llvm-project/flang/runtime/io-api-minimal.cpp
Peter Klausler fe2ff54590
[flang][runtime] Decouple scalar output APIs from descriptors (#92444)
For testing purposes the implementations of the output APIs like
OutputInteger32 have been simply constructing descriptors and executing
the operation through the general DescriptorIO template. This patch
decouples those APIs from that mechanism so that programs using simple
"PRINT *" statements for output can link to a smaller portion of the I/O
runtime support library. (This is the only form of I/O accepted in GPU
device code by previous CUDA Fortran and Fortran OpenACC compilers.)
2024-05-17 15:18:10 -07:00

164 lines
5.4 KiB
C++

//===-- runtime/io-api-minimal.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements the subset of the I/O statement API needed for basic
// list-directed output (PRINT *) of intrinsic types.
#include "edit-output.h"
#include "format.h"
#include "io-api-common.h"
#include "io-stmt.h"
#include "terminator.h"
#include "tools.h"
#include "unit.h"
#include "flang/Runtime/io-api.h"
namespace Fortran::runtime::io {
RT_EXT_API_GROUP_BEGIN
Cookie IODEF(BeginExternalListOutput)(
ExternalUnit unitNumber, const char *sourceFile, int sourceLine) {
return BeginExternalListIO<Direction::Output, ExternalListIoStatementState>(
unitNumber, sourceFile, sourceLine);
}
enum Iostat IODEF(EndIoStatement)(Cookie cookie) {
IoStatementState &io{*cookie};
return static_cast<enum Iostat>(io.EndIoStatement());
}
template <int KIND, typename INT = CppTypeFor<TypeCategory::Integer, KIND>>
inline RT_API_ATTRS bool FormattedScalarIntegerOutput(
IoStatementState &io, INT x, const char *whence) {
if (io.CheckFormattedStmtType<Direction::Output>(whence)) {
auto edit{io.GetNextDataEdit()};
return edit && EditIntegerOutput<KIND>(io, *edit, x);
} else {
return false;
}
}
bool IODEF(OutputInteger8)(Cookie cookie, std::int8_t n) {
return FormattedScalarIntegerOutput<1>(*cookie, n, "OutputInteger8");
}
bool IODEF(OutputInteger16)(Cookie cookie, std::int16_t n) {
return FormattedScalarIntegerOutput<2>(*cookie, n, "OutputInteger16");
}
bool IODEF(OutputInteger32)(Cookie cookie, std::int32_t n) {
return FormattedScalarIntegerOutput<4>(*cookie, n, "OutputInteger32");
}
bool IODEF(OutputInteger64)(Cookie cookie, std::int64_t n) {
return FormattedScalarIntegerOutput<8>(*cookie, n, "OutputInteger64");
}
#ifdef __SIZEOF_INT128__
bool IODEF(OutputInteger128)(Cookie cookie, common::int128_t n) {
return FormattedScalarIntegerOutput<16>(*cookie, n, "OutputInteger128");
}
#endif
template <int KIND,
typename REAL = typename RealOutputEditing<KIND>::BinaryFloatingPoint>
inline RT_API_ATTRS bool FormattedScalarRealOutput(
IoStatementState &io, REAL x, const char *whence) {
if (io.CheckFormattedStmtType<Direction::Output>(whence)) {
auto edit{io.GetNextDataEdit()};
return edit && RealOutputEditing<KIND>{io, x}.Edit(*edit);
} else {
return false;
}
}
bool IODEF(OutputReal32)(Cookie cookie, float x) {
return FormattedScalarRealOutput<4>(*cookie, x, "OutputReal32");
}
bool IODEF(OutputReal64)(Cookie cookie, double x) {
return FormattedScalarRealOutput<8>(*cookie, x, "OutputReal64");
}
template <int KIND,
typename REAL = typename RealOutputEditing<KIND>::BinaryFloatingPoint>
inline RT_API_ATTRS bool FormattedScalarComplexOutput(
IoStatementState &io, REAL re, REAL im, const char *whence) {
if (io.CheckFormattedStmtType<Direction::Output>(whence)) {
if (io.get_if<ListDirectedStatementState<Direction::Output>>() != nullptr) {
DataEdit rEdit, iEdit;
rEdit.descriptor = DataEdit::ListDirectedRealPart;
iEdit.descriptor = DataEdit::ListDirectedImaginaryPart;
rEdit.modes = iEdit.modes = io.mutableModes();
return RealOutputEditing<KIND>{io, re}.Edit(rEdit) &&
RealOutputEditing<KIND>{io, im}.Edit(iEdit);
} else {
auto reEdit{io.GetNextDataEdit()};
if (reEdit && RealOutputEditing<KIND>{io, re}.Edit(*reEdit)) {
auto imEdit{io.GetNextDataEdit()};
return imEdit && RealOutputEditing<KIND>{io, im}.Edit(*imEdit);
}
}
}
return false;
}
bool IODEF(OutputComplex32)(Cookie cookie, float re, float im) {
return FormattedScalarComplexOutput<4>(*cookie, re, im, "OutputComplex32");
}
bool IODEF(OutputComplex64)(Cookie cookie, double re, double im) {
return FormattedScalarComplexOutput<8>(*cookie, re, im, "OutputComplex64");
}
bool IODEF(OutputAscii)(Cookie cookie, const char *x, std::size_t length) {
IoStatementState &io{*cookie};
if (!x) {
io.GetIoErrorHandler().Crash("Null address for character output item");
} else if (auto *listOutput{
io.get_if<ListDirectedStatementState<Direction::Output>>()}) {
return ListDirectedCharacterOutput(io, *listOutput, x, length);
} else if (io.CheckFormattedStmtType<Direction::Output>("OutputAscii")) {
auto edit{io.GetNextDataEdit()};
return edit && EditCharacterOutput(io, *edit, x, length);
} else {
return false;
}
}
bool IODEF(OutputLogical)(Cookie cookie, bool truth) {
IoStatementState &io{*cookie};
if (auto *listOutput{
io.get_if<ListDirectedStatementState<Direction::Output>>()}) {
return ListDirectedLogicalOutput(io, *listOutput, truth);
} else if (io.CheckFormattedStmtType<Direction::Output>("OutputAscii")) {
auto edit{io.GetNextDataEdit()};
return edit && EditLogicalOutput(io, *edit, truth);
} else {
return false;
}
}
} // namespace Fortran::runtime::io
#if defined(_LIBCPP_VERBOSE_ABORT)
// Provide own definition for `std::__libcpp_verbose_abort` to avoid dependency
// on the version provided by libc++.
void std::__libcpp_verbose_abort(char const *format, ...) {
va_list list;
va_start(list, format);
std::vfprintf(stderr, format, list);
va_end(list);
std::abort();
}
#endif
RT_EXT_API_GROUP_END