mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 09:06:06 +00:00

Currently 'TypeSize' exposes two functions that serve the same purpose:
- getFixedSize / getFixedValue
- getKnownMinSize / getKnownMinValue
source : bf82070ea4/llvm/include/llvm/Support/TypeSize.h (L337-L338)
This patch offers to remove one of the two and stick to a single function in the code base.
Differential Revision: https://reviews.llvm.org/D141134
855 lines
32 KiB
C++
855 lines
32 KiB
C++
//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass promotes "by reference" arguments to be "by value" arguments. In
|
|
// practice, this means looking for internal functions that have pointer
|
|
// arguments. If it can prove, through the use of alias analysis, that an
|
|
// argument is *only* loaded, then it can pass the value into the function
|
|
// instead of the address of the value. This can cause recursive simplification
|
|
// of code and lead to the elimination of allocas (especially in C++ template
|
|
// code like the STL).
|
|
//
|
|
// This pass also handles aggregate arguments that are passed into a function,
|
|
// scalarizing them if the elements of the aggregate are only loaded. Note that
|
|
// by default it refuses to scalarize aggregates which would require passing in
|
|
// more than three operands to the function, because passing thousands of
|
|
// operands for a large array or structure is unprofitable! This limit can be
|
|
// configured or disabled, however.
|
|
//
|
|
// Note that this transformation could also be done for arguments that are only
|
|
// stored to (returning the value instead), but does not currently. This case
|
|
// would be best handled when and if LLVM begins supporting multiple return
|
|
// values from functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/ArgumentPromotion.h"
|
|
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/NoFolder.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "argpromotion"
|
|
|
|
STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
|
|
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
|
|
|
|
namespace {
|
|
|
|
struct ArgPart {
|
|
Type *Ty;
|
|
Align Alignment;
|
|
/// A representative guaranteed-executed load or store instruction for use by
|
|
/// metadata transfer.
|
|
Instruction *MustExecInstr;
|
|
};
|
|
|
|
using OffsetAndArgPart = std::pair<int64_t, ArgPart>;
|
|
|
|
} // end anonymous namespace
|
|
|
|
static Value *createByteGEP(IRBuilderBase &IRB, const DataLayout &DL,
|
|
Value *Ptr, Type *ResElemTy, int64_t Offset) {
|
|
// For non-opaque pointers, try to create a "nice" GEP if possible, otherwise
|
|
// fall back to an i8 GEP to a specific offset.
|
|
unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
|
|
APInt OrigOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
|
|
if (!Ptr->getType()->isOpaquePointerTy()) {
|
|
Type *OrigElemTy = Ptr->getType()->getNonOpaquePointerElementType();
|
|
if (OrigOffset == 0 && OrigElemTy == ResElemTy)
|
|
return Ptr;
|
|
|
|
if (OrigElemTy->isSized()) {
|
|
APInt TmpOffset = OrigOffset;
|
|
Type *TmpTy = OrigElemTy;
|
|
SmallVector<APInt> IntIndices =
|
|
DL.getGEPIndicesForOffset(TmpTy, TmpOffset);
|
|
if (TmpOffset == 0) {
|
|
// Try to add trailing zero indices to reach the right type.
|
|
while (TmpTy != ResElemTy) {
|
|
Type *NextTy = GetElementPtrInst::getTypeAtIndex(TmpTy, (uint64_t)0);
|
|
if (!NextTy)
|
|
break;
|
|
|
|
IntIndices.push_back(APInt::getZero(
|
|
isa<StructType>(TmpTy) ? 32 : OrigOffset.getBitWidth()));
|
|
TmpTy = NextTy;
|
|
}
|
|
|
|
SmallVector<Value *> Indices;
|
|
for (const APInt &Index : IntIndices)
|
|
Indices.push_back(IRB.getInt(Index));
|
|
|
|
if (OrigOffset != 0 || TmpTy == ResElemTy) {
|
|
Ptr = IRB.CreateGEP(OrigElemTy, Ptr, Indices);
|
|
return IRB.CreateBitCast(Ptr, ResElemTy->getPointerTo(AddrSpace));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (OrigOffset != 0) {
|
|
Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(AddrSpace));
|
|
Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(OrigOffset));
|
|
}
|
|
return IRB.CreateBitCast(Ptr, ResElemTy->getPointerTo(AddrSpace));
|
|
}
|
|
|
|
/// DoPromotion - This method actually performs the promotion of the specified
|
|
/// arguments, and returns the new function. At this point, we know that it's
|
|
/// safe to do so.
|
|
static Function *
|
|
doPromotion(Function *F, FunctionAnalysisManager &FAM,
|
|
const DenseMap<Argument *, SmallVector<OffsetAndArgPart, 4>>
|
|
&ArgsToPromote) {
|
|
// Start by computing a new prototype for the function, which is the same as
|
|
// the old function, but has modified arguments.
|
|
FunctionType *FTy = F->getFunctionType();
|
|
std::vector<Type *> Params;
|
|
|
|
// Attribute - Keep track of the parameter attributes for the arguments
|
|
// that we are *not* promoting. For the ones that we do promote, the parameter
|
|
// attributes are lost
|
|
SmallVector<AttributeSet, 8> ArgAttrVec;
|
|
AttributeList PAL = F->getAttributes();
|
|
|
|
// First, determine the new argument list
|
|
unsigned ArgNo = 0;
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
|
|
++I, ++ArgNo) {
|
|
if (!ArgsToPromote.count(&*I)) {
|
|
// Unchanged argument
|
|
Params.push_back(I->getType());
|
|
ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
|
|
} else if (I->use_empty()) {
|
|
// Dead argument (which are always marked as promotable)
|
|
++NumArgumentsDead;
|
|
} else {
|
|
const auto &ArgParts = ArgsToPromote.find(&*I)->second;
|
|
for (const auto &Pair : ArgParts) {
|
|
Params.push_back(Pair.second.Ty);
|
|
ArgAttrVec.push_back(AttributeSet());
|
|
}
|
|
++NumArgumentsPromoted;
|
|
}
|
|
}
|
|
|
|
Type *RetTy = FTy->getReturnType();
|
|
|
|
// Construct the new function type using the new arguments.
|
|
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
|
|
|
|
// Create the new function body and insert it into the module.
|
|
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
|
|
F->getName());
|
|
NF->copyAttributesFrom(F);
|
|
NF->copyMetadata(F, 0);
|
|
|
|
// The new function will have the !dbg metadata copied from the original
|
|
// function. The original function may not be deleted, and dbg metadata need
|
|
// to be unique, so we need to drop it.
|
|
F->setSubprogram(nullptr);
|
|
|
|
LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
|
|
<< "From: " << *F);
|
|
|
|
uint64_t LargestVectorWidth = 0;
|
|
for (auto *I : Params)
|
|
if (auto *VT = dyn_cast<llvm::VectorType>(I))
|
|
LargestVectorWidth = std::max(
|
|
LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinSize());
|
|
|
|
// Recompute the parameter attributes list based on the new arguments for
|
|
// the function.
|
|
NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
|
|
PAL.getRetAttrs(), ArgAttrVec));
|
|
AttributeFuncs::updateMinLegalVectorWidthAttr(*NF, LargestVectorWidth);
|
|
ArgAttrVec.clear();
|
|
|
|
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
|
|
NF->takeName(F);
|
|
|
|
// Loop over all the callers of the function, transforming the call sites to
|
|
// pass in the loaded pointers.
|
|
SmallVector<Value *, 16> Args;
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
while (!F->use_empty()) {
|
|
CallBase &CB = cast<CallBase>(*F->user_back());
|
|
assert(CB.getCalledFunction() == F);
|
|
const AttributeList &CallPAL = CB.getAttributes();
|
|
IRBuilder<NoFolder> IRB(&CB);
|
|
|
|
// Loop over the operands, inserting GEP and loads in the caller as
|
|
// appropriate.
|
|
auto *AI = CB.arg_begin();
|
|
ArgNo = 0;
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
|
|
++I, ++AI, ++ArgNo) {
|
|
if (!ArgsToPromote.count(&*I)) {
|
|
Args.push_back(*AI); // Unmodified argument
|
|
ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
|
|
} else if (!I->use_empty()) {
|
|
Value *V = *AI;
|
|
const auto &ArgParts = ArgsToPromote.find(&*I)->second;
|
|
for (const auto &Pair : ArgParts) {
|
|
LoadInst *LI = IRB.CreateAlignedLoad(
|
|
Pair.second.Ty,
|
|
createByteGEP(IRB, DL, V, Pair.second.Ty, Pair.first),
|
|
Pair.second.Alignment, V->getName() + ".val");
|
|
if (Pair.second.MustExecInstr) {
|
|
LI->setAAMetadata(Pair.second.MustExecInstr->getAAMetadata());
|
|
LI->copyMetadata(*Pair.second.MustExecInstr,
|
|
{LLVMContext::MD_range, LLVMContext::MD_nonnull,
|
|
LLVMContext::MD_dereferenceable,
|
|
LLVMContext::MD_dereferenceable_or_null,
|
|
LLVMContext::MD_align, LLVMContext::MD_noundef,
|
|
LLVMContext::MD_nontemporal});
|
|
}
|
|
Args.push_back(LI);
|
|
ArgAttrVec.push_back(AttributeSet());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Push any varargs arguments on the list.
|
|
for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
|
|
Args.push_back(*AI);
|
|
ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
|
|
}
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
CB.getOperandBundlesAsDefs(OpBundles);
|
|
|
|
CallBase *NewCS = nullptr;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
|
|
NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
|
|
Args, OpBundles, "", &CB);
|
|
} else {
|
|
auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
|
|
NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
|
|
NewCS = NewCall;
|
|
}
|
|
NewCS->setCallingConv(CB.getCallingConv());
|
|
NewCS->setAttributes(AttributeList::get(F->getContext(),
|
|
CallPAL.getFnAttrs(),
|
|
CallPAL.getRetAttrs(), ArgAttrVec));
|
|
NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
|
|
Args.clear();
|
|
ArgAttrVec.clear();
|
|
|
|
AttributeFuncs::updateMinLegalVectorWidthAttr(*CB.getCaller(),
|
|
LargestVectorWidth);
|
|
|
|
if (!CB.use_empty()) {
|
|
CB.replaceAllUsesWith(NewCS);
|
|
NewCS->takeName(&CB);
|
|
}
|
|
|
|
// Finally, remove the old call from the program, reducing the use-count of
|
|
// F.
|
|
CB.eraseFromParent();
|
|
}
|
|
|
|
// Since we have now created the new function, splice the body of the old
|
|
// function right into the new function, leaving the old rotting hulk of the
|
|
// function empty.
|
|
NF->splice(NF->begin(), F);
|
|
|
|
// We will collect all the new created allocas to promote them into registers
|
|
// after the following loop
|
|
SmallVector<AllocaInst *, 4> Allocas;
|
|
|
|
// Loop over the argument list, transferring uses of the old arguments over to
|
|
// the new arguments, also transferring over the names as well.
|
|
Function::arg_iterator I2 = NF->arg_begin();
|
|
for (Argument &Arg : F->args()) {
|
|
if (!ArgsToPromote.count(&Arg)) {
|
|
// If this is an unmodified argument, move the name and users over to the
|
|
// new version.
|
|
Arg.replaceAllUsesWith(&*I2);
|
|
I2->takeName(&Arg);
|
|
++I2;
|
|
continue;
|
|
}
|
|
|
|
// There potentially are metadata uses for things like llvm.dbg.value.
|
|
// Replace them with undef, after handling the other regular uses.
|
|
auto RauwUndefMetadata = make_scope_exit(
|
|
[&]() { Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); });
|
|
|
|
if (Arg.use_empty())
|
|
continue;
|
|
|
|
// Otherwise, if we promoted this argument, we have to create an alloca in
|
|
// the callee for every promotable part and store each of the new incoming
|
|
// arguments into the corresponding alloca, what lets the old code (the
|
|
// store instructions if they are allowed especially) a chance to work as
|
|
// before.
|
|
assert(Arg.getType()->isPointerTy() &&
|
|
"Only arguments with a pointer type are promotable");
|
|
|
|
IRBuilder<NoFolder> IRB(&NF->begin()->front());
|
|
|
|
// Add only the promoted elements, so parts from ArgsToPromote
|
|
SmallDenseMap<int64_t, AllocaInst *> OffsetToAlloca;
|
|
for (const auto &Pair : ArgsToPromote.find(&Arg)->second) {
|
|
int64_t Offset = Pair.first;
|
|
const ArgPart &Part = Pair.second;
|
|
|
|
Argument *NewArg = I2++;
|
|
NewArg->setName(Arg.getName() + "." + Twine(Offset) + ".val");
|
|
|
|
AllocaInst *NewAlloca = IRB.CreateAlloca(
|
|
Part.Ty, nullptr, Arg.getName() + "." + Twine(Offset) + ".allc");
|
|
NewAlloca->setAlignment(Pair.second.Alignment);
|
|
IRB.CreateAlignedStore(NewArg, NewAlloca, Pair.second.Alignment);
|
|
|
|
// Collect the alloca to retarget the users to
|
|
OffsetToAlloca.insert({Offset, NewAlloca});
|
|
}
|
|
|
|
auto GetAlloca = [&](Value *Ptr) {
|
|
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
|
|
Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
|
|
/* AllowNonInbounds */ true);
|
|
assert(Ptr == &Arg && "Not constant offset from arg?");
|
|
return OffsetToAlloca.lookup(Offset.getSExtValue());
|
|
};
|
|
|
|
// Cleanup the code from the dead instructions: GEPs and BitCasts in between
|
|
// the original argument and its users: loads and stores. Retarget every
|
|
// user to the new created alloca.
|
|
SmallVector<Value *, 16> Worklist;
|
|
SmallVector<Instruction *, 16> DeadInsts;
|
|
append_range(Worklist, Arg.users());
|
|
while (!Worklist.empty()) {
|
|
Value *V = Worklist.pop_back_val();
|
|
if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V)) {
|
|
DeadInsts.push_back(cast<Instruction>(V));
|
|
append_range(Worklist, V->users());
|
|
continue;
|
|
}
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(V)) {
|
|
Value *Ptr = LI->getPointerOperand();
|
|
LI->setOperand(LoadInst::getPointerOperandIndex(), GetAlloca(Ptr));
|
|
continue;
|
|
}
|
|
|
|
if (auto *SI = dyn_cast<StoreInst>(V)) {
|
|
assert(!SI->isVolatile() && "Volatile operations can't be promoted.");
|
|
Value *Ptr = SI->getPointerOperand();
|
|
SI->setOperand(StoreInst::getPointerOperandIndex(), GetAlloca(Ptr));
|
|
continue;
|
|
}
|
|
|
|
llvm_unreachable("Unexpected user");
|
|
}
|
|
|
|
for (Instruction *I : DeadInsts) {
|
|
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
// Collect the allocas for promotion
|
|
for (const auto &Pair : OffsetToAlloca) {
|
|
assert(isAllocaPromotable(Pair.second) &&
|
|
"By design, only promotable allocas should be produced.");
|
|
Allocas.push_back(Pair.second);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARG PROMOTION: " << Allocas.size()
|
|
<< " alloca(s) are promotable by Mem2Reg\n");
|
|
|
|
if (!Allocas.empty()) {
|
|
// And we are able to call the `promoteMemoryToRegister()` function.
|
|
// Our earlier checks have ensured that PromoteMemToReg() will
|
|
// succeed.
|
|
auto &DT = FAM.getResult<DominatorTreeAnalysis>(*NF);
|
|
auto &AC = FAM.getResult<AssumptionAnalysis>(*NF);
|
|
PromoteMemToReg(Allocas, DT, &AC);
|
|
}
|
|
|
|
return NF;
|
|
}
|
|
|
|
/// Return true if we can prove that all callees pass in a valid pointer for the
|
|
/// specified function argument.
|
|
static bool allCallersPassValidPointerForArgument(Argument *Arg,
|
|
Align NeededAlign,
|
|
uint64_t NeededDerefBytes) {
|
|
Function *Callee = Arg->getParent();
|
|
const DataLayout &DL = Callee->getParent()->getDataLayout();
|
|
APInt Bytes(64, NeededDerefBytes);
|
|
|
|
// Check if the argument itself is marked dereferenceable and aligned.
|
|
if (isDereferenceableAndAlignedPointer(Arg, NeededAlign, Bytes, DL))
|
|
return true;
|
|
|
|
// Look at all call sites of the function. At this point we know we only have
|
|
// direct callees.
|
|
return all_of(Callee->users(), [&](User *U) {
|
|
CallBase &CB = cast<CallBase>(*U);
|
|
return isDereferenceableAndAlignedPointer(CB.getArgOperand(Arg->getArgNo()),
|
|
NeededAlign, Bytes, DL);
|
|
});
|
|
}
|
|
|
|
/// Determine that this argument is safe to promote, and find the argument
|
|
/// parts it can be promoted into.
|
|
static bool findArgParts(Argument *Arg, const DataLayout &DL, AAResults &AAR,
|
|
unsigned MaxElements, bool IsRecursive,
|
|
SmallVectorImpl<OffsetAndArgPart> &ArgPartsVec) {
|
|
// Quick exit for unused arguments
|
|
if (Arg->use_empty())
|
|
return true;
|
|
|
|
// We can only promote this argument if all the uses are loads at known
|
|
// offsets.
|
|
//
|
|
// Promoting the argument causes it to be loaded in the caller
|
|
// unconditionally. This is only safe if we can prove that either the load
|
|
// would have happened in the callee anyway (ie, there is a load in the entry
|
|
// block) or the pointer passed in at every call site is guaranteed to be
|
|
// valid.
|
|
// In the former case, invalid loads can happen, but would have happened
|
|
// anyway, in the latter case, invalid loads won't happen. This prevents us
|
|
// from introducing an invalid load that wouldn't have happened in the
|
|
// original code.
|
|
|
|
SmallDenseMap<int64_t, ArgPart, 4> ArgParts;
|
|
Align NeededAlign(1);
|
|
uint64_t NeededDerefBytes = 0;
|
|
|
|
// And if this is a byval argument we also allow to have store instructions.
|
|
// Only handle in such way arguments with specified alignment;
|
|
// if it's unspecified, the actual alignment of the argument is
|
|
// target-specific.
|
|
bool AreStoresAllowed = Arg->getParamByValType() && Arg->getParamAlign();
|
|
|
|
// An end user of a pointer argument is a load or store instruction.
|
|
// Returns std::nullopt if this load or store is not based on the argument.
|
|
// Return true if we can promote the instruction, false otherwise.
|
|
auto HandleEndUser = [&](auto *I, Type *Ty,
|
|
bool GuaranteedToExecute) -> std::optional<bool> {
|
|
// Don't promote volatile or atomic instructions.
|
|
if (!I->isSimple())
|
|
return false;
|
|
|
|
Value *Ptr = I->getPointerOperand();
|
|
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
|
|
Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
|
|
/* AllowNonInbounds */ true);
|
|
if (Ptr != Arg)
|
|
return std::nullopt;
|
|
|
|
if (Offset.getSignificantBits() >= 64)
|
|
return false;
|
|
|
|
TypeSize Size = DL.getTypeStoreSize(Ty);
|
|
// Don't try to promote scalable types.
|
|
if (Size.isScalable())
|
|
return false;
|
|
|
|
// If this is a recursive function and one of the types is a pointer,
|
|
// then promoting it might lead to recursive promotion.
|
|
if (IsRecursive && Ty->isPointerTy())
|
|
return false;
|
|
|
|
int64_t Off = Offset.getSExtValue();
|
|
auto Pair = ArgParts.try_emplace(
|
|
Off, ArgPart{Ty, I->getAlign(), GuaranteedToExecute ? I : nullptr});
|
|
ArgPart &Part = Pair.first->second;
|
|
bool OffsetNotSeenBefore = Pair.second;
|
|
|
|
// We limit promotion to only promoting up to a fixed number of elements of
|
|
// the aggregate.
|
|
if (MaxElements > 0 && ArgParts.size() > MaxElements) {
|
|
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
|
|
<< "more than " << MaxElements << " parts\n");
|
|
return false;
|
|
}
|
|
|
|
// For now, we only support loading/storing one specific type at a given
|
|
// offset.
|
|
if (Part.Ty != Ty) {
|
|
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
|
|
<< "accessed as both " << *Part.Ty << " and " << *Ty
|
|
<< " at offset " << Off << "\n");
|
|
return false;
|
|
}
|
|
|
|
// If this instruction is not guaranteed to execute, and we haven't seen a
|
|
// load or store at this offset before (or it had lower alignment), then we
|
|
// need to remember that requirement.
|
|
// Note that skipping instructions of previously seen offsets is only
|
|
// correct because we only allow a single type for a given offset, which
|
|
// also means that the number of accessed bytes will be the same.
|
|
if (!GuaranteedToExecute &&
|
|
(OffsetNotSeenBefore || Part.Alignment < I->getAlign())) {
|
|
// We won't be able to prove dereferenceability for negative offsets.
|
|
if (Off < 0)
|
|
return false;
|
|
|
|
// If the offset is not aligned, an aligned base pointer won't help.
|
|
if (!isAligned(I->getAlign(), Off))
|
|
return false;
|
|
|
|
NeededDerefBytes = std::max(NeededDerefBytes, Off + Size.getFixedSize());
|
|
NeededAlign = std::max(NeededAlign, I->getAlign());
|
|
}
|
|
|
|
Part.Alignment = std::max(Part.Alignment, I->getAlign());
|
|
return true;
|
|
};
|
|
|
|
// Look for loads and stores that are guaranteed to execute on entry.
|
|
for (Instruction &I : Arg->getParent()->getEntryBlock()) {
|
|
std::optional<bool> Res{};
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I))
|
|
Res = HandleEndUser(LI, LI->getType(), /* GuaranteedToExecute */ true);
|
|
else if (StoreInst *SI = dyn_cast<StoreInst>(&I))
|
|
Res = HandleEndUser(SI, SI->getValueOperand()->getType(),
|
|
/* GuaranteedToExecute */ true);
|
|
if (Res && !*Res)
|
|
return false;
|
|
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
|
|
break;
|
|
}
|
|
|
|
// Now look at all loads of the argument. Remember the load instructions
|
|
// for the aliasing check below.
|
|
SmallVector<const Use *, 16> Worklist;
|
|
SmallPtrSet<const Use *, 16> Visited;
|
|
SmallVector<LoadInst *, 16> Loads;
|
|
auto AppendUses = [&](const Value *V) {
|
|
for (const Use &U : V->uses())
|
|
if (Visited.insert(&U).second)
|
|
Worklist.push_back(&U);
|
|
};
|
|
AppendUses(Arg);
|
|
while (!Worklist.empty()) {
|
|
const Use *U = Worklist.pop_back_val();
|
|
Value *V = U->getUser();
|
|
if (isa<BitCastInst>(V)) {
|
|
AppendUses(V);
|
|
continue;
|
|
}
|
|
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
|
|
if (!GEP->hasAllConstantIndices())
|
|
return false;
|
|
AppendUses(V);
|
|
continue;
|
|
}
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(V)) {
|
|
if (!*HandleEndUser(LI, LI->getType(), /* GuaranteedToExecute */ false))
|
|
return false;
|
|
Loads.push_back(LI);
|
|
continue;
|
|
}
|
|
|
|
// Stores are allowed for byval arguments
|
|
auto *SI = dyn_cast<StoreInst>(V);
|
|
if (AreStoresAllowed && SI &&
|
|
U->getOperandNo() == StoreInst::getPointerOperandIndex()) {
|
|
if (!*HandleEndUser(SI, SI->getValueOperand()->getType(),
|
|
/* GuaranteedToExecute */ false))
|
|
return false;
|
|
continue;
|
|
// Only stores TO the argument is allowed, all the other stores are
|
|
// unknown users
|
|
}
|
|
|
|
// Unknown user.
|
|
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
|
|
<< "unknown user " << *V << "\n");
|
|
return false;
|
|
}
|
|
|
|
if (NeededDerefBytes || NeededAlign > 1) {
|
|
// Try to prove a required deref / aligned requirement.
|
|
if (!allCallersPassValidPointerForArgument(Arg, NeededAlign,
|
|
NeededDerefBytes)) {
|
|
LLVM_DEBUG(dbgs() << "ArgPromotion of " << *Arg << " failed: "
|
|
<< "not dereferenceable or aligned\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (ArgParts.empty())
|
|
return true; // No users, this is a dead argument.
|
|
|
|
// Sort parts by offset.
|
|
append_range(ArgPartsVec, ArgParts);
|
|
sort(ArgPartsVec, llvm::less_first());
|
|
|
|
// Make sure the parts are non-overlapping.
|
|
int64_t Offset = ArgPartsVec[0].first;
|
|
for (const auto &Pair : ArgPartsVec) {
|
|
if (Pair.first < Offset)
|
|
return false; // Overlap with previous part.
|
|
|
|
Offset = Pair.first + DL.getTypeStoreSize(Pair.second.Ty);
|
|
}
|
|
|
|
// If store instructions are allowed, the path from the entry of the function
|
|
// to each load may be not free of instructions that potentially invalidate
|
|
// the load, and this is an admissible situation.
|
|
if (AreStoresAllowed)
|
|
return true;
|
|
|
|
// Okay, now we know that the argument is only used by load instructions, and
|
|
// it is safe to unconditionally perform all of them. Use alias analysis to
|
|
// check to see if the pointer is guaranteed to not be modified from entry of
|
|
// the function to each of the load instructions.
|
|
|
|
// Because there could be several/many load instructions, remember which
|
|
// blocks we know to be transparent to the load.
|
|
df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
|
|
|
|
for (LoadInst *Load : Loads) {
|
|
// Check to see if the load is invalidated from the start of the block to
|
|
// the load itself.
|
|
BasicBlock *BB = Load->getParent();
|
|
|
|
MemoryLocation Loc = MemoryLocation::get(Load);
|
|
if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
|
|
return false; // Pointer is invalidated!
|
|
|
|
// Now check every path from the entry block to the load for transparency.
|
|
// To do this, we perform a depth first search on the inverse CFG from the
|
|
// loading block.
|
|
for (BasicBlock *P : predecessors(BB)) {
|
|
for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
|
|
if (AAR.canBasicBlockModify(*TranspBB, Loc))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the path from the entry of the function to each load is free of
|
|
// instructions that potentially invalidate the load, we can make the
|
|
// transformation!
|
|
return true;
|
|
}
|
|
|
|
/// Check if callers and callee agree on how promoted arguments would be
|
|
/// passed.
|
|
static bool areTypesABICompatible(ArrayRef<Type *> Types, const Function &F,
|
|
const TargetTransformInfo &TTI) {
|
|
return all_of(F.uses(), [&](const Use &U) {
|
|
CallBase *CB = dyn_cast<CallBase>(U.getUser());
|
|
if (!CB)
|
|
return false;
|
|
|
|
const Function *Caller = CB->getCaller();
|
|
const Function *Callee = CB->getCalledFunction();
|
|
return TTI.areTypesABICompatible(Caller, Callee, Types);
|
|
});
|
|
}
|
|
|
|
/// PromoteArguments - This method checks the specified function to see if there
|
|
/// are any promotable arguments and if it is safe to promote the function (for
|
|
/// example, all callers are direct). If safe to promote some arguments, it
|
|
/// calls the DoPromotion method.
|
|
static Function *promoteArguments(Function *F, FunctionAnalysisManager &FAM,
|
|
unsigned MaxElements, bool IsRecursive) {
|
|
// Don't perform argument promotion for naked functions; otherwise we can end
|
|
// up removing parameters that are seemingly 'not used' as they are referred
|
|
// to in the assembly.
|
|
if (F->hasFnAttribute(Attribute::Naked))
|
|
return nullptr;
|
|
|
|
// Make sure that it is local to this module.
|
|
if (!F->hasLocalLinkage())
|
|
return nullptr;
|
|
|
|
// Don't promote arguments for variadic functions. Adding, removing, or
|
|
// changing non-pack parameters can change the classification of pack
|
|
// parameters. Frontends encode that classification at the call site in the
|
|
// IR, while in the callee the classification is determined dynamically based
|
|
// on the number of registers consumed so far.
|
|
if (F->isVarArg())
|
|
return nullptr;
|
|
|
|
// Don't transform functions that receive inallocas, as the transformation may
|
|
// not be safe depending on calling convention.
|
|
if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
|
|
return nullptr;
|
|
|
|
// First check: see if there are any pointer arguments! If not, quick exit.
|
|
SmallVector<Argument *, 16> PointerArgs;
|
|
for (Argument &I : F->args())
|
|
if (I.getType()->isPointerTy())
|
|
PointerArgs.push_back(&I);
|
|
if (PointerArgs.empty())
|
|
return nullptr;
|
|
|
|
// Second check: make sure that all callers are direct callers. We can't
|
|
// transform functions that have indirect callers. Also see if the function
|
|
// is self-recursive.
|
|
for (Use &U : F->uses()) {
|
|
CallBase *CB = dyn_cast<CallBase>(U.getUser());
|
|
// Must be a direct call.
|
|
if (CB == nullptr || !CB->isCallee(&U) ||
|
|
CB->getFunctionType() != F->getFunctionType())
|
|
return nullptr;
|
|
|
|
// Can't change signature of musttail callee
|
|
if (CB->isMustTailCall())
|
|
return nullptr;
|
|
|
|
if (CB->getFunction() == F)
|
|
IsRecursive = true;
|
|
}
|
|
|
|
// Can't change signature of musttail caller
|
|
// FIXME: Support promoting whole chain of musttail functions
|
|
for (BasicBlock &BB : *F)
|
|
if (BB.getTerminatingMustTailCall())
|
|
return nullptr;
|
|
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
auto &AAR = FAM.getResult<AAManager>(*F);
|
|
const auto &TTI = FAM.getResult<TargetIRAnalysis>(*F);
|
|
|
|
// Check to see which arguments are promotable. If an argument is promotable,
|
|
// add it to ArgsToPromote.
|
|
DenseMap<Argument *, SmallVector<OffsetAndArgPart, 4>> ArgsToPromote;
|
|
for (Argument *PtrArg : PointerArgs) {
|
|
// Replace sret attribute with noalias. This reduces register pressure by
|
|
// avoiding a register copy.
|
|
if (PtrArg->hasStructRetAttr()) {
|
|
unsigned ArgNo = PtrArg->getArgNo();
|
|
F->removeParamAttr(ArgNo, Attribute::StructRet);
|
|
F->addParamAttr(ArgNo, Attribute::NoAlias);
|
|
for (Use &U : F->uses()) {
|
|
CallBase &CB = cast<CallBase>(*U.getUser());
|
|
CB.removeParamAttr(ArgNo, Attribute::StructRet);
|
|
CB.addParamAttr(ArgNo, Attribute::NoAlias);
|
|
}
|
|
}
|
|
|
|
// If we can promote the pointer to its value.
|
|
SmallVector<OffsetAndArgPart, 4> ArgParts;
|
|
|
|
if (findArgParts(PtrArg, DL, AAR, MaxElements, IsRecursive, ArgParts)) {
|
|
SmallVector<Type *, 4> Types;
|
|
for (const auto &Pair : ArgParts)
|
|
Types.push_back(Pair.second.Ty);
|
|
|
|
if (areTypesABICompatible(Types, *F, TTI)) {
|
|
ArgsToPromote.insert({PtrArg, std::move(ArgParts)});
|
|
}
|
|
}
|
|
}
|
|
|
|
// No promotable pointer arguments.
|
|
if (ArgsToPromote.empty())
|
|
return nullptr;
|
|
|
|
return doPromotion(F, FAM, ArgsToPromote);
|
|
}
|
|
|
|
PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
bool Changed = false, LocalChange;
|
|
|
|
// Iterate until we stop promoting from this SCC.
|
|
do {
|
|
LocalChange = false;
|
|
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
|
|
bool IsRecursive = C.size() > 1;
|
|
for (LazyCallGraph::Node &N : C) {
|
|
Function &OldF = N.getFunction();
|
|
Function *NewF = promoteArguments(&OldF, FAM, MaxElements, IsRecursive);
|
|
if (!NewF)
|
|
continue;
|
|
LocalChange = true;
|
|
|
|
// Directly substitute the functions in the call graph. Note that this
|
|
// requires the old function to be completely dead and completely
|
|
// replaced by the new function. It does no call graph updates, it merely
|
|
// swaps out the particular function mapped to a particular node in the
|
|
// graph.
|
|
C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
|
|
FAM.clear(OldF, OldF.getName());
|
|
OldF.eraseFromParent();
|
|
|
|
PreservedAnalyses FuncPA;
|
|
FuncPA.preserveSet<CFGAnalyses>();
|
|
for (auto *U : NewF->users()) {
|
|
auto *UserF = cast<CallBase>(U)->getFunction();
|
|
FAM.invalidate(*UserF, FuncPA);
|
|
}
|
|
}
|
|
|
|
Changed |= LocalChange;
|
|
} while (LocalChange);
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
// We've cleared out analyses for deleted functions.
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
// We've manually invalidated analyses for functions we've modified.
|
|
PA.preserveSet<AllAnalysesOn<Function>>();
|
|
return PA;
|
|
}
|