llvm-project/llvm/lib/Support/ThreadPool.cpp
Mehdi Amini 6594f428de
Split the llvm::ThreadPool into an abstract base class and an implementation (#82094)
This decouples the public API used to enqueue tasks and wait for
completion from the actual implementation, and opens up the possibility
for clients to set their own thread pool implementation for the pool.

https://discourse.llvm.org/t/construct-threadpool-from-vector-of-existing-threads/76883
2024-03-02 19:10:50 -08:00

221 lines
7.7 KiB
C++

//==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a crude C++11 based thread pool.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ThreadPool.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
ThreadPoolInterface::~ThreadPoolInterface() = default;
// A note on thread groups: Tasks are by default in no group (represented
// by nullptr ThreadPoolTaskGroup pointer in the Tasks queue) and functionality
// here normally works on all tasks regardless of their group (functions
// in that case receive nullptr ThreadPoolTaskGroup pointer as argument).
// A task in a group has a pointer to that ThreadPoolTaskGroup in the Tasks
// queue, and functions called to work only on tasks from one group take that
// pointer.
#if LLVM_ENABLE_THREADS
StdThreadPool::StdThreadPool(ThreadPoolStrategy S)
: Strategy(S), MaxThreadCount(S.compute_thread_count()) {}
void StdThreadPool::grow(int requested) {
llvm::sys::ScopedWriter LockGuard(ThreadsLock);
if (Threads.size() >= MaxThreadCount)
return; // Already hit the max thread pool size.
int newThreadCount = std::min<int>(requested, MaxThreadCount);
while (static_cast<int>(Threads.size()) < newThreadCount) {
int ThreadID = Threads.size();
Threads.emplace_back([this, ThreadID] {
set_thread_name(formatv("llvm-worker-{0}", ThreadID));
Strategy.apply_thread_strategy(ThreadID);
processTasks(nullptr);
});
}
}
#ifndef NDEBUG
// The group of the tasks run by the current thread.
static LLVM_THREAD_LOCAL std::vector<ThreadPoolTaskGroup *>
*CurrentThreadTaskGroups = nullptr;
#endif
// WaitingForGroup == nullptr means all tasks regardless of their group.
void StdThreadPool::processTasks(ThreadPoolTaskGroup *WaitingForGroup) {
while (true) {
std::function<void()> Task;
ThreadPoolTaskGroup *GroupOfTask;
{
std::unique_lock<std::mutex> LockGuard(QueueLock);
bool workCompletedForGroup = false; // Result of workCompletedUnlocked()
// Wait for tasks to be pushed in the queue
QueueCondition.wait(LockGuard, [&] {
return !EnableFlag || !Tasks.empty() ||
(WaitingForGroup != nullptr &&
(workCompletedForGroup =
workCompletedUnlocked(WaitingForGroup)));
});
// Exit condition
if (!EnableFlag && Tasks.empty())
return;
if (WaitingForGroup != nullptr && workCompletedForGroup)
return;
// Yeah, we have a task, grab it and release the lock on the queue
// We first need to signal that we are active before popping the queue
// in order for wait() to properly detect that even if the queue is
// empty, there is still a task in flight.
++ActiveThreads;
Task = std::move(Tasks.front().first);
GroupOfTask = Tasks.front().second;
// Need to count active threads in each group separately, ActiveThreads
// would never be 0 if waiting for another group inside a wait.
if (GroupOfTask != nullptr)
++ActiveGroups[GroupOfTask]; // Increment or set to 1 if new item
Tasks.pop_front();
}
#ifndef NDEBUG
if (CurrentThreadTaskGroups == nullptr)
CurrentThreadTaskGroups = new std::vector<ThreadPoolTaskGroup *>;
CurrentThreadTaskGroups->push_back(GroupOfTask);
#endif
// Run the task we just grabbed
Task();
#ifndef NDEBUG
CurrentThreadTaskGroups->pop_back();
if (CurrentThreadTaskGroups->empty()) {
delete CurrentThreadTaskGroups;
CurrentThreadTaskGroups = nullptr;
}
#endif
bool Notify;
bool NotifyGroup;
{
// Adjust `ActiveThreads`, in case someone waits on StdThreadPool::wait()
std::lock_guard<std::mutex> LockGuard(QueueLock);
--ActiveThreads;
if (GroupOfTask != nullptr) {
auto A = ActiveGroups.find(GroupOfTask);
if (--(A->second) == 0)
ActiveGroups.erase(A);
}
Notify = workCompletedUnlocked(GroupOfTask);
NotifyGroup = GroupOfTask != nullptr && Notify;
}
// Notify task completion if this is the last active thread, in case
// someone waits on StdThreadPool::wait().
if (Notify)
CompletionCondition.notify_all();
// If this was a task in a group, notify also threads waiting for tasks
// in this function on QueueCondition, to make a recursive wait() return
// after the group it's been waiting for has finished.
if (NotifyGroup)
QueueCondition.notify_all();
}
}
bool StdThreadPool::workCompletedUnlocked(ThreadPoolTaskGroup *Group) const {
if (Group == nullptr)
return !ActiveThreads && Tasks.empty();
return ActiveGroups.count(Group) == 0 &&
!llvm::any_of(Tasks,
[Group](const auto &T) { return T.second == Group; });
}
void StdThreadPool::wait() {
assert(!isWorkerThread()); // Would deadlock waiting for itself.
// Wait for all threads to complete and the queue to be empty
std::unique_lock<std::mutex> LockGuard(QueueLock);
CompletionCondition.wait(LockGuard,
[&] { return workCompletedUnlocked(nullptr); });
}
void StdThreadPool::wait(ThreadPoolTaskGroup &Group) {
// Wait for all threads in the group to complete.
if (!isWorkerThread()) {
std::unique_lock<std::mutex> LockGuard(QueueLock);
CompletionCondition.wait(LockGuard,
[&] { return workCompletedUnlocked(&Group); });
return;
}
// Make sure to not deadlock waiting for oneself.
assert(CurrentThreadTaskGroups == nullptr ||
!llvm::is_contained(*CurrentThreadTaskGroups, &Group));
// Handle the case of recursive call from another task in a different group,
// in which case process tasks while waiting to keep the thread busy and avoid
// possible deadlock.
processTasks(&Group);
}
bool StdThreadPool::isWorkerThread() const {
llvm::sys::ScopedReader LockGuard(ThreadsLock);
llvm::thread::id CurrentThreadId = llvm::this_thread::get_id();
for (const llvm::thread &Thread : Threads)
if (CurrentThreadId == Thread.get_id())
return true;
return false;
}
// The destructor joins all threads, waiting for completion.
StdThreadPool::~StdThreadPool() {
{
std::unique_lock<std::mutex> LockGuard(QueueLock);
EnableFlag = false;
}
QueueCondition.notify_all();
llvm::sys::ScopedReader LockGuard(ThreadsLock);
for (auto &Worker : Threads)
Worker.join();
}
#endif // LLVM_ENABLE_THREADS Disabled
// No threads are launched, issue a warning if ThreadCount is not 0
SingleThreadExecutor::SingleThreadExecutor(ThreadPoolStrategy S) {
int ThreadCount = S.compute_thread_count();
if (ThreadCount != 1) {
errs() << "Warning: request a ThreadPool with " << ThreadCount
<< " threads, but LLVM_ENABLE_THREADS has been turned off\n";
}
}
void SingleThreadExecutor::wait() {
// Sequential implementation running the tasks
while (!Tasks.empty()) {
auto Task = std::move(Tasks.front().first);
Tasks.pop_front();
Task();
}
}
void SingleThreadExecutor::wait(ThreadPoolTaskGroup &) {
// Simply wait for all, this works even if recursive (the running task
// is already removed from the queue).
wait();
}
bool SingleThreadExecutor::isWorkerThread() const {
report_fatal_error("LLVM compiled without multithreading");
}
SingleThreadExecutor::~SingleThreadExecutor() { wait(); }