
|
// ... and if G has a trailing function parameter pack for which F does not
|
|
// have a corresponding parameter, and if F does not have a trailing
|
|
// function parameter pack, then F is more specialized than G.
|
|
|
|
SmallVector<QualType> Param1;
|
|
Param1.reserve(FD1->param_size() + ShouldConvert1);
|
|
if (ShouldConvert1)
|
|
Param1.push_back(Obj1Ty);
|
|
for (const auto &P : FD1->parameters())
|
|
Param1.push_back(P->getType());
|
|
|
|
SmallVector<QualType> Param2;
|
|
Param2.reserve(FD2->param_size() + ShouldConvert2);
|
|
if (ShouldConvert2)
|
|
Param2.push_back(Obj2Ty);
|
|
for (const auto &P : FD2->parameters())
|
|
Param2.push_back(P->getType());
|
|
|
|
unsigned NumParams1 = Param1.size();
|
|
unsigned NumParams2 = Param2.size();
|
|
|
|
bool Variadic1 =
|
|
FD1->param_size() && FD1->parameters().back()->isParameterPack();
|
|
bool Variadic2 =
|
|
FD2->param_size() && FD2->parameters().back()->isParameterPack();
|
|
if (Variadic1 != Variadic2) {
|
|
if (Variadic1 && NumParams1 > NumParams2)
|
|
return FT2;
|
|
if (Variadic2 && NumParams2 > NumParams1)
|
|
return FT1;
|
|
}
|
|
|
|
// Skip this tie breaker if we are performing overload resolution with partial
|
|
// arguments, as this breaks some assumptions about how closely related the
|
|
// candidates are.
|
|
for (int i = 0, e = std::min(NumParams1, NumParams2);
|
|
!PartialOverloading && i < e; ++i) {
|
|
QualType T1 = Param1[i].getCanonicalType();
|
|
QualType T2 = Param2[i].getCanonicalType();
|
|
auto *TST1 = dyn_cast<TemplateSpecializationType>(T1);
|
|
auto *TST2 = dyn_cast<TemplateSpecializationType>(T2);
|
|
if (!TST1 || !TST2)
|
|
continue;
|
|
switch (getMoreSpecializedTrailingPackTieBreaker(TST1, TST2)) {
|
|
case MoreSpecializedTrailingPackTieBreakerResult::Less:
|
|
return FT1;
|
|
case MoreSpecializedTrailingPackTieBreakerResult::More:
|
|
return FT2;
|
|
case MoreSpecializedTrailingPackTieBreakerResult::Equal:
|
|
continue;
|
|
}
|
|
llvm_unreachable(
|
|
"unknown MoreSpecializedTrailingPackTieBreakerResult value");
|
|
}
|
|
|
|
if (!Context.getLangOpts().CPlusPlus20)
|
|
return nullptr;
|
|
|
|
// Match GCC on not implementing [temp.func.order]p6.2.1.
|
|
|
|
// C++20 [temp.func.order]p6:
|
|
// If deduction against the other template succeeds for both transformed
|
|
// templates, constraints can be considered as follows:
|
|
|
|
// C++20 [temp.func.order]p6.1:
|
|
// If their template-parameter-lists (possibly including template-parameters
|
|
// invented for an abbreviated function template ([dcl.fct])) or function
|
|
// parameter lists differ in length, neither template is more specialized
|
|
// than the other.
|
|
TemplateParameterList *TPL1 = FT1->getTemplateParameters();
|
|
TemplateParameterList *TPL2 = FT2->getTemplateParameters();
|
|
if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2)
|
|
return nullptr;
|
|
|
|
// C++20 [temp.func.order]p6.2.2:
|
|
// Otherwise, if the corresponding template-parameters of the
|
|
// template-parameter-lists are not equivalent ([temp.over.link]) or if the
|
|
// function parameters that positionally correspond between the two
|
|
// templates are not of the same type, neither template is more specialized
|
|
// than the other.
|
|
if (!TemplateParameterListsAreEqual(TPL1, TPL2, false,
|
|
Sema::TPL_TemplateParamsEquivalent))
|
|
return nullptr;
|
|
|
|
// [dcl.fct]p5:
|
|
// Any top-level cv-qualifiers modifying a parameter type are deleted when
|
|
// forming the function type.
|
|
for (unsigned i = 0; i < NumParams1; ++i)
|
|
if (!Context.hasSameUnqualifiedType(Param1[i], Param2[i]))
|
|
return nullptr;
|
|
|
|
// C++20 [temp.func.order]p6.3:
|
|
// Otherwise, if the context in which the partial ordering is done is
|
|
// that of a call to a conversion function and the return types of the
|
|
// templates are not the same, then neither template is more specialized
|
|
// than the other.
|
|
if (TPOC == TPOC_Conversion &&
|
|
!Context.hasSameType(FD1->getReturnType(), FD2->getReturnType()))
|
|
return nullptr;
|
|
|
|
llvm::SmallVector<const Expr *, 3> AC1, AC2;
|
|
FT1->getAssociatedConstraints(AC1);
|
|
FT2->getAssociatedConstraints(AC2);
|
|
bool AtLeastAsConstrained1, AtLeastAsConstrained2;
|
|
if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
|
|
return nullptr;
|
|
if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
|
|
return nullptr;
|
|
if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
|
|
return nullptr;
|
|
return AtLeastAsConstrained1 ? FT1 : FT2;
|
|
}
|
|
|
|
UnresolvedSetIterator Sema::getMostSpecialized(
|
|
UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
|
|
TemplateSpecCandidateSet &FailedCandidates,
|
|
SourceLocation Loc, const PartialDiagnostic &NoneDiag,
|
|
const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
|
|
bool Complain, QualType TargetType) {
|
|
if (SpecBegin == SpecEnd) {
|
|
if (Complain) {
|
|
Diag(Loc, NoneDiag);
|
|
FailedCandidates.NoteCandidates(*this, Loc);
|
|
}
|
|
return SpecEnd;
|
|
}
|
|
|
|
if (SpecBegin + 1 == SpecEnd)
|
|
return SpecBegin;
|
|
|
|
// Find the function template that is better than all of the templates it
|
|
// has been compared to.
|
|
UnresolvedSetIterator Best = SpecBegin;
|
|
FunctionTemplateDecl *BestTemplate
|
|
= cast<FunctionDecl>(*Best)->getPrimaryTemplate();
|
|
assert(BestTemplate && "Not a function template specialization?");
|
|
for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
|
|
FunctionTemplateDecl *Challenger
|
|
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
|
|
assert(Challenger && "Not a function template specialization?");
|
|
if (declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger,
|
|
Loc, TPOC_Other, 0),
|
|
Challenger)) {
|
|
Best = I;
|
|
BestTemplate = Challenger;
|
|
}
|
|
}
|
|
|
|
// Make sure that the "best" function template is more specialized than all
|
|
// of the others.
|
|
bool Ambiguous = false;
|
|
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
|
|
FunctionTemplateDecl *Challenger
|
|
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
|
|
if (I != Best &&
|
|
!declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger,
|
|
Loc, TPOC_Other, 0),
|
|
BestTemplate)) {
|
|
Ambiguous = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Ambiguous) {
|
|
// We found an answer. Return it.
|
|
return Best;
|
|
}
|
|
|
|
// Diagnose the ambiguity.
|
|
if (Complain) {
|
|
Diag(Loc, AmbigDiag);
|
|
|
|
// FIXME: Can we order the candidates in some sane way?
|
|
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
|
|
PartialDiagnostic PD = CandidateDiag;
|
|
const auto *FD = cast<FunctionDecl>(*I);
|
|
PD << FD << getTemplateArgumentBindingsText(
|
|
FD->getPrimaryTemplate()->getTemplateParameters(),
|
|
*FD->getTemplateSpecializationArgs());
|
|
if (!TargetType.isNull())
|
|
HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
|
|
Diag((*I)->getLocation(), PD);
|
|
}
|
|
}
|
|
|
|
return SpecEnd;
|
|
}
|
|
|
|
FunctionDecl *Sema::getMoreConstrainedFunction(FunctionDecl *FD1,
|
|
FunctionDecl *FD2) {
|
|
assert(!FD1->getDescribedTemplate() && !FD2->getDescribedTemplate() &&
|
|
"not for function templates");
|
|
assert(!FD1->isFunctionTemplateSpecialization() ||
|
|
isa<CXXConversionDecl>(FD1));
|
|
assert(!FD2->isFunctionTemplateSpecialization() ||
|
|
isa<CXXConversionDecl>(FD2));
|
|
|
|
FunctionDecl *F1 = FD1;
|
|
if (FunctionDecl *P = FD1->getTemplateInstantiationPattern(false))
|
|
F1 = P;
|
|
|
|
FunctionDecl *F2 = FD2;
|
|
if (FunctionDecl *P = FD2->getTemplateInstantiationPattern(false))
|
|
F2 = P;
|
|
|
|
llvm::SmallVector<const Expr *, 1> AC1, AC2;
|
|
F1->getAssociatedConstraints(AC1);
|
|
F2->getAssociatedConstraints(AC2);
|
|
bool AtLeastAsConstrained1, AtLeastAsConstrained2;
|
|
if (IsAtLeastAsConstrained(F1, AC1, F2, AC2, AtLeastAsConstrained1))
|
|
return nullptr;
|
|
if (IsAtLeastAsConstrained(F2, AC2, F1, AC1, AtLeastAsConstrained2))
|
|
return nullptr;
|
|
if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
|
|
return nullptr;
|
|
return AtLeastAsConstrained1 ? FD1 : FD2;
|
|
}
|
|
|
|
/// Determine whether one partial specialization, P1, is at least as
|
|
/// specialized than another, P2.
|
|
///
|
|
/// \tparam TemplateLikeDecl The kind of P2, which must be a
|
|
/// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
|
|
/// \param T1 The injected-class-name of P1 (faked for a variable template).
|
|
/// \param T2 The injected-class-name of P2 (faked for a variable template).
|
|
template<typename TemplateLikeDecl>
|
|
static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
|
|
TemplateLikeDecl *P2,
|
|
TemplateDeductionInfo &Info) {
|
|
// C++ [temp.class.order]p1:
|
|
// For two class template partial specializations, the first is at least as
|
|
// specialized as the second if, given the following rewrite to two
|
|
// function templates, the first function template is at least as
|
|
// specialized as the second according to the ordering rules for function
|
|
// templates (14.6.6.2):
|
|
// - the first function template has the same template parameters as the
|
|
// first partial specialization and has a single function parameter
|
|
// whose type is a class template specialization with the template
|
|
// arguments of the first partial specialization, and
|
|
// - the second function template has the same template parameters as the
|
|
// second partial specialization and has a single function parameter
|
|
// whose type is a class template specialization with the template
|
|
// arguments of the second partial specialization.
|
|
//
|
|
// Rather than synthesize function templates, we merely perform the
|
|
// equivalent partial ordering by performing deduction directly on
|
|
// the template arguments of the class template partial
|
|
// specializations. This computation is slightly simpler than the
|
|
// general problem of function template partial ordering, because
|
|
// class template partial specializations are more constrained. We
|
|
// know that every template parameter is deducible from the class
|
|
// template partial specialization's template arguments, for
|
|
// example.
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
|
|
// Determine whether P1 is at least as specialized as P2.
|
|
Deduced.resize(P2->getTemplateParameters()->size());
|
|
if (DeduceTemplateArgumentsByTypeMatch(
|
|
S, P2->getTemplateParameters(), T2, T1, Info, Deduced, TDF_None,
|
|
PartialOrderingKind::Call, /*DeducedFromArrayBound=*/false,
|
|
/*HasDeducedAnyParam=*/nullptr) != TemplateDeductionResult::Success)
|
|
return false;
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
|
|
Deduced.end());
|
|
Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
|
|
Info);
|
|
if (Inst.isInvalid())
|
|
return false;
|
|
|
|
const auto *TST1 = cast<TemplateSpecializationType>(T1);
|
|
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
TemplateDeductionResult Result;
|
|
S.runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
Result = ::FinishTemplateArgumentDeduction(
|
|
S, P2, /*IsPartialOrdering=*/true, TST1->template_arguments(), Deduced,
|
|
Info);
|
|
});
|
|
|
|
if (Result != TemplateDeductionResult::Success)
|
|
return false;
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
// A dummy class to return nullptr instead of P2 when performing "more
|
|
// specialized than primary" check.
|
|
struct GetP2 {
|
|
template <typename T1, typename T2,
|
|
std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
|
|
T2 *operator()(T1 *, T2 *P2) {
|
|
return P2;
|
|
}
|
|
template <typename T1, typename T2,
|
|
std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
|
|
T1 *operator()(T1 *, T2 *) {
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
// The assumption is that two template argument lists have the same size.
|
|
struct TemplateArgumentListAreEqual {
|
|
ASTContext &Ctx;
|
|
TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {}
|
|
|
|
template <typename T1, typename T2,
|
|
std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
|
|
bool operator()(T1 *PS1, T2 *PS2) {
|
|
ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(),
|
|
Args2 = PS2->getTemplateArgs().asArray();
|
|
|
|
for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
|
|
// We use profile, instead of structural comparison of the arguments,
|
|
// because canonicalization can't do the right thing for dependent
|
|
// expressions.
|
|
llvm::FoldingSetNodeID IDA, IDB;
|
|
Args1[I].Profile(IDA, Ctx);
|
|
Args2[I].Profile(IDB, Ctx);
|
|
if (IDA != IDB)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T1, typename T2,
|
|
std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
|
|
bool operator()(T1 *Spec, T2 *Primary) {
|
|
ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(),
|
|
Args2 = Primary->getInjectedTemplateArgs(Ctx);
|
|
|
|
for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
|
|
// We use profile, instead of structural comparison of the arguments,
|
|
// because canonicalization can't do the right thing for dependent
|
|
// expressions.
|
|
llvm::FoldingSetNodeID IDA, IDB;
|
|
Args1[I].Profile(IDA, Ctx);
|
|
// Unlike the specialization arguments, the injected arguments are not
|
|
// always canonical.
|
|
Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx);
|
|
if (IDA != IDB)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Returns the more specialized template specialization between T1/P1 and
|
|
/// T2/P2.
|
|
/// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial
|
|
/// specialization and T2/P2 is the primary template.
|
|
/// - otherwise, both T1/P1 and T2/P2 are the partial specialization.
|
|
///
|
|
/// \param T1 the type of the first template partial specialization
|
|
///
|
|
/// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second
|
|
/// template partial specialization; otherwise, the type of the
|
|
/// primary template.
|
|
///
|
|
/// \param P1 the first template partial specialization
|
|
///
|
|
/// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template
|
|
/// partial specialization; otherwise, the primary template.
|
|
///
|
|
/// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is
|
|
/// more specialized, returns nullptr if P1 is not more specialized.
|
|
/// - otherwise, returns the more specialized template partial
|
|
/// specialization. If neither partial specialization is more
|
|
/// specialized, returns NULL.
|
|
template <typename TemplateLikeDecl, typename PrimaryDel>
|
|
static TemplateLikeDecl *
|
|
getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1,
|
|
PrimaryDel *P2, TemplateDeductionInfo &Info) {
|
|
constexpr bool IsMoreSpecialThanPrimaryCheck =
|
|
!std::is_same_v<TemplateLikeDecl, PrimaryDel>;
|
|
|
|
bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, Info);
|
|
if (IsMoreSpecialThanPrimaryCheck && !Better1)
|
|
return nullptr;
|
|
|
|
bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1, Info);
|
|
if (IsMoreSpecialThanPrimaryCheck && !Better2)
|
|
return P1;
|
|
|
|
// C++ [temp.deduct.partial]p10:
|
|
// F is more specialized than G if F is at least as specialized as G and G
|
|
// is not at least as specialized as F.
|
|
if (Better1 != Better2) // We have a clear winner
|
|
return Better1 ? P1 : GetP2()(P1, P2);
|
|
|
|
if (!Better1 && !Better2)
|
|
return nullptr;
|
|
|
|
switch (getMoreSpecializedTrailingPackTieBreaker(
|
|
cast<TemplateSpecializationType>(T1),
|
|
cast<TemplateSpecializationType>(T2))) {
|
|
case MoreSpecializedTrailingPackTieBreakerResult::Less:
|
|
return P1;
|
|
case MoreSpecializedTrailingPackTieBreakerResult::More:
|
|
return GetP2()(P1, P2);
|
|
case MoreSpecializedTrailingPackTieBreakerResult::Equal:
|
|
break;
|
|
}
|
|
|
|
if (!S.Context.getLangOpts().CPlusPlus20)
|
|
return nullptr;
|
|
|
|
// Match GCC on not implementing [temp.func.order]p6.2.1.
|
|
|
|
// C++20 [temp.func.order]p6:
|
|
// If deduction against the other template succeeds for both transformed
|
|
// templates, constraints can be considered as follows:
|
|
|
|
TemplateParameterList *TPL1 = P1->getTemplateParameters();
|
|
TemplateParameterList *TPL2 = P2->getTemplateParameters();
|
|
if (TPL1->size() != TPL2->size())
|
|
return nullptr;
|
|
|
|
// C++20 [temp.func.order]p6.2.2:
|
|
// Otherwise, if the corresponding template-parameters of the
|
|
// template-parameter-lists are not equivalent ([temp.over.link]) or if the
|
|
// function parameters that positionally correspond between the two
|
|
// templates are not of the same type, neither template is more specialized
|
|
// than the other.
|
|
if (!S.TemplateParameterListsAreEqual(TPL1, TPL2, false,
|
|
Sema::TPL_TemplateParamsEquivalent))
|
|
return nullptr;
|
|
|
|
if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2))
|
|
return nullptr;
|
|
|
|
llvm::SmallVector<const Expr *, 3> AC1, AC2;
|
|
P1->getAssociatedConstraints(AC1);
|
|
P2->getAssociatedConstraints(AC2);
|
|
bool AtLeastAsConstrained1, AtLeastAsConstrained2;
|
|
if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) ||
|
|
(IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1))
|
|
return nullptr;
|
|
if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2))
|
|
return nullptr;
|
|
if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
|
|
return nullptr;
|
|
return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2);
|
|
}
|
|
|
|
ClassTemplatePartialSpecializationDecl *
|
|
Sema::getMoreSpecializedPartialSpecialization(
|
|
ClassTemplatePartialSpecializationDecl *PS1,
|
|
ClassTemplatePartialSpecializationDecl *PS2,
|
|
SourceLocation Loc) {
|
|
QualType PT1 = PS1->getInjectedSpecializationType();
|
|
QualType PT2 = PS2->getInjectedSpecializationType();
|
|
|
|
TemplateDeductionInfo Info(Loc);
|
|
return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info);
|
|
}
|
|
|
|
bool Sema::isMoreSpecializedThanPrimary(
|
|
ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
|
|
ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
|
|
QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
|
|
QualType PartialT = Spec->getInjectedSpecializationType();
|
|
|
|
ClassTemplatePartialSpecializationDecl *MaybeSpec =
|
|
getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
|
|
if (MaybeSpec)
|
|
Info.clearSFINAEDiagnostic();
|
|
return MaybeSpec;
|
|
}
|
|
|
|
VarTemplatePartialSpecializationDecl *
|
|
Sema::getMoreSpecializedPartialSpecialization(
|
|
VarTemplatePartialSpecializationDecl *PS1,
|
|
VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
|
|
// Pretend the variable template specializations are class template
|
|
// specializations and form a fake injected class name type for comparison.
|
|
assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
|
|
"the partial specializations being compared should specialize"
|
|
" the same template.");
|
|
TemplateName Name(PS1->getSpecializedTemplate());
|
|
QualType PT1 = Context.getTemplateSpecializationType(
|
|
Name, PS1->getTemplateArgs().asArray());
|
|
QualType PT2 = Context.getTemplateSpecializationType(
|
|
Name, PS2->getTemplateArgs().asArray());
|
|
|
|
TemplateDeductionInfo Info(Loc);
|
|
return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info);
|
|
}
|
|
|
|
bool Sema::isMoreSpecializedThanPrimary(
|
|
VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
|
|
VarTemplateDecl *Primary = Spec->getSpecializedTemplate();
|
|
TemplateName Name(Primary);
|
|
QualType PrimaryT = Context.getTemplateSpecializationType(
|
|
Name, Primary->getInjectedTemplateArgs(Context));
|
|
QualType PartialT = Context.getTemplateSpecializationType(
|
|
Name, Spec->getTemplateArgs().asArray());
|
|
|
|
VarTemplatePartialSpecializationDecl *MaybeSpec =
|
|
getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
|
|
if (MaybeSpec)
|
|
Info.clearSFINAEDiagnostic();
|
|
return MaybeSpec;
|
|
}
|
|
|
|
bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
|
|
TemplateParameterList *P, TemplateDecl *PArg, TemplateDecl *AArg,
|
|
const DefaultArguments &DefaultArgs, SourceLocation ArgLoc,
|
|
bool PartialOrdering, bool *StrictPackMatch) {
|
|
// C++1z [temp.arg.template]p4: (DR 150)
|
|
// A template template-parameter P is at least as specialized as a
|
|
// template template-argument A if, given the following rewrite to two
|
|
// function templates...
|
|
|
|
// Rather than synthesize function templates, we merely perform the
|
|
// equivalent partial ordering by performing deduction directly on
|
|
// the template parameter lists of the template template parameters.
|
|
//
|
|
TemplateParameterList *A = AArg->getTemplateParameters();
|
|
|
|
Sema::InstantiatingTemplate Inst(
|
|
*this, ArgLoc, Sema::InstantiatingTemplate::PartialOrderingTTP(), PArg,
|
|
SourceRange(P->getTemplateLoc(), P->getRAngleLoc()));
|
|
if (Inst.isInvalid())
|
|
return false;
|
|
|
|
// Given an invented class template X with the template parameter list of
|
|
// A (including default arguments):
|
|
// - Each function template has a single function parameter whose type is
|
|
// a specialization of X with template arguments corresponding to the
|
|
// template parameters from the respective function template
|
|
SmallVector<TemplateArgument, 8> AArgs(A->getInjectedTemplateArgs(Context));
|
|
|
|
// Check P's arguments against A's parameter list. This will fill in default
|
|
// template arguments as needed. AArgs are already correct by construction.
|
|
// We can't just use CheckTemplateIdType because that will expand alias
|
|
// templates.
|
|
SmallVector<TemplateArgument, 4> PArgs(P->getInjectedTemplateArgs(Context));
|
|
{
|
|
TemplateArgumentListInfo PArgList(P->getLAngleLoc(),
|
|
P->getRAngleLoc());
|
|
for (unsigned I = 0, N = P->size(); I != N; ++I) {
|
|
// Unwrap packs that getInjectedTemplateArgs wrapped around pack
|
|
// expansions, to form an "as written" argument list.
|
|
TemplateArgument Arg = PArgs[I];
|
|
if (Arg.getKind() == TemplateArgument::Pack) {
|
|
assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
|
|
Arg = *Arg.pack_begin();
|
|
}
|
|
PArgList.addArgument(getTrivialTemplateArgumentLoc(
|
|
Arg, QualType(), P->getParam(I)->getLocation()));
|
|
}
|
|
PArgs.clear();
|
|
|
|
// C++1z [temp.arg.template]p3:
|
|
// If the rewrite produces an invalid type, then P is not at least as
|
|
// specialized as A.
|
|
CheckTemplateArgumentInfo CTAI(
|
|
/*PartialOrdering=*/false, /*MatchingTTP=*/true);
|
|
CTAI.SugaredConverted = std::move(PArgs);
|
|
if (CheckTemplateArgumentList(AArg, ArgLoc, PArgList, DefaultArgs,
|
|
/*PartialTemplateArgs=*/false, CTAI,
|
|
/*UpdateArgsWithConversions=*/true,
|
|
/*ConstraintsNotSatisfied=*/nullptr))
|
|
return false;
|
|
PArgs = std::move(CTAI.SugaredConverted);
|
|
if (StrictPackMatch)
|
|
*StrictPackMatch |= CTAI.StrictPackMatch;
|
|
}
|
|
|
|
// Determine whether P1 is at least as specialized as P2.
|
|
TemplateDeductionInfo Info(ArgLoc, A->getDepth());
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(A->size());
|
|
|
|
// ... the function template corresponding to P is at least as specialized
|
|
// as the function template corresponding to A according to the partial
|
|
// ordering rules for function templates.
|
|
|
|
// Provisional resolution for CWG2398: Regarding temp.arg.template]p4, when
|
|
// applying the partial ordering rules for function templates on
|
|
// the rewritten template template parameters:
|
|
// - In a deduced context, the matching of packs versus fixed-size needs to
|
|
// be inverted between Ps and As. On non-deduced context, matching needs to
|
|
// happen both ways, according to [temp.arg.template]p3, but this is
|
|
// currently implemented as a special case elsewhere.
|
|
switch (::DeduceTemplateArguments(
|
|
*this, A, AArgs, PArgs, Info, Deduced,
|
|
/*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/true,
|
|
PartialOrdering ? PackFold::ArgumentToParameter : PackFold::Both,
|
|
/*HasDeducedAnyParam=*/nullptr)) {
|
|
case clang::TemplateDeductionResult::Success:
|
|
if (StrictPackMatch && Info.hasStrictPackMatch())
|
|
*StrictPackMatch = true;
|
|
break;
|
|
|
|
case TemplateDeductionResult::MiscellaneousDeductionFailure:
|
|
Diag(AArg->getLocation(), diag::err_template_param_list_different_arity)
|
|
<< (A->size() > P->size()) << /*isTemplateTemplateParameter=*/true
|
|
<< SourceRange(A->getTemplateLoc(), P->getRAngleLoc());
|
|
return false;
|
|
case TemplateDeductionResult::NonDeducedMismatch:
|
|
Diag(AArg->getLocation(), diag::err_non_deduced_mismatch)
|
|
<< Info.FirstArg << Info.SecondArg;
|
|
return false;
|
|
case TemplateDeductionResult::Inconsistent:
|
|
Diag(getAsNamedDecl(Info.Param)->getLocation(),
|
|
diag::err_inconsistent_deduction)
|
|
<< Info.FirstArg << Info.SecondArg;
|
|
return false;
|
|
case TemplateDeductionResult::AlreadyDiagnosed:
|
|
return false;
|
|
|
|
// None of these should happen for a plain deduction.
|
|
case TemplateDeductionResult::Invalid:
|
|
case TemplateDeductionResult::InstantiationDepth:
|
|
case TemplateDeductionResult::Incomplete:
|
|
case TemplateDeductionResult::IncompletePack:
|
|
case TemplateDeductionResult::Underqualified:
|
|
case TemplateDeductionResult::SubstitutionFailure:
|
|
case TemplateDeductionResult::DeducedMismatch:
|
|
case TemplateDeductionResult::DeducedMismatchNested:
|
|
case TemplateDeductionResult::TooManyArguments:
|
|
case TemplateDeductionResult::TooFewArguments:
|
|
case TemplateDeductionResult::InvalidExplicitArguments:
|
|
case TemplateDeductionResult::NonDependentConversionFailure:
|
|
case TemplateDeductionResult::ConstraintsNotSatisfied:
|
|
case TemplateDeductionResult::CUDATargetMismatch:
|
|
llvm_unreachable("Unexpected Result");
|
|
}
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
|
|
TemplateDeductionResult TDK;
|
|
runWithSufficientStackSpace(Info.getLocation(), [&] {
|
|
TDK = ::FinishTemplateArgumentDeduction(*this, AArg, PartialOrdering, PArgs,
|
|
Deduced, Info);
|
|
});
|
|
switch (TDK) {
|
|
case TemplateDeductionResult::Success:
|
|
return true;
|
|
|
|
// It doesn't seem possible to get a non-deduced mismatch when partial
|
|
// ordering TTPs, except with an invalid template parameter list which has
|
|
// a parameter after a pack.
|
|
case TemplateDeductionResult::NonDeducedMismatch:
|
|
assert(PArg->isInvalidDecl() && "Unexpected NonDeducedMismatch");
|
|
return false;
|
|
|
|
// Substitution failures should have already been diagnosed.
|
|
case TemplateDeductionResult::AlreadyDiagnosed:
|
|
case TemplateDeductionResult::SubstitutionFailure:
|
|
case TemplateDeductionResult::InstantiationDepth:
|
|
return false;
|
|
|
|
// None of these should happen when just converting deduced arguments.
|
|
case TemplateDeductionResult::Invalid:
|
|
case TemplateDeductionResult::Incomplete:
|
|
case TemplateDeductionResult::IncompletePack:
|
|
case TemplateDeductionResult::Inconsistent:
|
|
case TemplateDeductionResult::Underqualified:
|
|
case TemplateDeductionResult::DeducedMismatch:
|
|
case TemplateDeductionResult::DeducedMismatchNested:
|
|
case TemplateDeductionResult::TooManyArguments:
|
|
case TemplateDeductionResult::TooFewArguments:
|
|
case TemplateDeductionResult::InvalidExplicitArguments:
|
|
case TemplateDeductionResult::NonDependentConversionFailure:
|
|
case TemplateDeductionResult::ConstraintsNotSatisfied:
|
|
case TemplateDeductionResult::MiscellaneousDeductionFailure:
|
|
case TemplateDeductionResult::CUDATargetMismatch:
|
|
llvm_unreachable("Unexpected Result");
|
|
}
|
|
llvm_unreachable("Unexpected TDK");
|
|
}
|
|
|
|
namespace {
|
|
struct MarkUsedTemplateParameterVisitor : DynamicRecursiveASTVisitor {
|
|
llvm::SmallBitVector &Used;
|
|
unsigned Depth;
|
|
|
|
MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
|
|
unsigned Depth)
|
|
: Used(Used), Depth(Depth) { }
|
|
|
|
bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override {
|
|
if (T->getDepth() == Depth)
|
|
Used[T->getIndex()] = true;
|
|
return true;
|
|
}
|
|
|
|
bool TraverseTemplateName(TemplateName Template) override {
|
|
if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
|
|
Template.getAsTemplateDecl()))
|
|
if (TTP->getDepth() == Depth)
|
|
Used[TTP->getIndex()] = true;
|
|
DynamicRecursiveASTVisitor::TraverseTemplateName(Template);
|
|
return true;
|
|
}
|
|
|
|
bool VisitDeclRefExpr(DeclRefExpr *E) override {
|
|
if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
|
|
if (NTTP->getDepth() == Depth)
|
|
Used[NTTP->getIndex()] = true;
|
|
return true;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Mark the template parameters that are used by the given
|
|
/// expression.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const Expr *E,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (!OnlyDeduced) {
|
|
MarkUsedTemplateParameterVisitor(Used, Depth)
|
|
.TraverseStmt(const_cast<Expr *>(E));
|
|
return;
|
|
}
|
|
|
|
// We can deduce from a pack expansion.
|
|
if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
|
|
E = Expansion->getPattern();
|
|
|
|
const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth);
|
|
if (!NTTP)
|
|
return;
|
|
|
|
if (NTTP->getDepth() == Depth)
|
|
Used[NTTP->getIndex()] = true;
|
|
|
|
// In C++17 mode, additional arguments may be deduced from the type of a
|
|
// non-type argument.
|
|
if (Ctx.getLangOpts().CPlusPlus17)
|
|
MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
|
|
}
|
|
|
|
/// Mark the template parameters that are used by the given
|
|
/// nested name specifier.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
NestedNameSpecifier *NNS,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (!NNS)
|
|
return;
|
|
|
|
MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
|
|
Used);
|
|
MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
|
|
OnlyDeduced, Depth, Used);
|
|
}
|
|
|
|
/// Mark the template parameters that are used by the given
|
|
/// template name.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
TemplateName Name,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
|
|
if (TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Template)) {
|
|
if (TTP->getDepth() == Depth)
|
|
Used[TTP->getIndex()] = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
|
|
MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
|
|
Depth, Used);
|
|
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
|
|
MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
|
|
Depth, Used);
|
|
}
|
|
|
|
/// Mark the template parameters that are used by the given
|
|
/// type.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (T.isNull())
|
|
return;
|
|
|
|
// Non-dependent types have nothing deducible
|
|
if (!T->isDependentType())
|
|
return;
|
|
|
|
T = Ctx.getCanonicalType(T);
|
|
switch (T->getTypeClass()) {
|
|
case Type::Pointer:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<PointerType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::BlockPointer:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<BlockPointerType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ReferenceType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::MemberPointer: {
|
|
const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
|
|
MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx,
|
|
QualType(MemPtr->getQualifier()->getAsType(), 0),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::DependentSizedArray:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DependentSizedArrayType>(T)->getSizeExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
// Fall through to check the element type
|
|
[[fallthrough]];
|
|
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::ArrayParameter:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ArrayType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
case Type::Vector:
|
|
case Type::ExtVector:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<VectorType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentVector: {
|
|
const auto *VecType = cast<DependentVectorType>(T);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
|
|
Used);
|
|
break;
|
|
}
|
|
case Type::DependentSizedExtVector: {
|
|
const DependentSizedExtVectorType *VecType
|
|
= cast<DependentSizedExtVectorType>(T);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::DependentAddressSpace: {
|
|
const DependentAddressSpaceType *DependentASType =
|
|
cast<DependentAddressSpaceType>(T);
|
|
MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
|
|
OnlyDeduced, Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx,
|
|
DependentASType->getAddrSpaceExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::ConstantMatrix: {
|
|
const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T);
|
|
MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::DependentSizedMatrix: {
|
|
const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T);
|
|
MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth,
|
|
Used);
|
|
MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::FunctionProto: {
|
|
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
|
MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
|
|
Used);
|
|
for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
|
|
// C++17 [temp.deduct.type]p5:
|
|
// The non-deduced contexts are: [...]
|
|
// -- A function parameter pack that does not occur at the end of the
|
|
// parameter-declaration-list.
|
|
if (!OnlyDeduced || I + 1 == N ||
|
|
!Proto->getParamType(I)->getAs<PackExpansionType>()) {
|
|
MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
|
|
Depth, Used);
|
|
} else {
|
|
// FIXME: C++17 [temp.deduct.call]p1:
|
|
// When a function parameter pack appears in a non-deduced context,
|
|
// the type of that pack is never deduced.
|
|
//
|
|
// We should also track a set of "never deduced" parameters, and
|
|
// subtract that from the list of deduced parameters after marking.
|
|
}
|
|
}
|
|
if (auto *E = Proto->getNoexceptExpr())
|
|
MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::TemplateTypeParm: {
|
|
const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
|
|
if (TTP->getDepth() == Depth)
|
|
Used[TTP->getIndex()] = true;
|
|
break;
|
|
}
|
|
|
|
case Type::SubstTemplateTypeParmPack: {
|
|
const SubstTemplateTypeParmPackType *Subst
|
|
= cast<SubstTemplateTypeParmPackType>(T);
|
|
if (Subst->getReplacedParameter()->getDepth() == Depth)
|
|
Used[Subst->getIndex()] = true;
|
|
MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::InjectedClassName:
|
|
T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
|
|
[[fallthrough]];
|
|
|
|
case Type::TemplateSpecialization: {
|
|
const TemplateSpecializationType *Spec
|
|
= cast<TemplateSpecializationType>(T);
|
|
MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
|
|
Depth, Used);
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is
|
|
// not the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (OnlyDeduced &&
|
|
hasPackExpansionBeforeEnd(Spec->template_arguments()))
|
|
break;
|
|
|
|
for (const auto &Arg : Spec->template_arguments())
|
|
MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::Complex:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ComplexType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Atomic:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<AtomicType>(T)->getValueType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentName:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DependentNameType>(T)->getQualifier(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentTemplateSpecialization: {
|
|
// C++14 [temp.deduct.type]p5:
|
|
// The non-deduced contexts are:
|
|
// -- The nested-name-specifier of a type that was specified using a
|
|
// qualified-id
|
|
//
|
|
// C++14 [temp.deduct.type]p6:
|
|
// When a type name is specified in a way that includes a non-deduced
|
|
// context, all of the types that comprise that type name are also
|
|
// non-deduced.
|
|
if (OnlyDeduced)
|
|
break;
|
|
|
|
const DependentTemplateSpecializationType *Spec
|
|
= cast<DependentTemplateSpecializationType>(T);
|
|
|
|
MarkUsedTemplateParameters(Ctx,
|
|
Spec->getDependentTemplateName().getQualifier(),
|
|
OnlyDeduced, Depth, Used);
|
|
|
|
for (const auto &Arg : Spec->template_arguments())
|
|
MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::TypeOf:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::TypeOfExpr:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<TypeOfExprType>(T)->getUnderlyingExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Decltype:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DecltypeType>(T)->getUnderlyingExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::PackIndexing:
|
|
if (!OnlyDeduced) {
|
|
MarkUsedTemplateParameters(Ctx, cast<PackIndexingType>(T)->getPattern(),
|
|
OnlyDeduced, Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, cast<PackIndexingType>(T)->getIndexExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
}
|
|
break;
|
|
|
|
case Type::UnaryTransform:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<UnaryTransformType>(T)->getUnderlyingType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::PackExpansion:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<PackExpansionType>(T)->getPattern(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Auto:
|
|
case Type::DeducedTemplateSpecialization:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DeducedType>(T)->getDeducedType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
case Type::DependentBitInt:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DependentBitIntType>(T)->getNumBitsExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::HLSLAttributedResource:
|
|
MarkUsedTemplateParameters(
|
|
Ctx, cast<HLSLAttributedResourceType>(T)->getWrappedType(), OnlyDeduced,
|
|
Depth, Used);
|
|
if (cast<HLSLAttributedResourceType>(T)->hasContainedType())
|
|
MarkUsedTemplateParameters(
|
|
Ctx, cast<HLSLAttributedResourceType>(T)->getContainedType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
// None of these types have any template parameters in them.
|
|
case Type::Builtin:
|
|
case Type::VariableArray:
|
|
case Type::FunctionNoProto:
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCObjectPointer:
|
|
case Type::UnresolvedUsing:
|
|
case Type::Pipe:
|
|
case Type::BitInt:
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define DEPENDENT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.inc"
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Mark the template parameters that are used by this
|
|
/// template argument.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const TemplateArgument &TemplateArg,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
switch (TemplateArg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::NullPtr:
|
|
case TemplateArgument::StructuralValue:
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
TemplateArg.getAsTemplateOrTemplatePattern(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Expression:
|
|
MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Pack:
|
|
for (const auto &P : TemplateArg.pack_elements())
|
|
MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
|
|
}
|
|
|
|
void
|
|
Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
|
|
bool OnlyDeduced, unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is not
|
|
// the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (OnlyDeduced &&
|
|
hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
|
|
return;
|
|
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
|
|
Depth, Used);
|
|
}
|
|
|
|
void Sema::MarkUsedTemplateParameters(ArrayRef<TemplateArgument> TemplateArgs,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(Context, TemplateArgs[I],
|
|
/*OnlyDeduced=*/false, Depth, Used);
|
|
}
|
|
|
|
void Sema::MarkDeducedTemplateParameters(
|
|
ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
|
|
llvm::SmallBitVector &Deduced) {
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
Deduced.clear();
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
|
|
true, TemplateParams->getDepth(), Deduced);
|
|
}
|
|
|
|
bool hasDeducibleTemplateParameters(Sema &S,
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
QualType T) {
|
|
if (!T->isDependentType())
|
|
return false;
|
|
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
llvm::SmallBitVector Deduced(TemplateParams->size());
|
|
::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
|
|
Deduced);
|
|
|
|
return Deduced.any();
|
|
}
|