Peter Klausler 3ada883f7c
[flang][runtime] Runtime support for REDUCE() (#86214)
Supports the REDUCE() transformational intrinsic function of Fortran
(see F'2023 16.9.173) in a manner similar to the existing support for
SUM(), PRODUCT(), &c. There are APIs for total reductions to scalar
results, and APIs for partial reductions that reduce the rank of the
argument by one.

This implementation requires more functions than other reductions
because the various possible types of the user-supplied OPERATION=
function need to be elaborated.

Once the basic API in reduce.h has been approved, later patches will
implement lowering.

REDUCE() is primarily for completeness, not portability; only one other
Fortran compiler implements this F'2018 feature today, and only some
types work correctly with it.
2024-03-26 09:21:16 -07:00

272 lines
8.6 KiB
C++

//===-- runtime/tools.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tools.h"
#include "terminator.h"
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <cstring>
namespace Fortran::runtime {
RT_OFFLOAD_API_GROUP_BEGIN
RT_API_ATTRS std::size_t TrimTrailingSpaces(const char *s, std::size_t n) {
while (n > 0 && s[n - 1] == ' ') {
--n;
}
return n;
}
RT_API_ATTRS OwningPtr<char> SaveDefaultCharacter(
const char *s, std::size_t length, const Terminator &terminator) {
if (s) {
auto *p{static_cast<char *>(AllocateMemoryOrCrash(terminator, length + 1))};
std::memcpy(p, s, length);
p[length] = '\0';
return OwningPtr<char>{p};
} else {
return OwningPtr<char>{};
}
}
static RT_API_ATTRS bool CaseInsensitiveMatch(
const char *value, std::size_t length, const char *possibility) {
for (; length-- > 0; ++possibility) {
char ch{*value++};
if (ch >= 'a' && ch <= 'z') {
ch += 'A' - 'a';
}
if (*possibility != ch) {
if (*possibility != '\0' || ch != ' ') {
return false;
}
// Ignore trailing blanks (12.5.6.2 p1)
while (length-- > 0) {
if (*value++ != ' ') {
return false;
}
}
return true;
}
}
return *possibility == '\0';
}
RT_API_ATTRS int IdentifyValue(
const char *value, std::size_t length, const char *possibilities[]) {
if (value) {
for (int j{0}; possibilities[j]; ++j) {
if (CaseInsensitiveMatch(value, length, possibilities[j])) {
return j;
}
}
}
return -1;
}
RT_API_ATTRS void ToFortranDefaultCharacter(
char *to, std::size_t toLength, const char *from) {
std::size_t len{Fortran::runtime::strlen(from)};
if (len < toLength) {
std::memcpy(to, from, len);
std::memset(to + len, ' ', toLength - len);
} else {
std::memcpy(to, from, toLength);
}
}
RT_API_ATTRS void CheckConformability(const Descriptor &to, const Descriptor &x,
Terminator &terminator, const char *funcName, const char *toName,
const char *xName) {
if (x.rank() == 0) {
return; // scalar conforms with anything
}
int rank{to.rank()};
if (x.rank() != rank) {
terminator.Crash(
"Incompatible array arguments to %s: %s has rank %d but %s has rank %d",
funcName, toName, rank, xName, x.rank());
} else {
for (int j{0}; j < rank; ++j) {
auto toExtent{static_cast<std::int64_t>(to.GetDimension(j).Extent())};
auto xExtent{static_cast<std::int64_t>(x.GetDimension(j).Extent())};
if (xExtent != toExtent) {
terminator.Crash("Incompatible array arguments to %s: dimension %d of "
"%s has extent %" PRId64 " but %s has extent %" PRId64,
funcName, j + 1, toName, toExtent, xName, xExtent);
}
}
}
}
RT_API_ATTRS void CheckIntegerKind(
Terminator &terminator, int kind, const char *intrinsic) {
if (kind < 1 || kind > 16 || (kind & (kind - 1)) != 0) {
terminator.Crash("not yet implemented: INTEGER(KIND=%d) in %s intrinsic",
intrinsic, kind);
}
}
RT_API_ATTRS void ShallowCopyDiscontiguousToDiscontiguous(
const Descriptor &to, const Descriptor &from) {
SubscriptValue toAt[maxRank], fromAt[maxRank];
to.GetLowerBounds(toAt);
from.GetLowerBounds(fromAt);
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memcpy(
to.Element<char>(toAt), from.Element<char>(fromAt), elementBytes);
}
}
RT_API_ATTRS void ShallowCopyDiscontiguousToContiguous(
const Descriptor &to, const Descriptor &from) {
char *toAt{to.OffsetElement()};
SubscriptValue fromAt[maxRank];
from.GetLowerBounds(fromAt);
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
toAt += elementBytes, from.IncrementSubscripts(fromAt)) {
std::memcpy(toAt, from.Element<char>(fromAt), elementBytes);
}
}
RT_API_ATTRS void ShallowCopyContiguousToDiscontiguous(
const Descriptor &to, const Descriptor &from) {
SubscriptValue toAt[maxRank];
to.GetLowerBounds(toAt);
char *fromAt{from.OffsetElement()};
std::size_t elementBytes{to.ElementBytes()};
for (std::size_t n{to.Elements()}; n-- > 0;
to.IncrementSubscripts(toAt), fromAt += elementBytes) {
std::memcpy(to.Element<char>(toAt), fromAt, elementBytes);
}
}
RT_API_ATTRS void ShallowCopy(const Descriptor &to, const Descriptor &from,
bool toIsContiguous, bool fromIsContiguous) {
if (toIsContiguous) {
if (fromIsContiguous) {
std::memcpy(to.OffsetElement(), from.OffsetElement(),
to.Elements() * to.ElementBytes());
} else {
ShallowCopyDiscontiguousToContiguous(to, from);
}
} else {
if (fromIsContiguous) {
ShallowCopyContiguousToDiscontiguous(to, from);
} else {
ShallowCopyDiscontiguousToDiscontiguous(to, from);
}
}
}
RT_API_ATTRS void ShallowCopy(const Descriptor &to, const Descriptor &from) {
ShallowCopy(to, from, to.IsContiguous(), from.IsContiguous());
}
RT_API_ATTRS char *EnsureNullTerminated(
char *str, std::size_t length, Terminator &terminator) {
if (runtime::memchr(str, '\0', length) == nullptr) {
char *newCmd{(char *)AllocateMemoryOrCrash(terminator, length + 1)};
std::memcpy(newCmd, str, length);
newCmd[length] = '\0';
return newCmd;
} else {
return str;
}
}
RT_API_ATTRS bool IsValidCharDescriptor(const Descriptor *value) {
return value && value->IsAllocated() &&
value->type() == TypeCode(TypeCategory::Character, 1) &&
value->rank() == 0;
}
RT_API_ATTRS bool IsValidIntDescriptor(const Descriptor *intVal) {
// Check that our descriptor is allocated and is a scalar integer with
// kind != 1 (i.e. with a large enough decimal exponent range).
return intVal && intVal->IsAllocated() && intVal->rank() == 0 &&
intVal->type().IsInteger() && intVal->type().GetCategoryAndKind() &&
intVal->type().GetCategoryAndKind()->second != 1;
}
RT_API_ATTRS std::int32_t CopyCharsToDescriptor(const Descriptor &value,
const char *rawValue, std::size_t rawValueLength, const Descriptor *errmsg,
std::size_t offset) {
const std::int64_t toCopy{std::min(static_cast<std::int64_t>(rawValueLength),
static_cast<std::int64_t>(value.ElementBytes() - offset))};
if (toCopy < 0) {
return ToErrmsg(errmsg, StatValueTooShort);
}
std::memcpy(value.OffsetElement(offset), rawValue, toCopy);
if (static_cast<std::int64_t>(rawValueLength) > toCopy) {
return ToErrmsg(errmsg, StatValueTooShort);
}
return StatOk;
}
RT_API_ATTRS void StoreIntToDescriptor(
const Descriptor *length, std::int64_t value, Terminator &terminator) {
auto typeCode{length->type().GetCategoryAndKind()};
int kind{typeCode->second};
ApplyIntegerKind<StoreIntegerAt, void>(
kind, terminator, *length, /* atIndex = */ 0, value);
}
template <int KIND> struct FitsInIntegerKind {
RT_API_ATTRS bool operator()([[maybe_unused]] std::int64_t value) {
if constexpr (KIND >= 8) {
return true;
} else {
return value <=
std::numeric_limits<
CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>>::max();
}
}
};
// Utility: establishes & allocates the result array for a partial
// reduction (i.e., one with DIM=).
RT_API_ATTRS void CreatePartialReductionResult(Descriptor &result,
const Descriptor &x, std::size_t resultElementSize, int dim,
Terminator &terminator, const char *intrinsic, TypeCode typeCode) {
int xRank{x.rank()};
if (dim < 1 || dim > xRank) {
terminator.Crash(
"%s: bad DIM=%d for ARRAY with rank %d", intrinsic, dim, xRank);
}
int zeroBasedDim{dim - 1};
SubscriptValue resultExtent[maxRank];
for (int j{0}; j < zeroBasedDim; ++j) {
resultExtent[j] = x.GetDimension(j).Extent();
}
for (int j{zeroBasedDim + 1}; j < xRank; ++j) {
resultExtent[j - 1] = x.GetDimension(j).Extent();
}
result.Establish(typeCode, resultElementSize, nullptr, xRank - 1,
resultExtent, CFI_attribute_allocatable);
for (int j{0}; j + 1 < xRank; ++j) {
result.GetDimension(j).SetBounds(1, resultExtent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"%s: could not allocate memory for result; STAT=%d", intrinsic, stat);
}
}
RT_OFFLOAD_API_GROUP_END
} // namespace Fortran::runtime