llvm-project/mlir/lib/IR/OperationSupport.cpp
River Riddle df00e466da [mlir] Move the operation equivalence out of CSE and into OperationSupport
This provides a general hash and comparison for checking if two operations are equivalent. This revision also optimizes the handling of result types to take advantage of how result types are stored on the operation.

Differential Revision: https://reviews.llvm.org/D79029
2020-04-29 16:48:15 -07:00

473 lines
18 KiB
C++

//===- OperationSupport.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains out-of-line implementations of the support types that
// Operation and related classes build on top of.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/StandardTypes.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// OperationState
//===----------------------------------------------------------------------===//
OperationState::OperationState(Location location, StringRef name)
: location(location), name(name, location->getContext()) {}
OperationState::OperationState(Location location, OperationName name)
: location(location), name(name) {}
OperationState::OperationState(Location location, StringRef name,
ValueRange operands, ArrayRef<Type> types,
ArrayRef<NamedAttribute> attributes,
ArrayRef<Block *> successors,
MutableArrayRef<std::unique_ptr<Region>> regions)
: location(location), name(name, location->getContext()),
operands(operands.begin(), operands.end()),
types(types.begin(), types.end()),
attributes(attributes.begin(), attributes.end()),
successors(successors.begin(), successors.end()) {
for (std::unique_ptr<Region> &r : regions)
this->regions.push_back(std::move(r));
}
void OperationState::addOperands(ValueRange newOperands) {
operands.append(newOperands.begin(), newOperands.end());
}
void OperationState::addSuccessors(SuccessorRange newSuccessors) {
successors.append(newSuccessors.begin(), newSuccessors.end());
}
Region *OperationState::addRegion() {
regions.emplace_back(new Region);
return regions.back().get();
}
void OperationState::addRegion(std::unique_ptr<Region> &&region) {
regions.push_back(std::move(region));
}
//===----------------------------------------------------------------------===//
// OperandStorage
//===----------------------------------------------------------------------===//
detail::OperandStorage::OperandStorage(Operation *owner, ValueRange values)
: representation(0) {
auto &inlineStorage = getInlineStorage();
inlineStorage.numOperands = inlineStorage.capacity = values.size();
auto *operandPtrBegin = getTrailingObjects<OpOperand>();
for (unsigned i = 0, e = inlineStorage.numOperands; i < e; ++i)
new (&operandPtrBegin[i]) OpOperand(owner, values[i]);
}
detail::OperandStorage::~OperandStorage() {
// Destruct the current storage container.
if (isDynamicStorage()) {
TrailingOperandStorage &storage = getDynamicStorage();
storage.~TrailingOperandStorage();
free(&storage);
} else {
getInlineStorage().~TrailingOperandStorage();
}
}
/// Replace the operands contained in the storage with the ones provided in
/// 'values'.
void detail::OperandStorage::setOperands(Operation *owner, ValueRange values) {
MutableArrayRef<OpOperand> storageOperands = resize(owner, values.size());
for (unsigned i = 0, e = values.size(); i != e; ++i)
storageOperands[i].set(values[i]);
}
/// Replace the operands beginning at 'start' and ending at 'start' + 'length'
/// with the ones provided in 'operands'. 'operands' may be smaller or larger
/// than the range pointed to by 'start'+'length'.
void detail::OperandStorage::setOperands(Operation *owner, unsigned start,
unsigned length, ValueRange operands) {
// If the new size is the same, we can update inplace.
unsigned newSize = operands.size();
if (newSize == length) {
MutableArrayRef<OpOperand> storageOperands = getOperands();
for (unsigned i = 0, e = length; i != e; ++i)
storageOperands[start + i].set(operands[i]);
return;
}
// If the new size is greater, remove the extra operands and set the rest
// inplace.
if (newSize < length) {
eraseOperands(start + operands.size(), length - newSize);
setOperands(owner, start, newSize, operands);
return;
}
// Otherwise, the new size is greater so we need to grow the storage.
auto storageOperands = resize(owner, size() + (newSize - length));
// Shift operands to the right to make space for the new operands.
unsigned rotateSize = storageOperands.size() - (start + length);
auto rbegin = storageOperands.rbegin();
std::rotate(rbegin, std::next(rbegin, newSize - length), rbegin + rotateSize);
// Update the operands inplace.
for (unsigned i = 0, e = operands.size(); i != e; ++i)
storageOperands[start + i].set(operands[i]);
}
/// Erase an operand held by the storage.
void detail::OperandStorage::eraseOperands(unsigned start, unsigned length) {
TrailingOperandStorage &storage = getStorage();
MutableArrayRef<OpOperand> operands = storage.getOperands();
assert((start + length) <= operands.size());
storage.numOperands -= length;
// Shift all operands down if the operand to remove is not at the end.
if (start != storage.numOperands) {
auto indexIt = std::next(operands.begin(), start);
std::rotate(indexIt, std::next(indexIt, length), operands.end());
}
for (unsigned i = 0; i != length; ++i)
operands[storage.numOperands + i].~OpOperand();
}
/// Resize the storage to the given size. Returns the array containing the new
/// operands.
MutableArrayRef<OpOperand> detail::OperandStorage::resize(Operation *owner,
unsigned newSize) {
TrailingOperandStorage &storage = getStorage();
// If the number of operands is less than or equal to the current amount, we
// can just update in place.
unsigned &numOperands = storage.numOperands;
MutableArrayRef<OpOperand> operands = storage.getOperands();
if (newSize <= numOperands) {
// If the number of new size is less than the current, remove any extra
// operands.
for (unsigned i = newSize; i != numOperands; ++i)
operands[i].~OpOperand();
numOperands = newSize;
return operands.take_front(newSize);
}
// If the new size is within the original inline capacity, grow inplace.
if (newSize <= storage.capacity) {
OpOperand *opBegin = operands.data();
for (unsigned e = newSize; numOperands != e; ++numOperands)
new (&opBegin[numOperands]) OpOperand(owner);
return MutableArrayRef<OpOperand>(opBegin, newSize);
}
// Otherwise, we need to allocate a new storage.
unsigned newCapacity =
std::max(unsigned(llvm::NextPowerOf2(storage.capacity + 2)), newSize);
auto *newStorageMem =
malloc(TrailingOperandStorage::totalSizeToAlloc<OpOperand>(newCapacity));
auto *newStorage = ::new (newStorageMem) TrailingOperandStorage();
newStorage->numOperands = newSize;
newStorage->capacity = newCapacity;
// Move the current operands to the new storage.
MutableArrayRef<OpOperand> newOperands = newStorage->getOperands();
std::uninitialized_copy(std::make_move_iterator(operands.begin()),
std::make_move_iterator(operands.end()),
newOperands.begin());
// Destroy the original operands.
for (auto &operand : operands)
operand.~OpOperand();
// Initialize any new operands.
for (unsigned e = newSize; numOperands != e; ++numOperands)
new (&newOperands[numOperands]) OpOperand(owner);
// If the current storage is also dynamic, free it.
if (isDynamicStorage())
free(&storage);
// Update the storage representation to use the new dynamic storage.
representation = reinterpret_cast<intptr_t>(newStorage);
representation |= DynamicStorageBit;
return newOperands;
}
//===----------------------------------------------------------------------===//
// ResultStorage
//===----------------------------------------------------------------------===//
/// Returns the parent operation of this trailing result.
Operation *detail::TrailingOpResult::getOwner() {
// We need to do some arithmetic to get the operation pointer. Move the
// trailing owner to the start of the array.
TrailingOpResult *trailingIt = this - trailingResultNumber;
// Move the owner past the inline op results to get to the operation.
auto *inlineResultIt = reinterpret_cast<InLineOpResult *>(trailingIt) -
OpResult::getMaxInlineResults();
return reinterpret_cast<Operation *>(inlineResultIt) - 1;
}
//===----------------------------------------------------------------------===//
// Operation Value-Iterators
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// TypeRange
TypeRange::TypeRange(ArrayRef<Type> types)
: TypeRange(types.data(), types.size()) {}
TypeRange::TypeRange(OperandRange values)
: TypeRange(values.begin().getBase(), values.size()) {}
TypeRange::TypeRange(ResultRange values)
: TypeRange(values.getBase()->getResultTypes().slice(values.getStartIndex(),
values.size())) {}
TypeRange::TypeRange(ArrayRef<Value> values)
: TypeRange(values.data(), values.size()) {}
TypeRange::TypeRange(ValueRange values) : TypeRange(OwnerT(), values.size()) {
detail::ValueRangeOwner owner = values.begin().getBase();
if (auto *op = reinterpret_cast<Operation *>(owner.ptr.dyn_cast<void *>()))
this->base = op->getResultTypes().drop_front(owner.startIndex).data();
else if (auto *operand = owner.ptr.dyn_cast<OpOperand *>())
this->base = operand;
else
this->base = owner.ptr.get<const Value *>();
}
/// See `llvm::detail::indexed_accessor_range_base` for details.
TypeRange::OwnerT TypeRange::offset_base(OwnerT object, ptrdiff_t index) {
if (auto *value = object.dyn_cast<const Value *>())
return {value + index};
if (auto *operand = object.dyn_cast<OpOperand *>())
return {operand + index};
return {object.dyn_cast<const Type *>() + index};
}
/// See `llvm::detail::indexed_accessor_range_base` for details.
Type TypeRange::dereference_iterator(OwnerT object, ptrdiff_t index) {
if (auto *value = object.dyn_cast<const Value *>())
return (value + index)->getType();
if (auto *operand = object.dyn_cast<OpOperand *>())
return (operand + index)->get().getType();
return object.dyn_cast<const Type *>()[index];
}
//===----------------------------------------------------------------------===//
// OperandRange
OperandRange::OperandRange(Operation *op)
: OperandRange(op->getOpOperands().data(), op->getNumOperands()) {}
/// Return the operand index of the first element of this range. The range
/// must not be empty.
unsigned OperandRange::getBeginOperandIndex() const {
assert(!empty() && "range must not be empty");
return base->getOperandNumber();
}
//===----------------------------------------------------------------------===//
// MutableOperandRange
/// Construct a new mutable range from the given operand, operand start index,
/// and range length.
MutableOperandRange::MutableOperandRange(
Operation *owner, unsigned start, unsigned length,
ArrayRef<OperandSegment> operandSegments)
: owner(owner), start(start), length(length),
operandSegments(operandSegments.begin(), operandSegments.end()) {
assert((start + length) <= owner->getNumOperands() && "invalid range");
}
MutableOperandRange::MutableOperandRange(Operation *owner)
: MutableOperandRange(owner, /*start=*/0, owner->getNumOperands()) {}
/// Append the given values to the range.
void MutableOperandRange::append(ValueRange values) {
if (values.empty())
return;
owner->insertOperands(start + length, values);
updateLength(length + values.size());
}
/// Assign this range to the given values.
void MutableOperandRange::assign(ValueRange values) {
owner->setOperands(start, length, values);
if (length != values.size())
updateLength(/*newLength=*/values.size());
}
/// Assign the range to the given value.
void MutableOperandRange::assign(Value value) {
if (length == 1) {
owner->setOperand(start, value);
} else {
owner->setOperands(start, length, value);
updateLength(/*newLength=*/1);
}
}
/// Erase the operands within the given sub-range.
void MutableOperandRange::erase(unsigned subStart, unsigned subLen) {
assert((subStart + subLen) <= length && "invalid sub-range");
if (length == 0)
return;
owner->eraseOperands(start + subStart, subLen);
updateLength(length - subLen);
}
/// Clear this range and erase all of the operands.
void MutableOperandRange::clear() {
if (length != 0) {
owner->eraseOperands(start, length);
updateLength(/*newLength=*/0);
}
}
/// Allow implicit conversion to an OperandRange.
MutableOperandRange::operator OperandRange() const {
return owner->getOperands().slice(start, length);
}
/// Update the length of this range to the one provided.
void MutableOperandRange::updateLength(unsigned newLength) {
int32_t diff = int32_t(newLength) - int32_t(length);
length = newLength;
// Update any of the provided segment attributes.
for (OperandSegment &segment : operandSegments) {
auto attr = segment.second.second.cast<DenseIntElementsAttr>();
SmallVector<int32_t, 8> segments(attr.getValues<int32_t>());
segments[segment.first] += diff;
segment.second.second = DenseIntElementsAttr::get(attr.getType(), segments);
owner->setAttr(segment.second.first, segment.second.second);
}
}
//===----------------------------------------------------------------------===//
// ResultRange
ResultRange::ResultRange(Operation *op)
: ResultRange(op, /*startIndex=*/0, op->getNumResults()) {}
ArrayRef<Type> ResultRange::getTypes() const {
return getBase()->getResultTypes().slice(getStartIndex(), size());
}
/// See `llvm::indexed_accessor_range` for details.
OpResult ResultRange::dereference(Operation *op, ptrdiff_t index) {
return op->getResult(index);
}
//===----------------------------------------------------------------------===//
// ValueRange
ValueRange::ValueRange(ArrayRef<Value> values)
: ValueRange(values.data(), values.size()) {}
ValueRange::ValueRange(OperandRange values)
: ValueRange(values.begin().getBase(), values.size()) {}
ValueRange::ValueRange(ResultRange values)
: ValueRange(
{values.getBase(), static_cast<unsigned>(values.getStartIndex())},
values.size()) {}
/// See `llvm::detail::indexed_accessor_range_base` for details.
ValueRange::OwnerT ValueRange::offset_base(const OwnerT &owner,
ptrdiff_t index) {
if (auto *value = owner.ptr.dyn_cast<const Value *>())
return {value + index};
if (auto *operand = owner.ptr.dyn_cast<OpOperand *>())
return {operand + index};
Operation *operation = reinterpret_cast<Operation *>(owner.ptr.get<void *>());
return {operation, owner.startIndex + static_cast<unsigned>(index)};
}
/// See `llvm::detail::indexed_accessor_range_base` for details.
Value ValueRange::dereference_iterator(const OwnerT &owner, ptrdiff_t index) {
if (auto *value = owner.ptr.dyn_cast<const Value *>())
return value[index];
if (auto *operand = owner.ptr.dyn_cast<OpOperand *>())
return operand[index].get();
Operation *operation = reinterpret_cast<Operation *>(owner.ptr.get<void *>());
return operation->getResult(owner.startIndex + index);
}
//===----------------------------------------------------------------------===//
// Operation Equivalency
//===----------------------------------------------------------------------===//
llvm::hash_code OperationEquivalence::computeHash(Operation *op) {
// Hash operations based upon their:
// - Operation Name
// - Attributes
llvm::hash_code hash = llvm::hash_combine(
op->getName(), op->getMutableAttrDict().getDictionary());
// - Result Types
ArrayRef<Type> resultTypes = op->getResultTypes();
switch (resultTypes.size()) {
case 0:
// We don't need to add anything to the hash.
break;
case 1:
// Add in the result type.
hash = llvm::hash_combine(hash, resultTypes.front());
break;
default:
// Use the type buffer as the hash, as we can guarantee it is the same for
// any given range of result types. This takes advantage of the fact the
// result types >1 are stored in a TupleType and uniqued.
hash = llvm::hash_combine(hash, resultTypes.data());
break;
}
// - Operands
// TODO: Allow commutative operations to have different ordering.
return llvm::hash_combine(
hash, llvm::hash_combine_range(op->operand_begin(), op->operand_end()));
}
bool OperationEquivalence::isEquivalentTo(Operation *lhs, Operation *rhs) {
if (lhs == rhs)
return true;
// Compare the operation name.
if (lhs->getName() != rhs->getName())
return false;
// Check operand counts.
if (lhs->getNumOperands() != rhs->getNumOperands())
return false;
// Compare attributes.
if (lhs->getMutableAttrDict() != rhs->getMutableAttrDict())
return false;
// Compare result types.
ArrayRef<Type> lhsResultTypes = lhs->getResultTypes();
ArrayRef<Type> rhsResultTypes = rhs->getResultTypes();
if (lhsResultTypes.size() != rhsResultTypes.size())
return false;
switch (lhsResultTypes.size()) {
case 0:
break;
case 1:
// Compare the single result type.
if (lhsResultTypes.front() != rhsResultTypes.front())
return false;
break;
default:
// Use the type buffer for the comparison, as we can guarantee it is the
// same for any given range of result types. This takes advantage of the
// fact the result types >1 are stored in a TupleType and uniqued.
if (lhsResultTypes.data() != rhsResultTypes.data())
return false;
break;
}
// Compare operands.
// TODO: Allow commutative operations to have different ordering.
return std::equal(lhs->operand_begin(), lhs->operand_end(),
rhs->operand_begin());
}