mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-30 09:06:06 +00:00

Currently 'TypeSize' exposes two functions that serve the same purpose:
- getFixedSize / getFixedValue
- getKnownMinSize / getKnownMinValue
source : bf82070ea4/llvm/include/llvm/Support/TypeSize.h (L337-L338)
This patch offers to remove one of the two and stick to a single function in the code base.
Differential Revision: https://reviews.llvm.org/D141134
1242 lines
47 KiB
C++
1242 lines
47 KiB
C++
//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates local data store, LDS, uses from non-kernel functions.
|
|
// LDS is contiguous memory allocated per kernel execution.
|
|
//
|
|
// Background.
|
|
//
|
|
// The programming model is global variables, or equivalently function local
|
|
// static variables, accessible from kernels or other functions. For uses from
|
|
// kernels this is straightforward - assign an integer to the kernel for the
|
|
// memory required by all the variables combined, allocate them within that.
|
|
// For uses from functions there are performance tradeoffs to choose between.
|
|
//
|
|
// This model means the GPU runtime can specify the amount of memory allocated.
|
|
// If this is more than the kernel assumed, the excess can be made available
|
|
// using a language specific feature, which IR represents as a variable with
|
|
// no initializer. This feature is not yet implemented for non-kernel functions.
|
|
// This lowering could be extended to handle that use case, but would probably
|
|
// require closer integration with promoteAllocaToLDS.
|
|
//
|
|
// Consequences of this GPU feature:
|
|
// - memory is limited and exceeding it halts compilation
|
|
// - a global accessed by one kernel exists independent of other kernels
|
|
// - a global exists independent of simultaneous execution of the same kernel
|
|
// - the address of the global may be different from different kernels as they
|
|
// do not alias, which permits only allocating variables they use
|
|
// - if the address is allowed to differ, functions need help to find it
|
|
//
|
|
// Uses from kernels are implemented here by grouping them in a per-kernel
|
|
// struct instance. This duplicates the variables, accurately modelling their
|
|
// aliasing properties relative to a single global representation. It also
|
|
// permits control over alignment via padding.
|
|
//
|
|
// Uses from functions are more complicated and the primary purpose of this
|
|
// IR pass. Several different lowering are chosen between to meet requirements
|
|
// to avoid allocating any LDS where it is not necessary, as that impacts
|
|
// occupancy and may fail the compilation, while not imposing overhead on a
|
|
// feature whose primary advantage over global memory is performance. The basic
|
|
// design goal is to avoid one kernel imposing overhead on another.
|
|
//
|
|
// Implementation.
|
|
//
|
|
// LDS variables with constant annotation or non-undef initializer are passed
|
|
// through unchanged for simplification or error diagnostics in later passes.
|
|
// Non-undef initializers are not yet implemented for LDS.
|
|
//
|
|
// LDS variables that are always allocated at the same address can be found
|
|
// by lookup at that address. Otherwise runtime information/cost is required.
|
|
//
|
|
// The simplest strategy possible is to group all LDS variables in a single
|
|
// struct and allocate that struct in every kernel such that the original
|
|
// variables are always at the same address. LDS is however a limited resource
|
|
// so this strategy is unusable in practice. It is not implemented here.
|
|
//
|
|
// Strategy | Precise allocation | Zero runtime cost | General purpose |
|
|
// --------+--------------------+-------------------+-----------------+
|
|
// Module | No | Yes | Yes |
|
|
// Table | Yes | No | Yes |
|
|
// Kernel | Yes | Yes | No |
|
|
// Hybrid | Yes | Partial | Yes |
|
|
//
|
|
// Module spends LDS memory to save cycles. Table spends cycles and global
|
|
// memory to save LDS. Kernel is as fast as kernel allocation but only works
|
|
// for variables that are known reachable from a single kernel. Hybrid picks
|
|
// between all three. When forced to choose between LDS and cycles it minimises
|
|
// LDS use.
|
|
|
|
// The "module" lowering implemented here finds LDS variables which are used by
|
|
// non-kernel functions and creates a new struct with a field for each of those
|
|
// LDS variables. Variables that are only used from kernels are excluded.
|
|
// Kernels that do not use this struct are annoteated with the attribute
|
|
// amdgpu-elide-module-lds which allows the back end to elide the allocation.
|
|
//
|
|
// The "table" lowering implemented here has three components.
|
|
// First kernels are assigned a unique integer identifier which is available in
|
|
// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
|
|
// is passed through a specific SGPR, thus works with indirect calls.
|
|
// Second, each kernel allocates LDS variables independent of other kernels and
|
|
// writes the addresses it chose for each variable into an array in consistent
|
|
// order. If the kernel does not allocate a given variable, it writes undef to
|
|
// the corresponding array location. These arrays are written to a constant
|
|
// table in the order matching the kernel unique integer identifier.
|
|
// Third, uses from non-kernel functions are replaced with a table lookup using
|
|
// the intrinsic function to find the address of the variable.
|
|
//
|
|
// "Kernel" lowering is only applicable for variables that are unambiguously
|
|
// reachable from exactly one kernel. For those cases, accesses to the variable
|
|
// can be lowered to ConstantExpr address of a struct instance specific to that
|
|
// one kernel. This is zero cost in space and in compute. It will raise a fatal
|
|
// error on any variable that might be reachable from multiple kernels and is
|
|
// thus most easily used as part of the hybrid lowering strategy.
|
|
//
|
|
// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
|
|
// lowering where it can. It lowers the variable accessed by the greatest
|
|
// number of kernels using the module strategy as that is free for the first
|
|
// variable. Any futher variables that can be lowered with the module strategy
|
|
// without incurring LDS memory overhead are. The remaining ones are lowered
|
|
// via table.
|
|
//
|
|
// Consequences
|
|
// - No heuristics or user controlled magic numbers, hybrid is the right choice
|
|
// - Kernels that don't use functions (or have had them all inlined) are not
|
|
// affected by any lowering for kernels that do.
|
|
// - Kernels that don't make indirect function calls are not affected by those
|
|
// that do.
|
|
// - Variables which are used by lots of kernels, e.g. those injected by a
|
|
// language runtime in most kernels, are expected to have no overhead
|
|
// - Implementations that instantiate templates per-kernel where those templates
|
|
// use LDS are expected to hit the "Kernel" lowering strategy
|
|
// - The runtime properties impose a cost in compiler implementation complexity
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "Utils/AMDGPUMemoryUtils.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/OptimizedStructLayout.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#include <cstdio>
|
|
|
|
#define DEBUG_TYPE "amdgpu-lower-module-lds"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
cl::opt<bool> SuperAlignLDSGlobals(
|
|
"amdgpu-super-align-lds-globals",
|
|
cl::desc("Increase alignment of LDS if it is not on align boundary"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
enum class LoweringKind { module, table, kernel, hybrid };
|
|
cl::opt<LoweringKind> LoweringKindLoc(
|
|
"amdgpu-lower-module-lds-strategy",
|
|
cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
|
|
cl::init(LoweringKind::module),
|
|
cl::values(
|
|
clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
|
|
clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
|
|
clEnumValN(
|
|
LoweringKind::kernel, "kernel",
|
|
"Lower variables reachable from one kernel, otherwise abort"),
|
|
clEnumValN(LoweringKind::hybrid, "hybrid",
|
|
"Lower via mixture of above strategies")));
|
|
|
|
bool isKernelLDS(const Function *F) {
|
|
// Some weirdness here. AMDGPU::isKernelCC does not call into
|
|
// AMDGPU::isKernel with the calling conv, it instead calls into
|
|
// isModuleEntryFunction which returns true for more calling conventions
|
|
// than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
|
|
// There's also a test that checks that the LDS lowering does not hit on
|
|
// a graphics shader, denoted amdgpu_ps, so stay with the limited case.
|
|
// Putting LDS in the name of the function to draw attention to this.
|
|
return AMDGPU::isKernel(F->getCallingConv());
|
|
}
|
|
|
|
class AMDGPULowerModuleLDS : public ModulePass {
|
|
|
|
static void
|
|
removeLocalVarsFromUsedLists(Module &M,
|
|
const DenseSet<GlobalVariable *> &LocalVars) {
|
|
// The verifier rejects used lists containing an inttoptr of a constant
|
|
// so remove the variables from these lists before replaceAllUsesWith
|
|
SmallPtrSet<Constant *, 8> LocalVarsSet;
|
|
for (GlobalVariable *LocalVar : LocalVars)
|
|
LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
|
|
|
|
removeFromUsedLists(
|
|
M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
|
|
|
|
for (GlobalVariable *LocalVar : LocalVars)
|
|
LocalVar->removeDeadConstantUsers();
|
|
}
|
|
|
|
static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
|
|
GlobalVariable *SGV) {
|
|
// The llvm.amdgcn.module.lds instance is implicitly used by all kernels
|
|
// that might call a function which accesses a field within it. This is
|
|
// presently approximated to 'all kernels' if there are any such functions
|
|
// in the module. This implicit use is redefined as an explicit use here so
|
|
// that later passes, specifically PromoteAlloca, account for the required
|
|
// memory without any knowledge of this transform.
|
|
|
|
// An operand bundle on llvm.donothing works because the call instruction
|
|
// survives until after the last pass that needs to account for LDS. It is
|
|
// better than inline asm as the latter survives until the end of codegen. A
|
|
// totally robust solution would be a function with the same semantics as
|
|
// llvm.donothing that takes a pointer to the instance and is lowered to a
|
|
// no-op after LDS is allocated, but that is not presently necessary.
|
|
|
|
LLVMContext &Ctx = Func->getContext();
|
|
|
|
Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
|
|
|
|
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
|
|
|
|
Function *Decl =
|
|
Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
|
|
|
|
Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
|
|
SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
|
|
|
|
Builder.CreateCall(FTy, Decl, {},
|
|
{OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
|
|
"");
|
|
}
|
|
|
|
static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
|
|
// Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
|
|
// global may have uses from multiple different functions as a result.
|
|
// This pass specialises LDS variables with respect to the kernel that
|
|
// allocates them.
|
|
|
|
// This is semantically equivalent to:
|
|
// for (auto &F : M.functions())
|
|
// for (auto &BB : F)
|
|
// for (auto &I : BB)
|
|
// for (Use &Op : I.operands())
|
|
// if (constantExprUsesLDS(Op))
|
|
// replaceConstantExprInFunction(I, Op);
|
|
|
|
bool Changed = false;
|
|
|
|
// Find all ConstantExpr that are direct users of an LDS global
|
|
SmallVector<ConstantExpr *> Stack;
|
|
for (auto &GV : M.globals())
|
|
if (AMDGPU::isLDSVariableToLower(GV))
|
|
for (User *U : GV.users())
|
|
if (ConstantExpr *C = dyn_cast<ConstantExpr>(U))
|
|
Stack.push_back(C);
|
|
|
|
// Expand to include constexpr users of direct users
|
|
SetVector<ConstantExpr *> ConstExprUsersOfLDS;
|
|
while (!Stack.empty()) {
|
|
ConstantExpr *V = Stack.pop_back_val();
|
|
if (ConstExprUsersOfLDS.contains(V))
|
|
continue;
|
|
|
|
ConstExprUsersOfLDS.insert(V);
|
|
|
|
for (auto *Nested : V->users())
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Nested))
|
|
Stack.push_back(CE);
|
|
}
|
|
|
|
// Find all instructions that use any of the ConstExpr users of LDS
|
|
SetVector<Instruction *> InstructionWorklist;
|
|
for (ConstantExpr *CE : ConstExprUsersOfLDS)
|
|
for (User *U : CE->users())
|
|
if (auto *I = dyn_cast<Instruction>(U))
|
|
InstructionWorklist.insert(I);
|
|
|
|
// Replace those ConstExpr operands with instructions
|
|
while (!InstructionWorklist.empty()) {
|
|
Instruction *I = InstructionWorklist.pop_back_val();
|
|
for (Use &U : I->operands()) {
|
|
|
|
auto *BI = I;
|
|
if (auto *Phi = dyn_cast<PHINode>(I)) {
|
|
BasicBlock *BB = Phi->getIncomingBlock(U);
|
|
BasicBlock::iterator It = BB->getFirstInsertionPt();
|
|
assert(It != BB->end() && "Unexpected empty basic block");
|
|
BI = &(*(It));
|
|
}
|
|
|
|
if (ConstantExpr *C = dyn_cast<ConstantExpr>(U.get())) {
|
|
if (ConstExprUsersOfLDS.contains(C)) {
|
|
Changed = true;
|
|
Instruction *NI = C->getAsInstruction(BI);
|
|
InstructionWorklist.insert(NI);
|
|
U.set(NI);
|
|
C->removeDeadConstantUsers();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPULowerModuleLDS() : ModulePass(ID) {
|
|
initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
|
|
|
|
using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
|
|
|
|
static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
|
|
FunctionVariableMap &kernels,
|
|
FunctionVariableMap &functions) {
|
|
|
|
// Get uses from the current function, excluding uses by called functions
|
|
// Two output variables to avoid walking the globals list twice
|
|
for (auto &GV : M.globals()) {
|
|
if (!AMDGPU::isLDSVariableToLower(GV)) {
|
|
continue;
|
|
}
|
|
|
|
SmallVector<User *, 16> Stack(GV.users());
|
|
for (User *V : GV.users()) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
Function *F = I->getFunction();
|
|
if (isKernelLDS(F)) {
|
|
kernels[F].insert(&GV);
|
|
} else {
|
|
functions[F].insert(&GV);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct LDSUsesInfoTy {
|
|
FunctionVariableMap direct_access;
|
|
FunctionVariableMap indirect_access;
|
|
};
|
|
|
|
static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
|
|
|
|
FunctionVariableMap direct_map_kernel;
|
|
FunctionVariableMap direct_map_function;
|
|
getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
|
|
|
|
// Collect variables that are used by functions whose address has escaped
|
|
DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
|
|
for (Function &F : M.functions()) {
|
|
if (!isKernelLDS(&F))
|
|
if (F.hasAddressTaken(nullptr,
|
|
/* IgnoreCallbackUses */ false,
|
|
/* IgnoreAssumeLikeCalls */ false,
|
|
/* IgnoreLLVMUsed */ true,
|
|
/* IgnoreArcAttachedCall */ false)) {
|
|
set_union(VariablesReachableThroughFunctionPointer,
|
|
direct_map_function[&F]);
|
|
}
|
|
}
|
|
|
|
auto functionMakesUnknownCall = [&](const Function *F) -> bool {
|
|
assert(!F->isDeclaration());
|
|
for (CallGraphNode::CallRecord R : *CG[F]) {
|
|
if (!R.second->getFunction()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Work out which variables are reachable through function calls
|
|
FunctionVariableMap transitive_map_function = direct_map_function;
|
|
|
|
// If the function makes any unknown call, assume the worst case that it can
|
|
// access all variables accessed by functions whose address escaped
|
|
for (Function &F : M.functions()) {
|
|
if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
|
|
if (!isKernelLDS(&F)) {
|
|
set_union(transitive_map_function[&F],
|
|
VariablesReachableThroughFunctionPointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Direct implementation of collecting all variables reachable from each
|
|
// function
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || isKernelLDS(&Func))
|
|
continue;
|
|
|
|
DenseSet<Function *> seen; // catches cycles
|
|
SmallVector<Function *, 4> wip{&Func};
|
|
|
|
while (!wip.empty()) {
|
|
Function *F = wip.pop_back_val();
|
|
|
|
// Can accelerate this by referring to transitive map for functions that
|
|
// have already been computed, with more care than this
|
|
set_union(transitive_map_function[&Func], direct_map_function[F]);
|
|
|
|
for (CallGraphNode::CallRecord R : *CG[F]) {
|
|
Function *ith = R.second->getFunction();
|
|
if (ith) {
|
|
if (!seen.contains(ith)) {
|
|
seen.insert(ith);
|
|
wip.push_back(ith);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// direct_map_kernel lists which variables are used by the kernel
|
|
// find the variables which are used through a function call
|
|
FunctionVariableMap indirect_map_kernel;
|
|
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || !isKernelLDS(&Func))
|
|
continue;
|
|
|
|
for (CallGraphNode::CallRecord R : *CG[&Func]) {
|
|
Function *ith = R.second->getFunction();
|
|
if (ith) {
|
|
set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
|
|
} else {
|
|
set_union(indirect_map_kernel[&Func],
|
|
VariablesReachableThroughFunctionPointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
|
|
}
|
|
|
|
struct LDSVariableReplacement {
|
|
GlobalVariable *SGV = nullptr;
|
|
DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
|
|
};
|
|
|
|
// remap from lds global to a constantexpr gep to where it has been moved to
|
|
// for each kernel
|
|
// an array with an element for each kernel containing where the corresponding
|
|
// variable was remapped to
|
|
|
|
static Constant *getAddressesOfVariablesInKernel(
|
|
LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
|
|
DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
|
|
// Create a ConstantArray containing the address of each Variable within the
|
|
// kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
|
|
// does not allocate it
|
|
// TODO: Drop the ptrtoint conversion
|
|
|
|
Type *I32 = Type::getInt32Ty(Ctx);
|
|
|
|
ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
|
|
|
|
SmallVector<Constant *> Elements;
|
|
for (size_t i = 0; i < Variables.size(); i++) {
|
|
GlobalVariable *GV = Variables[i];
|
|
if (LDSVarsToConstantGEP.count(GV) != 0) {
|
|
auto elt = ConstantExpr::getPtrToInt(LDSVarsToConstantGEP[GV], I32);
|
|
Elements.push_back(elt);
|
|
} else {
|
|
Elements.push_back(PoisonValue::get(I32));
|
|
}
|
|
}
|
|
return ConstantArray::get(KernelOffsetsType, Elements);
|
|
}
|
|
|
|
static GlobalVariable *buildLookupTable(
|
|
Module &M, ArrayRef<GlobalVariable *> Variables,
|
|
ArrayRef<Function *> kernels,
|
|
DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
|
|
if (Variables.empty()) {
|
|
return nullptr;
|
|
}
|
|
LLVMContext &Ctx = M.getContext();
|
|
|
|
const size_t NumberVariables = Variables.size();
|
|
const size_t NumberKernels = kernels.size();
|
|
|
|
ArrayType *KernelOffsetsType =
|
|
ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
|
|
|
|
ArrayType *AllKernelsOffsetsType =
|
|
ArrayType::get(KernelOffsetsType, NumberKernels);
|
|
|
|
std::vector<Constant *> overallConstantExprElts(NumberKernels);
|
|
for (size_t i = 0; i < NumberKernels; i++) {
|
|
LDSVariableReplacement Replacement = KernelToReplacement[kernels[i]];
|
|
overallConstantExprElts[i] = getAddressesOfVariablesInKernel(
|
|
Ctx, Variables, Replacement.LDSVarsToConstantGEP);
|
|
}
|
|
|
|
Constant *init =
|
|
ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
|
|
|
|
return new GlobalVariable(
|
|
M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
|
|
"llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
|
|
AMDGPUAS::CONSTANT_ADDRESS);
|
|
}
|
|
|
|
void replaceUsesInInstructionsWithTableLookup(
|
|
Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
|
|
GlobalVariable *LookupTable) {
|
|
|
|
LLVMContext &Ctx = M.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
Type *I32 = Type::getInt32Ty(Ctx);
|
|
|
|
// Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
|
|
// lowers to a read from a live in register. Emit it once in the entry
|
|
// block to spare deduplicating it later.
|
|
|
|
DenseMap<Function *, Value *> tableKernelIndexCache;
|
|
auto getTableKernelIndex = [&](Function *F) -> Value * {
|
|
if (tableKernelIndexCache.count(F) == 0) {
|
|
LLVMContext &Ctx = M.getContext();
|
|
FunctionType *FTy = FunctionType::get(Type::getInt32Ty(Ctx), {});
|
|
Function *Decl =
|
|
Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
|
|
|
|
BasicBlock::iterator it =
|
|
F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
|
|
Instruction &i = *it;
|
|
Builder.SetInsertPoint(&i);
|
|
|
|
tableKernelIndexCache[F] = Builder.CreateCall(FTy, Decl, {});
|
|
}
|
|
|
|
return tableKernelIndexCache[F];
|
|
};
|
|
|
|
for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
|
|
auto *GV = ModuleScopeVariables[Index];
|
|
|
|
for (Use &U : make_early_inc_range(GV->uses())) {
|
|
auto *I = dyn_cast<Instruction>(U.getUser());
|
|
if (!I)
|
|
continue;
|
|
|
|
Value *tableKernelIndex = getTableKernelIndex(I->getFunction());
|
|
|
|
// So if the phi uses this value multiple times, what does this look
|
|
// like?
|
|
if (auto *Phi = dyn_cast<PHINode>(I)) {
|
|
BasicBlock *BB = Phi->getIncomingBlock(U);
|
|
Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
|
|
} else {
|
|
Builder.SetInsertPoint(I);
|
|
}
|
|
|
|
Value *GEPIdx[3] = {
|
|
ConstantInt::get(I32, 0),
|
|
tableKernelIndex,
|
|
ConstantInt::get(I32, Index),
|
|
};
|
|
|
|
Value *Address = Builder.CreateInBoundsGEP(
|
|
LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
|
|
|
|
Value *loaded = Builder.CreateLoad(I32, Address);
|
|
|
|
Value *replacement =
|
|
Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
|
|
|
|
U.set(replacement);
|
|
}
|
|
}
|
|
}
|
|
|
|
static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
|
|
Module &M, LDSUsesInfoTy &LDSUsesInfo,
|
|
DenseSet<GlobalVariable *> const &VariableSet) {
|
|
|
|
DenseSet<Function *> KernelSet;
|
|
|
|
if (VariableSet.empty()) return KernelSet;
|
|
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || !isKernelLDS(&Func))
|
|
continue;
|
|
for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
|
|
if (VariableSet.contains(GV)) {
|
|
KernelSet.insert(&Func);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return KernelSet;
|
|
}
|
|
|
|
static GlobalVariable *
|
|
chooseBestVariableForModuleStrategy(const DataLayout &DL,
|
|
VariableFunctionMap &LDSVars) {
|
|
// Find the global variable with the most indirect uses from kernels
|
|
|
|
struct CandidateTy {
|
|
GlobalVariable *GV = nullptr;
|
|
size_t UserCount = 0;
|
|
size_t Size = 0;
|
|
|
|
CandidateTy() = default;
|
|
|
|
CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
|
|
: GV(GV), UserCount(UserCount), Size(AllocSize) {}
|
|
|
|
bool operator<(const CandidateTy &Other) const {
|
|
// Fewer users makes module scope variable less attractive
|
|
if (UserCount < Other.UserCount) {
|
|
return true;
|
|
}
|
|
if (UserCount > Other.UserCount) {
|
|
return false;
|
|
}
|
|
|
|
// Bigger makes module scope variable less attractive
|
|
if (Size < Other.Size) {
|
|
return false;
|
|
}
|
|
|
|
if (Size > Other.Size) {
|
|
return true;
|
|
}
|
|
|
|
// Arbitrary but consistent
|
|
return GV->getName() < Other.GV->getName();
|
|
}
|
|
};
|
|
|
|
CandidateTy MostUsed;
|
|
|
|
for (auto &K : LDSVars) {
|
|
GlobalVariable *GV = K.first;
|
|
if (K.second.size() <= 1) {
|
|
// A variable reachable by only one kernel is best lowered with kernel
|
|
// strategy
|
|
continue;
|
|
}
|
|
CandidateTy Candidate(GV, K.second.size(),
|
|
DL.getTypeAllocSize(GV->getValueType()).getFixedSize());
|
|
if (MostUsed < Candidate)
|
|
MostUsed = Candidate;
|
|
}
|
|
|
|
return MostUsed.GV;
|
|
}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
LLVMContext &Ctx = M.getContext();
|
|
CallGraph CG = CallGraph(M);
|
|
bool Changed = superAlignLDSGlobals(M);
|
|
|
|
Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
|
|
|
|
Changed = true; // todo: narrow this down
|
|
|
|
// For each kernel, what variables does it access directly or through
|
|
// callees
|
|
LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
|
|
|
|
// For each variable accessed through callees, which kernels access it
|
|
VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
|
|
for (auto &K : LDSUsesInfo.indirect_access) {
|
|
Function *F = K.first;
|
|
assert(isKernelLDS(F));
|
|
for (GlobalVariable *GV : K.second) {
|
|
LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
|
|
}
|
|
}
|
|
|
|
// Partition variables into the different strategies
|
|
DenseSet<GlobalVariable *> ModuleScopeVariables;
|
|
DenseSet<GlobalVariable *> TableLookupVariables;
|
|
DenseSet<GlobalVariable *> KernelAccessVariables;
|
|
|
|
{
|
|
GlobalVariable *HybridModuleRoot =
|
|
LoweringKindLoc != LoweringKind::hybrid
|
|
? nullptr
|
|
: chooseBestVariableForModuleStrategy(
|
|
M.getDataLayout(),
|
|
LDSToKernelsThatNeedToAccessItIndirectly);
|
|
|
|
DenseSet<Function *> const EmptySet;
|
|
DenseSet<Function *> const &HybridModuleRootKernels =
|
|
HybridModuleRoot
|
|
? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
|
|
: EmptySet;
|
|
|
|
for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
|
|
// Each iteration of this loop assigns exactly one global variable to
|
|
// exactly one of the implementation strategies.
|
|
|
|
GlobalVariable *GV = K.first;
|
|
assert(AMDGPU::isLDSVariableToLower(*GV));
|
|
assert(K.second.size() != 0);
|
|
|
|
switch (LoweringKindLoc) {
|
|
case LoweringKind::module:
|
|
ModuleScopeVariables.insert(GV);
|
|
break;
|
|
|
|
case LoweringKind::table:
|
|
TableLookupVariables.insert(GV);
|
|
break;
|
|
|
|
case LoweringKind::kernel:
|
|
if (K.second.size() == 1) {
|
|
KernelAccessVariables.insert(GV);
|
|
} else {
|
|
report_fatal_error(
|
|
"cannot lower LDS '" + GV->getName() +
|
|
"' to kernel access as it is reachable from multiple kernels");
|
|
}
|
|
break;
|
|
|
|
case LoweringKind::hybrid: {
|
|
if (GV == HybridModuleRoot) {
|
|
assert(K.second.size() != 1);
|
|
ModuleScopeVariables.insert(GV);
|
|
} else if (K.second.size() == 1) {
|
|
KernelAccessVariables.insert(GV);
|
|
} else if (set_is_subset(K.second, HybridModuleRootKernels)) {
|
|
ModuleScopeVariables.insert(GV);
|
|
} else {
|
|
TableLookupVariables.insert(GV);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
|
|
KernelAccessVariables.size() ==
|
|
LDSToKernelsThatNeedToAccessItIndirectly.size());
|
|
} // Variables have now been partitioned into the three lowering strategies.
|
|
|
|
// If the kernel accesses a variable that is going to be stored in the
|
|
// module instance through a call then that kernel needs to allocate the
|
|
// module instance
|
|
DenseSet<Function *> KernelsThatAllocateModuleLDS =
|
|
kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
|
|
ModuleScopeVariables);
|
|
DenseSet<Function *> KernelsThatAllocateTableLDS =
|
|
kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
|
|
TableLookupVariables);
|
|
|
|
if (!ModuleScopeVariables.empty()) {
|
|
LDSVariableReplacement ModuleScopeReplacement =
|
|
createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
|
|
ModuleScopeVariables);
|
|
|
|
appendToCompilerUsed(M,
|
|
{static_cast<GlobalValue *>(
|
|
ConstantExpr::getPointerBitCastOrAddrSpaceCast(
|
|
cast<Constant>(ModuleScopeReplacement.SGV),
|
|
Type::getInt8PtrTy(Ctx)))});
|
|
|
|
// historic
|
|
removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
|
|
|
|
// Replace all uses of module scope variable from non-kernel functions
|
|
replaceLDSVariablesWithStruct(
|
|
M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
if (!I) {
|
|
return false;
|
|
}
|
|
Function *F = I->getFunction();
|
|
return !isKernelLDS(F);
|
|
});
|
|
|
|
// Replace uses of module scope variable from kernel functions that
|
|
// allocate the module scope variable, otherwise leave them unchanged
|
|
// Record on each kernel whether the module scope global is used by it
|
|
|
|
LLVMContext &Ctx = M.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || !isKernelLDS(&Func))
|
|
continue;
|
|
|
|
if (KernelsThatAllocateModuleLDS.contains(&Func)) {
|
|
replaceLDSVariablesWithStruct(
|
|
M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
if (!I) {
|
|
return false;
|
|
}
|
|
Function *F = I->getFunction();
|
|
return F == &Func;
|
|
});
|
|
|
|
markUsedByKernel(Builder, &Func, ModuleScopeReplacement.SGV);
|
|
|
|
} else {
|
|
Func.addFnAttr("amdgpu-elide-module-lds");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a struct for each kernel for the non-module-scope variables
|
|
DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration() || !isKernelLDS(&Func))
|
|
continue;
|
|
|
|
DenseSet<GlobalVariable *> KernelUsedVariables;
|
|
for (auto &v : LDSUsesInfo.direct_access[&Func]) {
|
|
KernelUsedVariables.insert(v);
|
|
}
|
|
for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
|
|
KernelUsedVariables.insert(v);
|
|
}
|
|
|
|
// Variables allocated in module lds must all resolve to that struct,
|
|
// not to the per-kernel instance.
|
|
if (KernelsThatAllocateModuleLDS.contains(&Func)) {
|
|
for (GlobalVariable *v : ModuleScopeVariables) {
|
|
KernelUsedVariables.erase(v);
|
|
}
|
|
}
|
|
|
|
if (KernelUsedVariables.empty()) {
|
|
// Either used no LDS, or all the LDS it used was also in module
|
|
continue;
|
|
}
|
|
|
|
// The association between kernel function and LDS struct is done by
|
|
// symbol name, which only works if the function in question has a
|
|
// name This is not expected to be a problem in practice as kernels
|
|
// are called by name making anonymous ones (which are named by the
|
|
// backend) difficult to use. This does mean that llvm test cases need
|
|
// to name the kernels.
|
|
if (!Func.hasName()) {
|
|
report_fatal_error("Anonymous kernels cannot use LDS variables");
|
|
}
|
|
|
|
std::string VarName =
|
|
(Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
|
|
|
|
auto Replacement =
|
|
createLDSVariableReplacement(M, VarName, KernelUsedVariables);
|
|
|
|
// remove preserves existing codegen
|
|
removeLocalVarsFromUsedLists(M, KernelUsedVariables);
|
|
KernelToReplacement[&Func] = Replacement;
|
|
|
|
// Rewrite uses within kernel to the new struct
|
|
replaceLDSVariablesWithStruct(
|
|
M, KernelUsedVariables, Replacement, [&Func](Use &U) {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
return I && I->getFunction() == &Func;
|
|
});
|
|
}
|
|
|
|
// Lower zero cost accesses to the kernel instances just created
|
|
for (auto &GV : KernelAccessVariables) {
|
|
auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
|
|
assert(funcs.size() == 1); // Only one kernel can access it
|
|
LDSVariableReplacement Replacement =
|
|
KernelToReplacement[*(funcs.begin())];
|
|
|
|
DenseSet<GlobalVariable *> Vec;
|
|
Vec.insert(GV);
|
|
|
|
replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
|
|
return isa<Instruction>(U.getUser());
|
|
});
|
|
}
|
|
|
|
if (!KernelsThatAllocateTableLDS.empty()) {
|
|
// Collect the kernels that allocate table lookup LDS
|
|
std::vector<Function *> OrderedKernels;
|
|
{
|
|
for (Function &Func : M.functions()) {
|
|
if (Func.isDeclaration())
|
|
continue;
|
|
if (!isKernelLDS(&Func))
|
|
continue;
|
|
|
|
if (KernelsThatAllocateTableLDS.contains(&Func)) {
|
|
assert(Func.hasName()); // else fatal error earlier
|
|
OrderedKernels.push_back(&Func);
|
|
}
|
|
}
|
|
|
|
// Put them in an arbitrary but reproducible order
|
|
llvm::sort(OrderedKernels.begin(), OrderedKernels.end(),
|
|
[](const Function *lhs, const Function *rhs) -> bool {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
|
|
// Annotate the kernels with their order in this vector
|
|
LLVMContext &Ctx = M.getContext();
|
|
IRBuilder<> Builder(Ctx);
|
|
|
|
if (OrderedKernels.size() > UINT32_MAX) {
|
|
// 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
|
|
report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
|
|
}
|
|
|
|
for (size_t i = 0; i < OrderedKernels.size(); i++) {
|
|
Metadata *AttrMDArgs[1] = {
|
|
ConstantAsMetadata::get(Builder.getInt32(i)),
|
|
};
|
|
OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
|
|
MDNode::get(Ctx, AttrMDArgs));
|
|
|
|
markUsedByKernel(Builder, OrderedKernels[i],
|
|
KernelToReplacement[OrderedKernels[i]].SGV);
|
|
}
|
|
}
|
|
|
|
// The order must be consistent between lookup table and accesses to
|
|
// lookup table
|
|
std::vector<GlobalVariable *> TableLookupVariablesOrdered(
|
|
TableLookupVariables.begin(), TableLookupVariables.end());
|
|
llvm::sort(TableLookupVariablesOrdered.begin(),
|
|
TableLookupVariablesOrdered.end(),
|
|
[](const GlobalVariable *lhs, const GlobalVariable *rhs) {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
|
|
GlobalVariable *LookupTable = buildLookupTable(
|
|
M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
|
|
replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
|
|
LookupTable);
|
|
}
|
|
|
|
for (auto &GV : make_early_inc_range(M.globals()))
|
|
if (AMDGPU::isLDSVariableToLower(GV)) {
|
|
|
|
// probably want to remove from used lists
|
|
GV.removeDeadConstantUsers();
|
|
if (GV.use_empty())
|
|
GV.eraseFromParent();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
private:
|
|
// Increase the alignment of LDS globals if necessary to maximise the chance
|
|
// that we can use aligned LDS instructions to access them.
|
|
static bool superAlignLDSGlobals(Module &M) {
|
|
const DataLayout &DL = M.getDataLayout();
|
|
bool Changed = false;
|
|
if (!SuperAlignLDSGlobals) {
|
|
return Changed;
|
|
}
|
|
|
|
for (auto &GV : M.globals()) {
|
|
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
|
|
// Only changing alignment of LDS variables
|
|
continue;
|
|
}
|
|
if (!GV.hasInitializer()) {
|
|
// cuda/hip extern __shared__ variable, leave alignment alone
|
|
continue;
|
|
}
|
|
|
|
Align Alignment = AMDGPU::getAlign(DL, &GV);
|
|
TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
|
|
|
|
if (GVSize > 8) {
|
|
// We might want to use a b96 or b128 load/store
|
|
Alignment = std::max(Alignment, Align(16));
|
|
} else if (GVSize > 4) {
|
|
// We might want to use a b64 load/store
|
|
Alignment = std::max(Alignment, Align(8));
|
|
} else if (GVSize > 2) {
|
|
// We might want to use a b32 load/store
|
|
Alignment = std::max(Alignment, Align(4));
|
|
} else if (GVSize > 1) {
|
|
// We might want to use a b16 load/store
|
|
Alignment = std::max(Alignment, Align(2));
|
|
}
|
|
|
|
if (Alignment != AMDGPU::getAlign(DL, &GV)) {
|
|
Changed = true;
|
|
GV.setAlignment(Alignment);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
static LDSVariableReplacement createLDSVariableReplacement(
|
|
Module &M, std::string VarName,
|
|
DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
|
|
// Create a struct instance containing LDSVarsToTransform and map from those
|
|
// variables to ConstantExprGEP
|
|
// Variables may be introduced to meet alignment requirements. No aliasing
|
|
// metadata is useful for these as they have no uses. Erased before return.
|
|
|
|
LLVMContext &Ctx = M.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
assert(!LDSVarsToTransform.empty());
|
|
|
|
SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
|
|
LayoutFields.reserve(LDSVarsToTransform.size());
|
|
{
|
|
// The order of fields in this struct depends on the order of
|
|
// varables in the argument which varies when changing how they
|
|
// are identified, leading to spurious test breakage.
|
|
std::vector<GlobalVariable *> Sorted(LDSVarsToTransform.begin(),
|
|
LDSVarsToTransform.end());
|
|
llvm::sort(Sorted.begin(), Sorted.end(),
|
|
[](const GlobalVariable *lhs, const GlobalVariable *rhs) {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
for (GlobalVariable *GV : Sorted) {
|
|
OptimizedStructLayoutField F(GV,
|
|
DL.getTypeAllocSize(GV->getValueType()),
|
|
AMDGPU::getAlign(DL, GV));
|
|
LayoutFields.emplace_back(F);
|
|
}
|
|
}
|
|
|
|
performOptimizedStructLayout(LayoutFields);
|
|
|
|
std::vector<GlobalVariable *> LocalVars;
|
|
BitVector IsPaddingField;
|
|
LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
|
|
IsPaddingField.reserve(LDSVarsToTransform.size());
|
|
{
|
|
uint64_t CurrentOffset = 0;
|
|
for (size_t I = 0; I < LayoutFields.size(); I++) {
|
|
GlobalVariable *FGV = static_cast<GlobalVariable *>(
|
|
const_cast<void *>(LayoutFields[I].Id));
|
|
Align DataAlign = LayoutFields[I].Alignment;
|
|
|
|
uint64_t DataAlignV = DataAlign.value();
|
|
if (uint64_t Rem = CurrentOffset % DataAlignV) {
|
|
uint64_t Padding = DataAlignV - Rem;
|
|
|
|
// Append an array of padding bytes to meet alignment requested
|
|
// Note (o + (a - (o % a)) ) % a == 0
|
|
// (offset + Padding ) % align == 0
|
|
|
|
Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
|
|
LocalVars.push_back(new GlobalVariable(
|
|
M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
|
|
"", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
|
|
false));
|
|
IsPaddingField.push_back(true);
|
|
CurrentOffset += Padding;
|
|
}
|
|
|
|
LocalVars.push_back(FGV);
|
|
IsPaddingField.push_back(false);
|
|
CurrentOffset += LayoutFields[I].Size;
|
|
}
|
|
}
|
|
|
|
std::vector<Type *> LocalVarTypes;
|
|
LocalVarTypes.reserve(LocalVars.size());
|
|
std::transform(
|
|
LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
|
|
[](const GlobalVariable *V) -> Type * { return V->getValueType(); });
|
|
|
|
StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
|
|
|
|
Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
|
|
|
|
GlobalVariable *SGV = new GlobalVariable(
|
|
M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
|
|
VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
|
|
false);
|
|
SGV->setAlignment(StructAlign);
|
|
|
|
DenseMap<GlobalVariable *, Constant *> Map;
|
|
Type *I32 = Type::getInt32Ty(Ctx);
|
|
for (size_t I = 0; I < LocalVars.size(); I++) {
|
|
GlobalVariable *GV = LocalVars[I];
|
|
Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
|
|
Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
|
|
if (IsPaddingField[I]) {
|
|
assert(GV->use_empty());
|
|
GV->eraseFromParent();
|
|
} else {
|
|
Map[GV] = GEP;
|
|
}
|
|
}
|
|
assert(Map.size() == LDSVarsToTransform.size());
|
|
return {SGV, std::move(Map)};
|
|
}
|
|
|
|
template <typename PredicateTy>
|
|
void replaceLDSVariablesWithStruct(
|
|
Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
|
|
LDSVariableReplacement Replacement, PredicateTy Predicate) {
|
|
LLVMContext &Ctx = M.getContext();
|
|
const DataLayout &DL = M.getDataLayout();
|
|
|
|
// A hack... we need to insert the aliasing info in a predictable order for
|
|
// lit tests. Would like to have them in a stable order already, ideally the
|
|
// same order they get allocated, which might mean an ordered set container
|
|
std::vector<GlobalVariable *> LDSVarsToTransform(
|
|
LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end());
|
|
llvm::sort(LDSVarsToTransform.begin(), LDSVarsToTransform.end(),
|
|
[](const GlobalVariable *lhs, const GlobalVariable *rhs) {
|
|
return lhs->getName() < rhs->getName();
|
|
});
|
|
|
|
// Create alias.scope and their lists. Each field in the new structure
|
|
// does not alias with all other fields.
|
|
SmallVector<MDNode *> AliasScopes;
|
|
SmallVector<Metadata *> NoAliasList;
|
|
const size_t NumberVars = LDSVarsToTransform.size();
|
|
if (NumberVars > 1) {
|
|
MDBuilder MDB(Ctx);
|
|
AliasScopes.reserve(NumberVars);
|
|
MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
|
|
for (size_t I = 0; I < NumberVars; I++) {
|
|
MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
|
|
AliasScopes.push_back(Scope);
|
|
}
|
|
NoAliasList.append(&AliasScopes[1], AliasScopes.end());
|
|
}
|
|
|
|
// Replace uses of ith variable with a constantexpr to the corresponding
|
|
// field of the instance that will be allocated by AMDGPUMachineFunction
|
|
for (size_t I = 0; I < NumberVars; I++) {
|
|
GlobalVariable *GV = LDSVarsToTransform[I];
|
|
Constant *GEP = Replacement.LDSVarsToConstantGEP[GV];
|
|
|
|
GV->replaceUsesWithIf(GEP, Predicate);
|
|
|
|
APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
|
|
GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
|
|
uint64_t Offset = APOff.getZExtValue();
|
|
|
|
Align A =
|
|
commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
|
|
|
|
if (I)
|
|
NoAliasList[I - 1] = AliasScopes[I - 1];
|
|
MDNode *NoAlias =
|
|
NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
|
|
MDNode *AliasScope =
|
|
AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
|
|
|
|
refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
|
|
}
|
|
}
|
|
|
|
void refineUsesAlignmentAndAA(Value *Ptr, Align A, const DataLayout &DL,
|
|
MDNode *AliasScope, MDNode *NoAlias,
|
|
unsigned MaxDepth = 5) {
|
|
if (!MaxDepth || (A == 1 && !AliasScope))
|
|
return;
|
|
|
|
for (User *U : Ptr->users()) {
|
|
if (auto *I = dyn_cast<Instruction>(U)) {
|
|
if (AliasScope && I->mayReadOrWriteMemory()) {
|
|
MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
|
|
AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
|
|
: AliasScope);
|
|
I->setMetadata(LLVMContext::MD_alias_scope, AS);
|
|
|
|
MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
|
|
NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
|
|
I->setMetadata(LLVMContext::MD_noalias, NA);
|
|
}
|
|
}
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(U)) {
|
|
LI->setAlignment(std::max(A, LI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *SI = dyn_cast<StoreInst>(U)) {
|
|
if (SI->getPointerOperand() == Ptr)
|
|
SI->setAlignment(std::max(A, SI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
|
|
// None of atomicrmw operations can work on pointers, but let's
|
|
// check it anyway in case it will or we will process ConstantExpr.
|
|
if (AI->getPointerOperand() == Ptr)
|
|
AI->setAlignment(std::max(A, AI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
|
|
if (AI->getPointerOperand() == Ptr)
|
|
AI->setAlignment(std::max(A, AI->getAlign()));
|
|
continue;
|
|
}
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
|
|
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
|
|
APInt Off(BitWidth, 0);
|
|
if (GEP->getPointerOperand() == Ptr) {
|
|
Align GA;
|
|
if (GEP->accumulateConstantOffset(DL, Off))
|
|
GA = commonAlignment(A, Off.getLimitedValue());
|
|
refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
|
|
MaxDepth - 1);
|
|
}
|
|
continue;
|
|
}
|
|
if (auto *I = dyn_cast<Instruction>(U)) {
|
|
if (I->getOpcode() == Instruction::BitCast ||
|
|
I->getOpcode() == Instruction::AddrSpaceCast)
|
|
refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
char AMDGPULowerModuleLDS::ID = 0;
|
|
|
|
char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
|
|
|
|
INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
|
|
"Lower uses of LDS variables from non-kernel functions", false,
|
|
false)
|
|
|
|
ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
|
|
return new AMDGPULowerModuleLDS();
|
|
}
|
|
|
|
PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
|
|
ModuleAnalysisManager &) {
|
|
return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}
|