llvm-project/flang/runtime/derived.cpp
jeanPerier 0d0bd3ef55
[flang] Deep copy nested allocatable components in transformational (#81736)
Spread, reshape, pack, and other transformational intrinsic runtimes are
using `CopyElement` utility to copy elements. This utility was dealing
with deep copies, but only when the allocatable components where
"immediate" components of the type being copied. If the allocatable
components were nested inside a nonpointer/nonallocatable component,
they were not deep copied, leading to bugs later when manipulating the
value (or double free when applying #81117).

Visit data components with allocatable components (using the
noDestructionNeeded flag to avoid expensive and useless type visit when
there are no such components).
2024-02-15 09:05:33 +01:00

353 lines
15 KiB
C++

//===-- runtime/derived.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "derived.h"
#include "stat.h"
#include "terminator.h"
#include "tools.h"
#include "type-info.h"
#include "flang/Runtime/descriptor.h"
namespace Fortran::runtime {
RT_OFFLOAD_API_GROUP_BEGIN
// Fill "extents" array with the extents of component "comp" from derived type
// instance "derivedInstance".
static RT_API_ATTRS void GetComponentExtents(SubscriptValue (&extents)[maxRank],
const typeInfo::Component &comp, const Descriptor &derivedInstance) {
const typeInfo::Value *bounds{comp.bounds()};
for (int dim{0}; dim < comp.rank(); ++dim) {
SubscriptValue lb{bounds[2 * dim].GetValue(&derivedInstance).value_or(0)};
SubscriptValue ub{
bounds[2 * dim + 1].GetValue(&derivedInstance).value_or(0)};
extents[dim] = ub >= lb ? ub - lb + 1 : 0;
}
}
RT_API_ATTRS int Initialize(const Descriptor &instance,
const typeInfo::DerivedType &derived, Terminator &terminator, bool hasStat,
const Descriptor *errMsg) {
const Descriptor &componentDesc{derived.component()};
std::size_t elements{instance.Elements()};
int stat{StatOk};
// Initialize data components in each element; the per-element iterations
// constitute the inner loops, not the outer ones
std::size_t myComponents{componentDesc.Elements()};
for (std::size_t k{0}; k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
SubscriptValue at[maxRank];
instance.GetLowerBounds(at);
if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
Descriptor &allocDesc{
*instance.ElementComponent<Descriptor>(at, comp.offset())};
comp.EstablishDescriptor(allocDesc, instance, terminator);
allocDesc.raw().attribute = CFI_attribute_allocatable;
if (comp.genre() == typeInfo::Component::Genre::Automatic) {
stat = ReturnError(terminator, allocDesc.Allocate(), errMsg, hasStat);
if (stat == StatOk) {
if (const DescriptorAddendum * addendum{allocDesc.Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noInitializationNeeded()) {
stat = Initialize(
allocDesc, *derived, terminator, hasStat, errMsg);
}
}
}
}
if (stat != StatOk) {
break;
}
}
}
} else if (const void *init{comp.initialization()}) {
// Explicit initialization of data pointers and
// non-allocatable non-automatic components
std::size_t bytes{comp.SizeInBytes(instance)};
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
char *ptr{instance.ElementComponent<char>(at, comp.offset())};
std::memcpy(ptr, init, bytes);
}
} else if (comp.genre() == typeInfo::Component::Genre::Pointer) {
// Data pointers without explicit initialization are established
// so that they are valid right-hand side targets of pointer
// assignment statements.
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
Descriptor &ptrDesc{
*instance.ElementComponent<Descriptor>(at, comp.offset())};
comp.EstablishDescriptor(ptrDesc, instance, terminator);
ptrDesc.raw().attribute = CFI_attribute_pointer;
}
} else if (comp.genre() == typeInfo::Component::Genre::Data &&
comp.derivedType() && !comp.derivedType()->noInitializationNeeded()) {
// Default initialization of non-pointer non-allocatable/automatic
// data component. Handles parent component's elements. Recursive.
SubscriptValue extents[maxRank];
GetComponentExtents(extents, comp, instance);
StaticDescriptor<maxRank, true, 0> staticDescriptor;
Descriptor &compDesc{staticDescriptor.descriptor()};
const typeInfo::DerivedType &compType{*comp.derivedType()};
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
compDesc.Establish(compType,
instance.ElementComponent<char>(at, comp.offset()), comp.rank(),
extents);
stat = Initialize(compDesc, compType, terminator, hasStat, errMsg);
if (stat != StatOk) {
break;
}
}
}
}
// Initialize procedure pointer components in each element
const Descriptor &procPtrDesc{derived.procPtr()};
std::size_t myProcPtrs{procPtrDesc.Elements()};
for (std::size_t k{0}; k < myProcPtrs; ++k) {
const auto &comp{
*procPtrDesc.ZeroBasedIndexedElement<typeInfo::ProcPtrComponent>(k)};
SubscriptValue at[maxRank];
instance.GetLowerBounds(at);
for (std::size_t j{0}; j++ < elements; instance.IncrementSubscripts(at)) {
auto &pptr{*instance.ElementComponent<typeInfo::ProcedurePointer>(
at, comp.offset)};
pptr = comp.procInitialization;
}
}
return stat;
}
static RT_API_ATTRS const typeInfo::SpecialBinding *FindFinal(
const typeInfo::DerivedType &derived, int rank) {
if (const auto *ranked{derived.FindSpecialBinding(
typeInfo::SpecialBinding::RankFinal(rank))}) {
return ranked;
} else if (const auto *assumed{derived.FindSpecialBinding(
typeInfo::SpecialBinding::Which::AssumedRankFinal)}) {
return assumed;
} else {
return derived.FindSpecialBinding(
typeInfo::SpecialBinding::Which::ElementalFinal);
}
}
static RT_API_ATTRS void CallFinalSubroutine(const Descriptor &descriptor,
const typeInfo::DerivedType &derived, Terminator *terminator) {
if (const auto *special{FindFinal(derived, descriptor.rank())}) {
if (special->which() == typeInfo::SpecialBinding::Which::ElementalFinal) {
std::size_t elements{descriptor.Elements()};
SubscriptValue at[maxRank];
descriptor.GetLowerBounds(at);
if (special->IsArgDescriptor(0)) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc;
Descriptor &elemDesc{statDesc.descriptor()};
elemDesc = descriptor;
elemDesc.raw().attribute = CFI_attribute_pointer;
elemDesc.raw().rank = 0;
auto *p{special->GetProc<void (*)(const Descriptor &)>()};
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
elemDesc.set_base_addr(descriptor.Element<char>(at));
p(elemDesc);
}
} else {
auto *p{special->GetProc<void (*)(char *)>()};
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
p(descriptor.Element<char>(at));
}
}
} else {
StaticDescriptor<maxRank, true, 10> statDesc;
Descriptor &copy{statDesc.descriptor()};
const Descriptor *argDescriptor{&descriptor};
if (descriptor.rank() > 0 && special->IsArgContiguous(0) &&
!descriptor.IsContiguous()) {
// The FINAL subroutine demands a contiguous array argument, but
// this INTENT(OUT) or intrinsic assignment LHS isn't contiguous.
// Finalize a shallow copy of the data.
copy = descriptor;
copy.set_base_addr(nullptr);
copy.raw().attribute = CFI_attribute_allocatable;
Terminator stubTerminator{"CallFinalProcedure() in Fortran runtime", 0};
RUNTIME_CHECK(terminator ? *terminator : stubTerminator,
copy.Allocate() == CFI_SUCCESS);
ShallowCopyDiscontiguousToContiguous(copy, descriptor);
argDescriptor = &copy;
}
if (special->IsArgDescriptor(0)) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc;
Descriptor &tmpDesc{statDesc.descriptor()};
tmpDesc = *argDescriptor;
tmpDesc.raw().attribute = CFI_attribute_pointer;
tmpDesc.Addendum()->set_derivedType(&derived);
auto *p{special->GetProc<void (*)(const Descriptor &)>()};
p(tmpDesc);
} else {
auto *p{special->GetProc<void (*)(char *)>()};
p(argDescriptor->OffsetElement<char>());
}
if (argDescriptor == &copy) {
ShallowCopyContiguousToDiscontiguous(descriptor, copy);
copy.Deallocate();
}
}
}
}
// Fortran 2018 subclause 7.5.6.2
RT_API_ATTRS void Finalize(const Descriptor &descriptor,
const typeInfo::DerivedType &derived, Terminator *terminator) {
if (derived.noFinalizationNeeded() || !descriptor.IsAllocated()) {
return;
}
CallFinalSubroutine(descriptor, derived, terminator);
const auto *parentType{derived.GetParentType()};
bool recurse{parentType && !parentType->noFinalizationNeeded()};
// If there's a finalizable parent component, handle it last, as required
// by the Fortran standard (7.5.6.2), and do so recursively with the same
// descriptor so that the rank is preserved.
const Descriptor &componentDesc{derived.component()};
std::size_t myComponents{componentDesc.Elements()};
std::size_t elements{descriptor.Elements()};
for (auto k{recurse ? std::size_t{1}
/* skip first component, it's the parent */
: 0};
k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
SubscriptValue at[maxRank];
descriptor.GetLowerBounds(at);
if (comp.genre() == typeInfo::Component::Genre::Allocatable &&
comp.category() == TypeCategory::Derived) {
// Component may be polymorphic or unlimited polymorphic. Need to use the
// dynamic type to check whether finalization is needed.
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
const Descriptor &compDesc{
*descriptor.ElementComponent<Descriptor>(at, comp.offset())};
if (compDesc.IsAllocated()) {
if (const DescriptorAddendum * addendum{compDesc.Addendum()}) {
if (const typeInfo::DerivedType *
compDynamicType{addendum->derivedType()}) {
if (!compDynamicType->noFinalizationNeeded()) {
Finalize(compDesc, *compDynamicType, terminator);
}
}
}
}
}
} else if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
if (const typeInfo::DerivedType * compType{comp.derivedType()}) {
if (!compType->noFinalizationNeeded()) {
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
const Descriptor &compDesc{
*descriptor.ElementComponent<Descriptor>(at, comp.offset())};
if (compDesc.IsAllocated()) {
Finalize(compDesc, *compType, terminator);
}
}
}
}
} else if (comp.genre() == typeInfo::Component::Genre::Data &&
comp.derivedType() && !comp.derivedType()->noFinalizationNeeded()) {
SubscriptValue extents[maxRank];
GetComponentExtents(extents, comp, descriptor);
StaticDescriptor<maxRank, true, 0> staticDescriptor;
Descriptor &compDesc{staticDescriptor.descriptor()};
const typeInfo::DerivedType &compType{*comp.derivedType()};
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
compDesc.Establish(compType,
descriptor.ElementComponent<char>(at, comp.offset()), comp.rank(),
extents);
Finalize(compDesc, compType, terminator);
}
}
}
if (recurse) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc;
Descriptor &tmpDesc{statDesc.descriptor()};
tmpDesc = descriptor;
tmpDesc.raw().attribute = CFI_attribute_pointer;
tmpDesc.Addendum()->set_derivedType(parentType);
tmpDesc.raw().elem_len = parentType->sizeInBytes();
Finalize(tmpDesc, *parentType, terminator);
}
}
// The order of finalization follows Fortran 2018 7.5.6.2, with
// elementwise finalization of non-parent components taking place
// before parent component finalization, and with all finalization
// preceding any deallocation.
RT_API_ATTRS void Destroy(const Descriptor &descriptor, bool finalize,
const typeInfo::DerivedType &derived, Terminator *terminator) {
if (derived.noDestructionNeeded() || !descriptor.IsAllocated()) {
return;
}
if (finalize && !derived.noFinalizationNeeded()) {
Finalize(descriptor, derived, terminator);
}
// Deallocate all direct and indirect allocatable and automatic components.
// Contrary to finalization, the order of deallocation does not matter.
const Descriptor &componentDesc{derived.component()};
std::size_t myComponents{componentDesc.Elements()};
std::size_t elements{descriptor.Elements()};
SubscriptValue at[maxRank];
descriptor.GetLowerBounds(at);
for (std::size_t k{0}; k < myComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(k)};
const bool destroyComp{
comp.derivedType() && !comp.derivedType()->noDestructionNeeded()};
if (comp.genre() == typeInfo::Component::Genre::Allocatable ||
comp.genre() == typeInfo::Component::Genre::Automatic) {
for (std::size_t j{0}; j < elements; ++j) {
Descriptor *d{
descriptor.ElementComponent<Descriptor>(at, comp.offset())};
if (destroyComp) {
Destroy(*d, /*finalize=*/false, *comp.derivedType(), terminator);
}
d->Deallocate();
descriptor.IncrementSubscripts(at);
}
} else if (destroyComp &&
comp.genre() == typeInfo::Component::Genre::Data) {
SubscriptValue extents[maxRank];
GetComponentExtents(extents, comp, descriptor);
StaticDescriptor<maxRank, true, 0> staticDescriptor;
Descriptor &compDesc{staticDescriptor.descriptor()};
const typeInfo::DerivedType &compType{*comp.derivedType()};
for (std::size_t j{0}; j++ < elements;
descriptor.IncrementSubscripts(at)) {
compDesc.Establish(compType,
descriptor.ElementComponent<char>(at, comp.offset()), comp.rank(),
extents);
Destroy(compDesc, /*finalize=*/false, *comp.derivedType(), terminator);
}
}
}
}
RT_API_ATTRS bool HasDynamicComponent(const Descriptor &descriptor) {
if (const DescriptorAddendum * addendum{descriptor.Addendum()}) {
if (const auto *derived = addendum->derivedType()) {
// Destruction is needed if and only if there are direct or indirect
// allocatable or automatic components.
return !derived->noDestructionNeeded();
}
}
return false;
}
RT_OFFLOAD_API_GROUP_END
} // namespace Fortran::runtime