mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 21:56:04 +00:00

LeafChildren is used in an earlier version of the SuffixTree implementation to keep track of each nodes' leaf nodes. In the new/current version, this variable is no longer used, but a comment is left behind. This patch updates the comment.
283 lines
10 KiB
C++
283 lines
10 KiB
C++
//===- llvm/Support/SuffixTree.cpp - Implement Suffix Tree ------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Suffix Tree class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/SuffixTree.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/SuffixTreeNode.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// \returns the number of elements in the substring associated with \p N.
|
|
static size_t numElementsInSubstring(const SuffixTreeNode *N) {
|
|
assert(N && "Got a null node?");
|
|
if (auto *Internal = dyn_cast<SuffixTreeInternalNode>(N))
|
|
if (Internal->isRoot())
|
|
return 0;
|
|
return N->getEndIdx() - N->getStartIdx() + 1;
|
|
}
|
|
|
|
SuffixTree::SuffixTree(const ArrayRef<unsigned> &Str) : Str(Str) {
|
|
Root = insertRoot();
|
|
Active.Node = Root;
|
|
|
|
// Keep track of the number of suffixes we have to add of the current
|
|
// prefix.
|
|
unsigned SuffixesToAdd = 0;
|
|
|
|
// Construct the suffix tree iteratively on each prefix of the string.
|
|
// PfxEndIdx is the end index of the current prefix.
|
|
// End is one past the last element in the string.
|
|
for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
|
|
SuffixesToAdd++;
|
|
LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
|
|
SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
|
|
}
|
|
|
|
// Set the suffix indices of each leaf.
|
|
assert(Root && "Root node can't be nullptr!");
|
|
setSuffixIndices();
|
|
}
|
|
|
|
SuffixTreeNode *SuffixTree::insertLeaf(SuffixTreeInternalNode &Parent,
|
|
unsigned StartIdx, unsigned Edge) {
|
|
assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
|
|
auto *N = new (LeafNodeAllocator.Allocate())
|
|
SuffixTreeLeafNode(StartIdx, &LeafEndIdx);
|
|
Parent.Children[Edge] = N;
|
|
return N;
|
|
}
|
|
|
|
SuffixTreeInternalNode *
|
|
SuffixTree::insertInternalNode(SuffixTreeInternalNode *Parent,
|
|
unsigned StartIdx, unsigned EndIdx,
|
|
unsigned Edge) {
|
|
assert(StartIdx <= EndIdx && "String can't start after it ends!");
|
|
assert(!(!Parent && StartIdx != SuffixTreeNode::EmptyIdx) &&
|
|
"Non-root internal nodes must have parents!");
|
|
auto *N = new (InternalNodeAllocator.Allocate())
|
|
SuffixTreeInternalNode(StartIdx, EndIdx, Root);
|
|
if (Parent)
|
|
Parent->Children[Edge] = N;
|
|
return N;
|
|
}
|
|
|
|
SuffixTreeInternalNode *SuffixTree::insertRoot() {
|
|
return insertInternalNode(/*Parent = */ nullptr, SuffixTreeNode::EmptyIdx,
|
|
SuffixTreeNode::EmptyIdx, /*Edge = */ 0);
|
|
}
|
|
|
|
void SuffixTree::setSuffixIndices() {
|
|
// List of nodes we need to visit along with the current length of the
|
|
// string.
|
|
SmallVector<std::pair<SuffixTreeNode *, unsigned>> ToVisit;
|
|
|
|
// Current node being visited.
|
|
SuffixTreeNode *CurrNode = Root;
|
|
|
|
// Sum of the lengths of the nodes down the path to the current one.
|
|
unsigned CurrNodeLen = 0;
|
|
ToVisit.push_back({CurrNode, CurrNodeLen});
|
|
while (!ToVisit.empty()) {
|
|
std::tie(CurrNode, CurrNodeLen) = ToVisit.back();
|
|
ToVisit.pop_back();
|
|
// Length of the current node from the root down to here.
|
|
CurrNode->setConcatLen(CurrNodeLen);
|
|
if (auto *InternalNode = dyn_cast<SuffixTreeInternalNode>(CurrNode))
|
|
for (auto &ChildPair : InternalNode->Children) {
|
|
assert(ChildPair.second && "Node had a null child!");
|
|
ToVisit.push_back(
|
|
{ChildPair.second,
|
|
CurrNodeLen + numElementsInSubstring(ChildPair.second)});
|
|
}
|
|
// No children, so we are at the end of the string.
|
|
if (auto *LeafNode = dyn_cast<SuffixTreeLeafNode>(CurrNode))
|
|
LeafNode->setSuffixIdx(Str.size() - CurrNodeLen);
|
|
}
|
|
}
|
|
|
|
unsigned SuffixTree::extend(unsigned EndIdx, unsigned SuffixesToAdd) {
|
|
SuffixTreeInternalNode *NeedsLink = nullptr;
|
|
|
|
while (SuffixesToAdd > 0) {
|
|
|
|
// Are we waiting to add anything other than just the last character?
|
|
if (Active.Len == 0) {
|
|
// If not, then say the active index is the end index.
|
|
Active.Idx = EndIdx;
|
|
}
|
|
|
|
assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
|
|
|
|
// The first character in the current substring we're looking at.
|
|
unsigned FirstChar = Str[Active.Idx];
|
|
|
|
// Have we inserted anything starting with FirstChar at the current node?
|
|
if (Active.Node->Children.count(FirstChar) == 0) {
|
|
// If not, then we can just insert a leaf and move to the next step.
|
|
insertLeaf(*Active.Node, EndIdx, FirstChar);
|
|
|
|
// The active node is an internal node, and we visited it, so it must
|
|
// need a link if it doesn't have one.
|
|
if (NeedsLink) {
|
|
NeedsLink->setLink(Active.Node);
|
|
NeedsLink = nullptr;
|
|
}
|
|
} else {
|
|
// There's a match with FirstChar, so look for the point in the tree to
|
|
// insert a new node.
|
|
SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
|
|
|
|
unsigned SubstringLen = numElementsInSubstring(NextNode);
|
|
|
|
// Is the current suffix we're trying to insert longer than the size of
|
|
// the child we want to move to?
|
|
if (Active.Len >= SubstringLen) {
|
|
// If yes, then consume the characters we've seen and move to the next
|
|
// node.
|
|
assert(isa<SuffixTreeInternalNode>(NextNode) &&
|
|
"Expected an internal node?");
|
|
Active.Idx += SubstringLen;
|
|
Active.Len -= SubstringLen;
|
|
Active.Node = cast<SuffixTreeInternalNode>(NextNode);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, the suffix we're trying to insert must be contained in the
|
|
// next node we want to move to.
|
|
unsigned LastChar = Str[EndIdx];
|
|
|
|
// Is the string we're trying to insert a substring of the next node?
|
|
if (Str[NextNode->getStartIdx() + Active.Len] == LastChar) {
|
|
// If yes, then we're done for this step. Remember our insertion point
|
|
// and move to the next end index. At this point, we have an implicit
|
|
// suffix tree.
|
|
if (NeedsLink && !Active.Node->isRoot()) {
|
|
NeedsLink->setLink(Active.Node);
|
|
NeedsLink = nullptr;
|
|
}
|
|
|
|
Active.Len++;
|
|
break;
|
|
}
|
|
|
|
// The string we're trying to insert isn't a substring of the next node,
|
|
// but matches up to a point. Split the node.
|
|
//
|
|
// For example, say we ended our search at a node n and we're trying to
|
|
// insert ABD. Then we'll create a new node s for AB, reduce n to just
|
|
// representing C, and insert a new leaf node l to represent d. This
|
|
// allows us to ensure that if n was a leaf, it remains a leaf.
|
|
//
|
|
// | ABC ---split---> | AB
|
|
// n s
|
|
// C / \ D
|
|
// n l
|
|
|
|
// The node s from the diagram
|
|
SuffixTreeInternalNode *SplitNode = insertInternalNode(
|
|
Active.Node, NextNode->getStartIdx(),
|
|
NextNode->getStartIdx() + Active.Len - 1, FirstChar);
|
|
|
|
// Insert the new node representing the new substring into the tree as
|
|
// a child of the split node. This is the node l from the diagram.
|
|
insertLeaf(*SplitNode, EndIdx, LastChar);
|
|
|
|
// Make the old node a child of the split node and update its start
|
|
// index. This is the node n from the diagram.
|
|
NextNode->incrementStartIdx(Active.Len);
|
|
SplitNode->Children[Str[NextNode->getStartIdx()]] = NextNode;
|
|
|
|
// SplitNode is an internal node, update the suffix link.
|
|
if (NeedsLink)
|
|
NeedsLink->setLink(SplitNode);
|
|
|
|
NeedsLink = SplitNode;
|
|
}
|
|
|
|
// We've added something new to the tree, so there's one less suffix to
|
|
// add.
|
|
SuffixesToAdd--;
|
|
|
|
if (Active.Node->isRoot()) {
|
|
if (Active.Len > 0) {
|
|
Active.Len--;
|
|
Active.Idx = EndIdx - SuffixesToAdd + 1;
|
|
}
|
|
} else {
|
|
// Start the next phase at the next smallest suffix.
|
|
Active.Node = Active.Node->getLink();
|
|
}
|
|
}
|
|
|
|
return SuffixesToAdd;
|
|
}
|
|
|
|
void SuffixTree::RepeatedSubstringIterator::advance() {
|
|
// Clear the current state. If we're at the end of the range, then this
|
|
// is the state we want to be in.
|
|
RS = RepeatedSubstring();
|
|
N = nullptr;
|
|
|
|
// Each leaf node represents a repeat of a string.
|
|
SmallVector<unsigned> RepeatedSubstringStarts;
|
|
|
|
// Continue visiting nodes until we find one which repeats more than once.
|
|
while (!InternalNodesToVisit.empty()) {
|
|
RepeatedSubstringStarts.clear();
|
|
auto *Curr = InternalNodesToVisit.back();
|
|
InternalNodesToVisit.pop_back();
|
|
|
|
// Keep track of the length of the string associated with the node. If
|
|
// it's too short, we'll quit.
|
|
unsigned Length = Curr->getConcatLen();
|
|
|
|
// Iterate over each child, saving internal nodes for visiting, and
|
|
// leaf nodes' SuffixIdx in RepeatedSubstringStarts. Internal nodes
|
|
// represent individual strings, which may repeat.
|
|
for (auto &ChildPair : Curr->Children) {
|
|
// Save all of this node's children for processing.
|
|
if (auto *InternalChild =
|
|
dyn_cast<SuffixTreeInternalNode>(ChildPair.second)) {
|
|
InternalNodesToVisit.push_back(InternalChild);
|
|
continue;
|
|
}
|
|
|
|
if (Length < MinLength)
|
|
continue;
|
|
|
|
// Have an occurrence of a potentially repeated string. Save it.
|
|
auto *Leaf = cast<SuffixTreeLeafNode>(ChildPair.second);
|
|
RepeatedSubstringStarts.push_back(Leaf->getSuffixIdx());
|
|
}
|
|
|
|
// The root never represents a repeated substring. If we're looking at
|
|
// that, then skip it.
|
|
if (Curr->isRoot())
|
|
continue;
|
|
|
|
// Do we have any repeated substrings?
|
|
if (RepeatedSubstringStarts.size() < 2)
|
|
continue;
|
|
|
|
// Yes. Update the state to reflect this, and then bail out.
|
|
N = Curr;
|
|
RS.Length = Length;
|
|
for (unsigned StartIdx : RepeatedSubstringStarts)
|
|
RS.StartIndices.push_back(StartIdx);
|
|
break;
|
|
}
|
|
// At this point, either NewRS is an empty RepeatedSubstring, or it was
|
|
// set in the above loop. Similarly, N is either nullptr, or the node
|
|
// associated with NewRS.
|
|
}
|