mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 22:16:05 +00:00

WHAT!?! It turns out that Type::isPromotableIntegerType() was not considering enumeration types to be promotable, so we would never do the promotion despite having properly computed the promotion type when the enum was defined. Various operations on values of enum type just "worked" because we could still compute the integer rank of an enum type; the oddity, however, is that operations such as "add an enum and an unsigned" would often have an enum result type (!). The bug actually showed up as a spurious -Wformat diagnostic (<rdar://problem/7595366>), but in theory it could cause miscompiles. In this commit: - Enum types with a promotion type of "int" or "unsigned int" are promotable. - Tweaked the computation of promotable types for enums - For all of the ABIs, treat enum types the same way as their underlying types (*not* their promotion types) for argument passing and return values - Extend the ABI tester with support for enumeration types llvm-svn: 95117
1956 lines
70 KiB
C++
1956 lines
70 KiB
C++
//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes wrap the information about a call or function
|
|
// definition used to handle ABI compliancy.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TargetInfo.h"
|
|
#include "ABIInfo.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
ABIInfo::~ABIInfo() {}
|
|
|
|
void ABIArgInfo::dump() const {
|
|
llvm::raw_ostream &OS = llvm::errs();
|
|
OS << "(ABIArgInfo Kind=";
|
|
switch (TheKind) {
|
|
case Direct:
|
|
OS << "Direct";
|
|
break;
|
|
case Extend:
|
|
OS << "Extend";
|
|
break;
|
|
case Ignore:
|
|
OS << "Ignore";
|
|
break;
|
|
case Coerce:
|
|
OS << "Coerce Type=";
|
|
getCoerceToType()->print(OS);
|
|
break;
|
|
case Indirect:
|
|
OS << "Indirect Align=" << getIndirectAlign();
|
|
break;
|
|
case Expand:
|
|
OS << "Expand";
|
|
break;
|
|
}
|
|
OS << ")\n";
|
|
}
|
|
|
|
TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
|
|
|
|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
|
|
|
|
/// isEmptyField - Return true iff a the field is "empty", that is it
|
|
/// is an unnamed bit-field or an (array of) empty record(s).
|
|
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
|
|
bool AllowArrays) {
|
|
if (FD->isUnnamedBitfield())
|
|
return true;
|
|
|
|
QualType FT = FD->getType();
|
|
|
|
// Constant arrays of empty records count as empty, strip them off.
|
|
if (AllowArrays)
|
|
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
|
|
FT = AT->getElementType();
|
|
|
|
return isEmptyRecord(Context, FT, AllowArrays);
|
|
}
|
|
|
|
/// isEmptyRecord - Return true iff a structure contains only empty
|
|
/// fields. Note that a structure with a flexible array member is not
|
|
/// considered empty.
|
|
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return 0;
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i)
|
|
if (!isEmptyField(Context, *i, AllowArrays))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
|
|
/// a non-trivial destructor or a non-trivial copy constructor.
|
|
static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!RD)
|
|
return false;
|
|
|
|
return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
|
|
}
|
|
|
|
/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
|
|
/// a record type with either a non-trivial destructor or a non-trivial copy
|
|
/// constructor.
|
|
static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
|
|
const RecordType *RT = T->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
return hasNonTrivialDestructorOrCopyConstructor(RT);
|
|
}
|
|
|
|
/// isSingleElementStruct - Determine if a structure is a "single
|
|
/// element struct", i.e. it has exactly one non-empty field or
|
|
/// exactly one field which is itself a single element
|
|
/// struct. Structures with flexible array members are never
|
|
/// considered single element structs.
|
|
///
|
|
/// \return The field declaration for the single non-empty field, if
|
|
/// it exists.
|
|
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
|
|
const RecordType *RT = T->getAsStructureType();
|
|
if (!RT)
|
|
return 0;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return 0;
|
|
|
|
const Type *Found = 0;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
const FieldDecl *FD = *i;
|
|
QualType FT = FD->getType();
|
|
|
|
// Ignore empty fields.
|
|
if (isEmptyField(Context, FD, true))
|
|
continue;
|
|
|
|
// If we already found an element then this isn't a single-element
|
|
// struct.
|
|
if (Found)
|
|
return 0;
|
|
|
|
// Treat single element arrays as the element.
|
|
while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
|
|
if (AT->getSize().getZExtValue() != 1)
|
|
break;
|
|
FT = AT->getElementType();
|
|
}
|
|
|
|
if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
|
|
Found = FT.getTypePtr();
|
|
} else {
|
|
Found = isSingleElementStruct(FT, Context);
|
|
if (!Found)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return Found;
|
|
}
|
|
|
|
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
|
|
if (!Ty->getAs<BuiltinType>() && !Ty->isAnyPointerType() &&
|
|
!Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
|
|
!Ty->isBlockPointerType())
|
|
return false;
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
return Size == 32 || Size == 64;
|
|
}
|
|
|
|
/// canExpandIndirectArgument - Test whether an argument type which is to be
|
|
/// passed indirectly (on the stack) would have the equivalent layout if it was
|
|
/// expanded into separate arguments. If so, we prefer to do the latter to avoid
|
|
/// inhibiting optimizations.
|
|
///
|
|
// FIXME: This predicate is missing many cases, currently it just follows
|
|
// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
|
|
// should probably make this smarter, or better yet make the LLVM backend
|
|
// capable of handling it.
|
|
static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
|
|
// We can only expand structure types.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT)
|
|
return false;
|
|
|
|
// We can only expand (C) structures.
|
|
//
|
|
// FIXME: This needs to be generalized to handle classes as well.
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
|
|
return false;
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
const FieldDecl *FD = *i;
|
|
|
|
if (!is32Or64BitBasicType(FD->getType(), Context))
|
|
return false;
|
|
|
|
// FIXME: Reject bit-fields wholesale; there are two problems, we don't know
|
|
// how to expand them yet, and the predicate for telling if a bitfield still
|
|
// counts as "basic" is more complicated than what we were doing previously.
|
|
if (FD->isBitField())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) {
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
const FieldDecl *FD = *i;
|
|
|
|
if (FD->getType()->isVectorType() &&
|
|
Context.getTypeSize(FD->getType()) >= 128)
|
|
return true;
|
|
|
|
if (const RecordType* RT = FD->getType()->getAs<RecordType>())
|
|
if (typeContainsSSEVector(RT->getDecl(), Context))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// DefaultABIInfo - The default implementation for ABI specific
|
|
/// details. This implementation provides information which results in
|
|
/// self-consistent and sensible LLVM IR generation, but does not
|
|
/// conform to any particular ABI.
|
|
class DefaultABIInfo : public ABIInfo {
|
|
ABIArgInfo classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
|
|
VMContext);
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it)
|
|
it->info = classifyArgumentType(it->type, Context, VMContext);
|
|
}
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
};
|
|
|
|
class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
|
|
};
|
|
|
|
llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
return 0;
|
|
}
|
|
|
|
ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
|
|
return ABIArgInfo::getIndirect(0);
|
|
} else {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
}
|
|
|
|
/// X86_32ABIInfo - The X86-32 ABI information.
|
|
class X86_32ABIInfo : public ABIInfo {
|
|
ASTContext &Context;
|
|
bool IsDarwinVectorABI;
|
|
bool IsSmallStructInRegABI;
|
|
|
|
static bool isRegisterSize(unsigned Size) {
|
|
return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
|
|
}
|
|
|
|
static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
|
|
|
|
static unsigned getIndirectArgumentAlignment(QualType Ty,
|
|
ASTContext &Context);
|
|
|
|
public:
|
|
ABIArgInfo classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
|
|
VMContext);
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it)
|
|
it->info = classifyArgumentType(it->type, Context, VMContext);
|
|
}
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
|
|
X86_32ABIInfo(ASTContext &Context, bool d, bool p)
|
|
: ABIInfo(), Context(Context), IsDarwinVectorABI(d),
|
|
IsSmallStructInRegABI(p) {}
|
|
};
|
|
|
|
class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p)
|
|
:TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}
|
|
};
|
|
|
|
}
|
|
|
|
/// shouldReturnTypeInRegister - Determine if the given type should be
|
|
/// passed in a register (for the Darwin ABI).
|
|
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
|
|
ASTContext &Context) {
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
// Type must be register sized.
|
|
if (!isRegisterSize(Size))
|
|
return false;
|
|
|
|
if (Ty->isVectorType()) {
|
|
// 64- and 128- bit vectors inside structures are not returned in
|
|
// registers.
|
|
if (Size == 64 || Size == 128)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If this is a builtin, pointer, enum, or complex type, it is ok.
|
|
if (Ty->getAs<BuiltinType>() || Ty->isAnyPointerType() ||
|
|
Ty->isAnyComplexType() || Ty->isEnumeralType() ||
|
|
Ty->isBlockPointerType())
|
|
return true;
|
|
|
|
// Arrays are treated like records.
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
|
|
return shouldReturnTypeInRegister(AT->getElementType(), Context);
|
|
|
|
// Otherwise, it must be a record type.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT) return false;
|
|
|
|
// FIXME: Traverse bases here too.
|
|
|
|
// Structure types are passed in register if all fields would be
|
|
// passed in a register.
|
|
for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
|
|
e = RT->getDecl()->field_end(); i != e; ++i) {
|
|
const FieldDecl *FD = *i;
|
|
|
|
// Empty fields are ignored.
|
|
if (isEmptyField(Context, FD, true))
|
|
continue;
|
|
|
|
// Check fields recursively.
|
|
if (!shouldReturnTypeInRegister(FD->getType(), Context))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
if (RetTy->isVoidType()) {
|
|
return ABIArgInfo::getIgnore();
|
|
} else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
|
|
// On Darwin, some vectors are returned in registers.
|
|
if (IsDarwinVectorABI) {
|
|
uint64_t Size = Context.getTypeSize(RetTy);
|
|
|
|
// 128-bit vectors are a special case; they are returned in
|
|
// registers and we need to make sure to pick a type the LLVM
|
|
// backend will like.
|
|
if (Size == 128)
|
|
return ABIArgInfo::getCoerce(llvm::VectorType::get(
|
|
llvm::Type::getInt64Ty(VMContext), 2));
|
|
|
|
// Always return in register if it fits in a general purpose
|
|
// register, or if it is 64 bits and has a single element.
|
|
if ((Size == 8 || Size == 16 || Size == 32) ||
|
|
(Size == 64 && VT->getNumElements() == 1))
|
|
return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
return ABIArgInfo::getDirect();
|
|
} else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
|
|
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
// copy constructor are always indirect.
|
|
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
// Structures with flexible arrays are always indirect.
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
// If specified, structs and unions are always indirect.
|
|
if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
// Classify "single element" structs as their element type.
|
|
if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
|
|
if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
|
|
if (BT->isIntegerType()) {
|
|
// We need to use the size of the structure, padding
|
|
// bit-fields can adjust that to be larger than the single
|
|
// element type.
|
|
uint64_t Size = Context.getTypeSize(RetTy);
|
|
return ABIArgInfo::getCoerce(
|
|
llvm::IntegerType::get(VMContext, (unsigned) Size));
|
|
} else if (BT->getKind() == BuiltinType::Float) {
|
|
assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
|
|
"Unexpect single element structure size!");
|
|
return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
|
|
} else if (BT->getKind() == BuiltinType::Double) {
|
|
assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
|
|
"Unexpect single element structure size!");
|
|
return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
|
|
}
|
|
} else if (SeltTy->isPointerType()) {
|
|
// FIXME: It would be really nice if this could come out as the proper
|
|
// pointer type.
|
|
const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
|
|
return ABIArgInfo::getCoerce(PtrTy);
|
|
} else if (SeltTy->isVectorType()) {
|
|
// 64- and 128-bit vectors are never returned in a
|
|
// register when inside a structure.
|
|
uint64_t Size = Context.getTypeSize(RetTy);
|
|
if (Size == 64 || Size == 128)
|
|
return ABIArgInfo::getIndirect(0);
|
|
|
|
return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
|
|
}
|
|
}
|
|
|
|
// Small structures which are register sized are generally returned
|
|
// in a register.
|
|
if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
|
|
uint64_t Size = Context.getTypeSize(RetTy);
|
|
return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
|
|
}
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
} else {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
}
|
|
|
|
unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty,
|
|
ASTContext &Context) {
|
|
unsigned Align = Context.getTypeAlign(Ty);
|
|
if (Align < 128) return 0;
|
|
if (const RecordType* RT = Ty->getAs<RecordType>())
|
|
if (typeContainsSSEVector(RT->getDecl(), Context))
|
|
return 16;
|
|
return 0;
|
|
}
|
|
|
|
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
// FIXME: Set alignment on indirect arguments.
|
|
if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
|
|
// Structures with flexible arrays are always indirect.
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
// copy constructor are always indirect.
|
|
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
|
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
|
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
|
return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty,
|
|
Context));
|
|
}
|
|
|
|
// Ignore empty structs.
|
|
if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Expand small (<= 128-bit) record types when we know that the stack layout
|
|
// of those arguments will match the struct. This is important because the
|
|
// LLVM backend isn't smart enough to remove byval, which inhibits many
|
|
// optimizations.
|
|
if (Context.getTypeSize(Ty) <= 4*32 &&
|
|
canExpandIndirectArgument(Ty, Context))
|
|
return ABIArgInfo::getExpand();
|
|
|
|
return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context));
|
|
} else {
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
}
|
|
|
|
llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
|
|
const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
|
"ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
llvm::Type *PTy =
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
uint64_t Offset =
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
|
llvm::Value *NextAddr =
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(
|
|
llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
|
|
"ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
namespace {
|
|
/// X86_64ABIInfo - The X86_64 ABI information.
|
|
class X86_64ABIInfo : public ABIInfo {
|
|
enum Class {
|
|
Integer = 0,
|
|
SSE,
|
|
SSEUp,
|
|
X87,
|
|
X87Up,
|
|
ComplexX87,
|
|
NoClass,
|
|
Memory
|
|
};
|
|
|
|
/// merge - Implement the X86_64 ABI merging algorithm.
|
|
///
|
|
/// Merge an accumulating classification \arg Accum with a field
|
|
/// classification \arg Field.
|
|
///
|
|
/// \param Accum - The accumulating classification. This should
|
|
/// always be either NoClass or the result of a previous merge
|
|
/// call. In addition, this should never be Memory (the caller
|
|
/// should just return Memory for the aggregate).
|
|
Class merge(Class Accum, Class Field) const;
|
|
|
|
/// classify - Determine the x86_64 register classes in which the
|
|
/// given type T should be passed.
|
|
///
|
|
/// \param Lo - The classification for the parts of the type
|
|
/// residing in the low word of the containing object.
|
|
///
|
|
/// \param Hi - The classification for the parts of the type
|
|
/// residing in the high word of the containing object.
|
|
///
|
|
/// \param OffsetBase - The bit offset of this type in the
|
|
/// containing object. Some parameters are classified different
|
|
/// depending on whether they straddle an eightbyte boundary.
|
|
///
|
|
/// If a word is unused its result will be NoClass; if a type should
|
|
/// be passed in Memory then at least the classification of \arg Lo
|
|
/// will be Memory.
|
|
///
|
|
/// The \arg Lo class will be NoClass iff the argument is ignored.
|
|
///
|
|
/// If the \arg Lo class is ComplexX87, then the \arg Hi class will
|
|
/// also be ComplexX87.
|
|
void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
|
|
Class &Lo, Class &Hi) const;
|
|
|
|
/// getCoerceResult - Given a source type \arg Ty and an LLVM type
|
|
/// to coerce to, chose the best way to pass Ty in the same place
|
|
/// that \arg CoerceTo would be passed, but while keeping the
|
|
/// emitted code as simple as possible.
|
|
///
|
|
/// FIXME: Note, this should be cleaned up to just take an enumeration of all
|
|
/// the ways we might want to pass things, instead of constructing an LLVM
|
|
/// type. This makes this code more explicit, and it makes it clearer that we
|
|
/// are also doing this for correctness in the case of passing scalar types.
|
|
ABIArgInfo getCoerceResult(QualType Ty,
|
|
const llvm::Type *CoerceTo,
|
|
ASTContext &Context) const;
|
|
|
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
|
/// such that the argument will be passed in memory.
|
|
ABIArgInfo getIndirectResult(QualType Ty,
|
|
ASTContext &Context) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType Ty,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext,
|
|
unsigned &neededInt,
|
|
unsigned &neededSSE) const;
|
|
|
|
public:
|
|
virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
};
|
|
|
|
class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}
|
|
};
|
|
|
|
}
|
|
|
|
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
|
|
Class Field) const {
|
|
// AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
|
|
// classified recursively so that always two fields are
|
|
// considered. The resulting class is calculated according to
|
|
// the classes of the fields in the eightbyte:
|
|
//
|
|
// (a) If both classes are equal, this is the resulting class.
|
|
//
|
|
// (b) If one of the classes is NO_CLASS, the resulting class is
|
|
// the other class.
|
|
//
|
|
// (c) If one of the classes is MEMORY, the result is the MEMORY
|
|
// class.
|
|
//
|
|
// (d) If one of the classes is INTEGER, the result is the
|
|
// INTEGER.
|
|
//
|
|
// (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
|
// MEMORY is used as class.
|
|
//
|
|
// (f) Otherwise class SSE is used.
|
|
|
|
// Accum should never be memory (we should have returned) or
|
|
// ComplexX87 (because this cannot be passed in a structure).
|
|
assert((Accum != Memory && Accum != ComplexX87) &&
|
|
"Invalid accumulated classification during merge.");
|
|
if (Accum == Field || Field == NoClass)
|
|
return Accum;
|
|
else if (Field == Memory)
|
|
return Memory;
|
|
else if (Accum == NoClass)
|
|
return Field;
|
|
else if (Accum == Integer || Field == Integer)
|
|
return Integer;
|
|
else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
|
|
Accum == X87 || Accum == X87Up)
|
|
return Memory;
|
|
else
|
|
return SSE;
|
|
}
|
|
|
|
void X86_64ABIInfo::classify(QualType Ty,
|
|
ASTContext &Context,
|
|
uint64_t OffsetBase,
|
|
Class &Lo, Class &Hi) const {
|
|
// FIXME: This code can be simplified by introducing a simple value class for
|
|
// Class pairs with appropriate constructor methods for the various
|
|
// situations.
|
|
|
|
// FIXME: Some of the split computations are wrong; unaligned vectors
|
|
// shouldn't be passed in registers for example, so there is no chance they
|
|
// can straddle an eightbyte. Verify & simplify.
|
|
|
|
Lo = Hi = NoClass;
|
|
|
|
Class &Current = OffsetBase < 64 ? Lo : Hi;
|
|
Current = Memory;
|
|
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
BuiltinType::Kind k = BT->getKind();
|
|
|
|
if (k == BuiltinType::Void) {
|
|
Current = NoClass;
|
|
} else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
|
|
Lo = Integer;
|
|
Hi = Integer;
|
|
} else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
|
|
Current = Integer;
|
|
} else if (k == BuiltinType::Float || k == BuiltinType::Double) {
|
|
Current = SSE;
|
|
} else if (k == BuiltinType::LongDouble) {
|
|
Lo = X87;
|
|
Hi = X87Up;
|
|
}
|
|
// FIXME: _Decimal32 and _Decimal64 are SSE.
|
|
// FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
|
|
} else if (const EnumType *ET = Ty->getAs<EnumType>()) {
|
|
// Classify the underlying integer type.
|
|
classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
|
|
} else if (Ty->hasPointerRepresentation()) {
|
|
Current = Integer;
|
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
uint64_t Size = Context.getTypeSize(VT);
|
|
if (Size == 32) {
|
|
// gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
|
|
// float> as integer.
|
|
Current = Integer;
|
|
|
|
// If this type crosses an eightbyte boundary, it should be
|
|
// split.
|
|
uint64_t EB_Real = (OffsetBase) / 64;
|
|
uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
|
|
if (EB_Real != EB_Imag)
|
|
Hi = Lo;
|
|
} else if (Size == 64) {
|
|
// gcc passes <1 x double> in memory. :(
|
|
if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
|
|
return;
|
|
|
|
// gcc passes <1 x long long> as INTEGER.
|
|
if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
|
|
Current = Integer;
|
|
else
|
|
Current = SSE;
|
|
|
|
// If this type crosses an eightbyte boundary, it should be
|
|
// split.
|
|
if (OffsetBase && OffsetBase != 64)
|
|
Hi = Lo;
|
|
} else if (Size == 128) {
|
|
Lo = SSE;
|
|
Hi = SSEUp;
|
|
}
|
|
} else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
|
QualType ET = Context.getCanonicalType(CT->getElementType());
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
if (ET->isIntegralType()) {
|
|
if (Size <= 64)
|
|
Current = Integer;
|
|
else if (Size <= 128)
|
|
Lo = Hi = Integer;
|
|
} else if (ET == Context.FloatTy)
|
|
Current = SSE;
|
|
else if (ET == Context.DoubleTy)
|
|
Lo = Hi = SSE;
|
|
else if (ET == Context.LongDoubleTy)
|
|
Current = ComplexX87;
|
|
|
|
// If this complex type crosses an eightbyte boundary then it
|
|
// should be split.
|
|
uint64_t EB_Real = (OffsetBase) / 64;
|
|
uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
|
|
if (Hi == NoClass && EB_Real != EB_Imag)
|
|
Hi = Lo;
|
|
} else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
|
|
// Arrays are treated like structures.
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
|
// than two eightbytes, ..., it has class MEMORY.
|
|
if (Size > 128)
|
|
return;
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
|
|
// fields, it has class MEMORY.
|
|
//
|
|
// Only need to check alignment of array base.
|
|
if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
|
|
return;
|
|
|
|
// Otherwise implement simplified merge. We could be smarter about
|
|
// this, but it isn't worth it and would be harder to verify.
|
|
Current = NoClass;
|
|
uint64_t EltSize = Context.getTypeSize(AT->getElementType());
|
|
uint64_t ArraySize = AT->getSize().getZExtValue();
|
|
for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
|
|
Class FieldLo, FieldHi;
|
|
classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory)
|
|
break;
|
|
}
|
|
|
|
// Do post merger cleanup (see below). Only case we worry about is Memory.
|
|
if (Hi == Memory)
|
|
Lo = Memory;
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
|
|
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
|
// than two eightbytes, ..., it has class MEMORY.
|
|
if (Size > 128)
|
|
return;
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
|
|
// copy constructor or a non-trivial destructor, it is passed by invisible
|
|
// reference.
|
|
if (hasNonTrivialDestructorOrCopyConstructor(RT))
|
|
return;
|
|
|
|
const RecordDecl *RD = RT->getDecl();
|
|
|
|
// Assume variable sized types are passed in memory.
|
|
if (RD->hasFlexibleArrayMember())
|
|
return;
|
|
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
// Reset Lo class, this will be recomputed.
|
|
Current = NoClass;
|
|
|
|
// If this is a C++ record, classify the bases first.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
|
|
e = CXXRD->bases_end(); i != e; ++i) {
|
|
assert(!i->isVirtual() && !i->getType()->isDependentType() &&
|
|
"Unexpected base class!");
|
|
const CXXRecordDecl *Base =
|
|
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
|
|
|
|
// Classify this field.
|
|
//
|
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
|
|
// single eightbyte, each is classified separately. Each eightbyte gets
|
|
// initialized to class NO_CLASS.
|
|
Class FieldLo, FieldHi;
|
|
uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
|
|
classify(i->getType(), Context, Offset, FieldLo, FieldHi);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory)
|
|
break;
|
|
}
|
|
|
|
// If this record has no fields but isn't empty, classify as INTEGER.
|
|
if (RD->field_empty() && Size)
|
|
Current = Integer;
|
|
}
|
|
|
|
// Classify the fields one at a time, merging the results.
|
|
unsigned idx = 0;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
|
bool BitField = i->isBitField();
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
|
|
// fields, it has class MEMORY.
|
|
//
|
|
// Note, skip this test for bit-fields, see below.
|
|
if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
|
|
Lo = Memory;
|
|
return;
|
|
}
|
|
|
|
// Classify this field.
|
|
//
|
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
|
|
// exceeds a single eightbyte, each is classified
|
|
// separately. Each eightbyte gets initialized to class
|
|
// NO_CLASS.
|
|
Class FieldLo, FieldHi;
|
|
|
|
// Bit-fields require special handling, they do not force the
|
|
// structure to be passed in memory even if unaligned, and
|
|
// therefore they can straddle an eightbyte.
|
|
if (BitField) {
|
|
// Ignore padding bit-fields.
|
|
if (i->isUnnamedBitfield())
|
|
continue;
|
|
|
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
|
uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
|
|
|
|
uint64_t EB_Lo = Offset / 64;
|
|
uint64_t EB_Hi = (Offset + Size - 1) / 64;
|
|
FieldLo = FieldHi = NoClass;
|
|
if (EB_Lo) {
|
|
assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
|
|
FieldLo = NoClass;
|
|
FieldHi = Integer;
|
|
} else {
|
|
FieldLo = Integer;
|
|
FieldHi = EB_Hi ? Integer : NoClass;
|
|
}
|
|
} else
|
|
classify(i->getType(), Context, Offset, FieldLo, FieldHi);
|
|
Lo = merge(Lo, FieldLo);
|
|
Hi = merge(Hi, FieldHi);
|
|
if (Lo == Memory || Hi == Memory)
|
|
break;
|
|
}
|
|
|
|
// AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
|
|
//
|
|
// (a) If one of the classes is MEMORY, the whole argument is
|
|
// passed in memory.
|
|
//
|
|
// (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
|
|
|
|
// The first of these conditions is guaranteed by how we implement
|
|
// the merge (just bail).
|
|
//
|
|
// The second condition occurs in the case of unions; for example
|
|
// union { _Complex double; unsigned; }.
|
|
if (Hi == Memory)
|
|
Lo = Memory;
|
|
if (Hi == SSEUp && Lo != SSE)
|
|
Hi = SSE;
|
|
}
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
|
|
const llvm::Type *CoerceTo,
|
|
ASTContext &Context) const {
|
|
if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
|
|
// Integer and pointer types will end up in a general purpose
|
|
// register.
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
} else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
|
|
// FIXME: It would probably be better to make CGFunctionInfo only map using
|
|
// canonical types than to canonize here.
|
|
QualType CTy = Context.getCanonicalType(Ty);
|
|
|
|
// Float and double end up in a single SSE reg.
|
|
if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
|
|
return ABIArgInfo::getDirect();
|
|
|
|
}
|
|
|
|
return ABIArgInfo::getCoerce(CoerceTo);
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
|
|
ASTContext &Context) const {
|
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
|
// place naturally.
|
|
if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty);
|
|
|
|
// FIXME: Set alignment correctly.
|
|
return ABIArgInfo::getIndirect(0, ByVal);
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
// AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
|
|
// classification algorithm.
|
|
X86_64ABIInfo::Class Lo, Hi;
|
|
classify(RetTy, Context, 0, Lo, Hi);
|
|
|
|
// Check some invariants.
|
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
|
assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
|
|
|
const llvm::Type *ResType = 0;
|
|
switch (Lo) {
|
|
case NoClass:
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
case SSEUp:
|
|
case X87Up:
|
|
assert(0 && "Invalid classification for lo word.");
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
|
|
// hidden argument.
|
|
case Memory:
|
|
return getIndirectResult(RetTy, Context);
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
|
|
// available register of the sequence %rax, %rdx is used.
|
|
case Integer:
|
|
ResType = llvm::Type::getInt64Ty(VMContext); break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
|
|
// available SSE register of the sequence %xmm0, %xmm1 is used.
|
|
case SSE:
|
|
ResType = llvm::Type::getDoubleTy(VMContext); break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
|
|
// returned on the X87 stack in %st0 as 80-bit x87 number.
|
|
case X87:
|
|
ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
|
|
// part of the value is returned in %st0 and the imaginary part in
|
|
// %st1.
|
|
case ComplexX87:
|
|
assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
|
|
ResType = llvm::StructType::get(VMContext, llvm::Type::getX86_FP80Ty(VMContext),
|
|
llvm::Type::getX86_FP80Ty(VMContext),
|
|
NULL);
|
|
break;
|
|
}
|
|
|
|
switch (Hi) {
|
|
// Memory was handled previously and X87 should
|
|
// never occur as a hi class.
|
|
case Memory:
|
|
case X87:
|
|
assert(0 && "Invalid classification for hi word.");
|
|
|
|
case ComplexX87: // Previously handled.
|
|
case NoClass: break;
|
|
|
|
case Integer:
|
|
ResType = llvm::StructType::get(VMContext, ResType,
|
|
llvm::Type::getInt64Ty(VMContext), NULL);
|
|
break;
|
|
case SSE:
|
|
ResType = llvm::StructType::get(VMContext, ResType,
|
|
llvm::Type::getDoubleTy(VMContext), NULL);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
|
|
// is passed in the upper half of the last used SSE register.
|
|
//
|
|
// SSEUP should always be preceeded by SSE, just widen.
|
|
case SSEUp:
|
|
assert(Lo == SSE && "Unexpected SSEUp classification.");
|
|
ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
|
|
// returned together with the previous X87 value in %st0.
|
|
case X87Up:
|
|
// If X87Up is preceeded by X87, we don't need to do
|
|
// anything. However, in some cases with unions it may not be
|
|
// preceeded by X87. In such situations we follow gcc and pass the
|
|
// extra bits in an SSE reg.
|
|
if (Lo != X87)
|
|
ResType = llvm::StructType::get(VMContext, ResType,
|
|
llvm::Type::getDoubleTy(VMContext), NULL);
|
|
break;
|
|
}
|
|
|
|
return getCoerceResult(RetTy, ResType, Context);
|
|
}
|
|
|
|
ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext,
|
|
unsigned &neededInt,
|
|
unsigned &neededSSE) const {
|
|
X86_64ABIInfo::Class Lo, Hi;
|
|
classify(Ty, Context, 0, Lo, Hi);
|
|
|
|
// Check some invariants.
|
|
// FIXME: Enforce these by construction.
|
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
|
assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
|
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
|
|
|
neededInt = 0;
|
|
neededSSE = 0;
|
|
const llvm::Type *ResType = 0;
|
|
switch (Lo) {
|
|
case NoClass:
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
|
|
// on the stack.
|
|
case Memory:
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
|
|
// COMPLEX_X87, it is passed in memory.
|
|
case X87:
|
|
case ComplexX87:
|
|
return getIndirectResult(Ty, Context);
|
|
|
|
case SSEUp:
|
|
case X87Up:
|
|
assert(0 && "Invalid classification for lo word.");
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
|
|
// available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
|
|
// and %r9 is used.
|
|
case Integer:
|
|
++neededInt;
|
|
ResType = llvm::Type::getInt64Ty(VMContext);
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
|
|
// available SSE register is used, the registers are taken in the
|
|
// order from %xmm0 to %xmm7.
|
|
case SSE:
|
|
++neededSSE;
|
|
ResType = llvm::Type::getDoubleTy(VMContext);
|
|
break;
|
|
}
|
|
|
|
switch (Hi) {
|
|
// Memory was handled previously, ComplexX87 and X87 should
|
|
// never occur as hi classes, and X87Up must be preceed by X87,
|
|
// which is passed in memory.
|
|
case Memory:
|
|
case X87:
|
|
case ComplexX87:
|
|
assert(0 && "Invalid classification for hi word.");
|
|
break;
|
|
|
|
case NoClass: break;
|
|
case Integer:
|
|
ResType = llvm::StructType::get(VMContext, ResType,
|
|
llvm::Type::getInt64Ty(VMContext), NULL);
|
|
++neededInt;
|
|
break;
|
|
|
|
// X87Up generally doesn't occur here (long double is passed in
|
|
// memory), except in situations involving unions.
|
|
case X87Up:
|
|
case SSE:
|
|
ResType = llvm::StructType::get(VMContext, ResType,
|
|
llvm::Type::getDoubleTy(VMContext), NULL);
|
|
++neededSSE;
|
|
break;
|
|
|
|
// AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
|
|
// eightbyte is passed in the upper half of the last used SSE
|
|
// register.
|
|
case SSEUp:
|
|
assert(Lo == SSE && "Unexpected SSEUp classification.");
|
|
ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
|
|
break;
|
|
}
|
|
|
|
return getCoerceResult(Ty, ResType, Context);
|
|
}
|
|
|
|
void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
|
|
Context, VMContext);
|
|
|
|
// Keep track of the number of assigned registers.
|
|
unsigned freeIntRegs = 6, freeSSERegs = 8;
|
|
|
|
// If the return value is indirect, then the hidden argument is consuming one
|
|
// integer register.
|
|
if (FI.getReturnInfo().isIndirect())
|
|
--freeIntRegs;
|
|
|
|
// AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
|
|
// get assigned (in left-to-right order) for passing as follows...
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it) {
|
|
unsigned neededInt, neededSSE;
|
|
it->info = classifyArgumentType(it->type, Context, VMContext,
|
|
neededInt, neededSSE);
|
|
|
|
// AMD64-ABI 3.2.3p3: If there are no registers available for any
|
|
// eightbyte of an argument, the whole argument is passed on the
|
|
// stack. If registers have already been assigned for some
|
|
// eightbytes of such an argument, the assignments get reverted.
|
|
if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
|
|
freeIntRegs -= neededInt;
|
|
freeSSERegs -= neededSSE;
|
|
} else {
|
|
it->info = getIndirectResult(it->type, Context);
|
|
}
|
|
}
|
|
}
|
|
|
|
static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
|
|
QualType Ty,
|
|
CodeGenFunction &CGF) {
|
|
llvm::Value *overflow_arg_area_p =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
|
|
llvm::Value *overflow_arg_area =
|
|
CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
|
|
// byte boundary if alignment needed by type exceeds 8 byte boundary.
|
|
uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
|
|
if (Align > 8) {
|
|
// Note that we follow the ABI & gcc here, even though the type
|
|
// could in theory have an alignment greater than 16. This case
|
|
// shouldn't ever matter in practice.
|
|
|
|
// overflow_arg_area = (overflow_arg_area + 15) & ~15;
|
|
llvm::Value *Offset =
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15);
|
|
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
|
|
llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
|
|
llvm::Type::getInt64Ty(CGF.getLLVMContext()));
|
|
llvm::Value *Mask = llvm::ConstantInt::get(
|
|
llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL);
|
|
overflow_arg_area =
|
|
CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
|
|
overflow_arg_area->getType(),
|
|
"overflow_arg_area.align");
|
|
}
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
|
|
const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
|
llvm::Value *Res =
|
|
CGF.Builder.CreateBitCast(overflow_arg_area,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
|
|
// l->overflow_arg_area + sizeof(type).
|
|
// AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
|
|
// an 8 byte boundary.
|
|
|
|
uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
|
|
llvm::Value *Offset =
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
|
|
(SizeInBytes + 7) & ~7);
|
|
overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
|
|
"overflow_arg_area.next");
|
|
CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
|
|
return Res;
|
|
}
|
|
|
|
llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
llvm::LLVMContext &VMContext = CGF.getLLVMContext();
|
|
const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext);
|
|
const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
|
|
|
|
// Assume that va_list type is correct; should be pointer to LLVM type:
|
|
// struct {
|
|
// i32 gp_offset;
|
|
// i32 fp_offset;
|
|
// i8* overflow_arg_area;
|
|
// i8* reg_save_area;
|
|
// };
|
|
unsigned neededInt, neededSSE;
|
|
ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
|
|
neededInt, neededSSE);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
|
|
// in the registers. If not go to step 7.
|
|
if (!neededInt && !neededSSE)
|
|
return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
|
|
// general purpose registers needed to pass type and num_fp to hold
|
|
// the number of floating point registers needed.
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
|
|
// registers. In the case: l->gp_offset > 48 - num_gp * 8 or
|
|
// l->fp_offset > 304 - num_fp * 16 go to step 7.
|
|
//
|
|
// NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
|
|
// register save space).
|
|
|
|
llvm::Value *InRegs = 0;
|
|
llvm::Value *gp_offset_p = 0, *gp_offset = 0;
|
|
llvm::Value *fp_offset_p = 0, *fp_offset = 0;
|
|
if (neededInt) {
|
|
gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
|
|
gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
|
|
InRegs =
|
|
CGF.Builder.CreateICmpULE(gp_offset,
|
|
llvm::ConstantInt::get(i32Ty,
|
|
48 - neededInt * 8),
|
|
"fits_in_gp");
|
|
}
|
|
|
|
if (neededSSE) {
|
|
fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
|
|
fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
|
|
llvm::Value *FitsInFP =
|
|
CGF.Builder.CreateICmpULE(fp_offset,
|
|
llvm::ConstantInt::get(i32Ty,
|
|
176 - neededSSE * 16),
|
|
"fits_in_fp");
|
|
InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
|
|
}
|
|
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
|
|
|
|
// Emit code to load the value if it was passed in registers.
|
|
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
|
|
// an offset of l->gp_offset and/or l->fp_offset. This may require
|
|
// copying to a temporary location in case the parameter is passed
|
|
// in different register classes or requires an alignment greater
|
|
// than 8 for general purpose registers and 16 for XMM registers.
|
|
//
|
|
// FIXME: This really results in shameful code when we end up needing to
|
|
// collect arguments from different places; often what should result in a
|
|
// simple assembling of a structure from scattered addresses has many more
|
|
// loads than necessary. Can we clean this up?
|
|
const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
|
llvm::Value *RegAddr =
|
|
CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
|
|
"reg_save_area");
|
|
if (neededInt && neededSSE) {
|
|
// FIXME: Cleanup.
|
|
assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
|
|
const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
|
|
llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
|
|
assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
|
|
const llvm::Type *TyLo = ST->getElementType(0);
|
|
const llvm::Type *TyHi = ST->getElementType(1);
|
|
assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
|
|
"Unexpected ABI info for mixed regs");
|
|
const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
|
|
const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
|
|
llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
|
|
llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
|
llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
|
|
llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
|
|
llvm::Value *V =
|
|
CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
|
|
|
RegAddr = CGF.Builder.CreateBitCast(Tmp,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
} else if (neededInt) {
|
|
RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
|
|
RegAddr = CGF.Builder.CreateBitCast(RegAddr,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
} else {
|
|
if (neededSSE == 1) {
|
|
RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
|
RegAddr = CGF.Builder.CreateBitCast(RegAddr,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
} else {
|
|
assert(neededSSE == 2 && "Invalid number of needed registers!");
|
|
// SSE registers are spaced 16 bytes apart in the register save
|
|
// area, we need to collect the two eightbytes together.
|
|
llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
|
|
llvm::Value *RegAddrHi =
|
|
CGF.Builder.CreateGEP(RegAddrLo,
|
|
llvm::ConstantInt::get(i32Ty, 16));
|
|
const llvm::Type *DblPtrTy =
|
|
llvm::PointerType::getUnqual(DoubleTy);
|
|
const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
|
|
DoubleTy, NULL);
|
|
llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
|
|
DblPtrTy));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
|
V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
|
|
DblPtrTy));
|
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
|
RegAddr = CGF.Builder.CreateBitCast(Tmp,
|
|
llvm::PointerType::getUnqual(LTy));
|
|
}
|
|
}
|
|
|
|
// AMD64-ABI 3.5.7p5: Step 5. Set:
|
|
// l->gp_offset = l->gp_offset + num_gp * 8
|
|
// l->fp_offset = l->fp_offset + num_fp * 16.
|
|
if (neededInt) {
|
|
llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
|
|
gp_offset_p);
|
|
}
|
|
if (neededSSE) {
|
|
llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
|
|
fp_offset_p);
|
|
}
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
// Emit code to load the value if it was passed in memory.
|
|
|
|
CGF.EmitBlock(InMemBlock);
|
|
llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
|
|
|
|
// Return the appropriate result.
|
|
|
|
CGF.EmitBlock(ContBlock);
|
|
llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
|
|
"vaarg.addr");
|
|
ResAddr->reserveOperandSpace(2);
|
|
ResAddr->addIncoming(RegAddr, InRegBlock);
|
|
ResAddr->addIncoming(MemAddr, InMemBlock);
|
|
|
|
return ResAddr;
|
|
}
|
|
|
|
// PIC16 ABI Implementation
|
|
|
|
namespace {
|
|
|
|
class PIC16ABIInfo : public ABIInfo {
|
|
ABIArgInfo classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
|
|
VMContext);
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it)
|
|
it->info = classifyArgumentType(it->type, Context, VMContext);
|
|
}
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
};
|
|
|
|
class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}
|
|
};
|
|
|
|
}
|
|
|
|
ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
if (RetTy->isVoidType()) {
|
|
return ABIArgInfo::getIgnore();
|
|
} else {
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
}
|
|
|
|
ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
|
|
llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
return 0;
|
|
}
|
|
|
|
// ARM ABI Implementation
|
|
|
|
namespace {
|
|
|
|
class ARMABIInfo : public ABIInfo {
|
|
public:
|
|
enum ABIKind {
|
|
APCS = 0,
|
|
AAPCS = 1,
|
|
AAPCS_VFP
|
|
};
|
|
|
|
private:
|
|
ABIKind Kind;
|
|
|
|
public:
|
|
ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
|
|
|
|
private:
|
|
ABIKind getABIKind() const { return Kind; }
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMCOntext) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
};
|
|
|
|
class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K)
|
|
:TargetCodeGenInfo(new ARMABIInfo(K)) {}
|
|
};
|
|
|
|
}
|
|
|
|
void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
|
|
VMContext);
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it) {
|
|
it->info = classifyArgumentType(it->type, Context, VMContext);
|
|
}
|
|
|
|
// ARM always overrides the calling convention.
|
|
switch (getABIKind()) {
|
|
case APCS:
|
|
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
|
|
break;
|
|
|
|
case AAPCS:
|
|
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
|
|
break;
|
|
|
|
case AAPCS_VFP:
|
|
FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (Ty->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Ignore empty records.
|
|
if (isEmptyRecord(Context, Ty, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// FIXME: This is kind of nasty... but there isn't much choice because the ARM
|
|
// backend doesn't support byval.
|
|
// FIXME: This doesn't handle alignment > 64 bits.
|
|
const llvm::Type* ElemTy;
|
|
unsigned SizeRegs;
|
|
if (Context.getTypeAlign(Ty) > 32) {
|
|
ElemTy = llvm::Type::getInt64Ty(VMContext);
|
|
SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
|
|
} else {
|
|
ElemTy = llvm::Type::getInt32Ty(VMContext);
|
|
SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
|
|
}
|
|
std::vector<const llvm::Type*> LLVMFields;
|
|
LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
|
|
const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
|
|
return ABIArgInfo::getCoerce(STy);
|
|
}
|
|
|
|
static bool isIntegerLikeType(QualType Ty,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) {
|
|
// APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
|
|
// is called integer-like if its size is less than or equal to one word, and
|
|
// the offset of each of its addressable sub-fields is zero.
|
|
|
|
uint64_t Size = Context.getTypeSize(Ty);
|
|
|
|
// Check that the type fits in a word.
|
|
if (Size > 32)
|
|
return false;
|
|
|
|
// FIXME: Handle vector types!
|
|
if (Ty->isVectorType())
|
|
return false;
|
|
|
|
// Float types are never treated as "integer like".
|
|
if (Ty->isRealFloatingType())
|
|
return false;
|
|
|
|
// If this is a builtin or pointer type then it is ok.
|
|
if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
|
|
return true;
|
|
|
|
// Small complex integer types are "integer like".
|
|
if (const ComplexType *CT = Ty->getAs<ComplexType>())
|
|
return isIntegerLikeType(CT->getElementType(), Context, VMContext);
|
|
|
|
// Single element and zero sized arrays should be allowed, by the definition
|
|
// above, but they are not.
|
|
|
|
// Otherwise, it must be a record type.
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
if (!RT) return false;
|
|
|
|
// Ignore records with flexible arrays.
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->hasFlexibleArrayMember())
|
|
return false;
|
|
|
|
// Check that all sub-fields are at offset 0, and are themselves "integer
|
|
// like".
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
bool HadField = false;
|
|
unsigned idx = 0;
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i, ++idx) {
|
|
const FieldDecl *FD = *i;
|
|
|
|
// Bit-fields are not addressable, we only need to verify they are "integer
|
|
// like". We still have to disallow a subsequent non-bitfield, for example:
|
|
// struct { int : 0; int x }
|
|
// is non-integer like according to gcc.
|
|
if (FD->isBitField()) {
|
|
if (!RD->isUnion())
|
|
HadField = true;
|
|
|
|
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Check if this field is at offset 0.
|
|
if (Layout.getFieldOffset(idx) != 0)
|
|
return false;
|
|
|
|
if (!isIntegerLikeType(FD->getType(), Context, VMContext))
|
|
return false;
|
|
|
|
// Only allow at most one field in a structure. This doesn't match the
|
|
// wording above, but follows gcc in situations with a field following an
|
|
// empty structure.
|
|
if (!RD->isUnion()) {
|
|
if (HadField)
|
|
return false;
|
|
|
|
HadField = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Are we following APCS?
|
|
if (getABIKind() == APCS) {
|
|
if (isEmptyRecord(Context, RetTy, false))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Complex types are all returned as packed integers.
|
|
//
|
|
// FIXME: Consider using 2 x vector types if the back end handles them
|
|
// correctly.
|
|
if (RetTy->isAnyComplexType())
|
|
return ABIArgInfo::getCoerce(llvm::IntegerType::get(
|
|
VMContext, Context.getTypeSize(RetTy)));
|
|
|
|
// Integer like structures are returned in r0.
|
|
if (isIntegerLikeType(RetTy, Context, VMContext)) {
|
|
// Return in the smallest viable integer type.
|
|
uint64_t Size = Context.getTypeSize(RetTy);
|
|
if (Size <= 8)
|
|
return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
|
|
return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
|
|
}
|
|
|
|
// Otherwise return in memory.
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
// Otherwise this is an AAPCS variant.
|
|
|
|
if (isEmptyRecord(Context, RetTy, true))
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// Aggregates <= 4 bytes are returned in r0; other aggregates
|
|
// are returned indirectly.
|
|
uint64_t Size = Context.getTypeSize(RetTy);
|
|
if (Size <= 32) {
|
|
// Return in the smallest viable integer type.
|
|
if (Size <= 8)
|
|
return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
|
|
if (Size <= 16)
|
|
return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
|
|
return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
|
|
}
|
|
|
|
return ABIArgInfo::getIndirect(0);
|
|
}
|
|
|
|
llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// FIXME: Need to handle alignment
|
|
const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
|
|
const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
|
|
"ap");
|
|
llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
|
|
llvm::Type *PTy =
|
|
llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
|
|
llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
|
|
|
|
uint64_t Offset =
|
|
llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
|
|
llvm::Value *NextAddr =
|
|
Builder.CreateGEP(Addr, llvm::ConstantInt::get(
|
|
llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
|
|
"ap.next");
|
|
Builder.CreateStore(NextAddr, VAListAddrAsBPP);
|
|
|
|
return AddrTyped;
|
|
}
|
|
|
|
ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
if (RetTy->isVoidType()) {
|
|
return ABIArgInfo::getIgnore();
|
|
} else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
|
|
return ABIArgInfo::getIndirect(0);
|
|
} else {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
return (RetTy->isPromotableIntegerType() ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
}
|
|
|
|
// SystemZ ABI Implementation
|
|
|
|
namespace {
|
|
|
|
class SystemZABIInfo : public ABIInfo {
|
|
bool isPromotableIntegerType(QualType Ty) const;
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const;
|
|
|
|
virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
|
|
Context, VMContext);
|
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
|
it != ie; ++it)
|
|
it->info = classifyArgumentType(it->type, Context, VMContext);
|
|
}
|
|
|
|
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const;
|
|
};
|
|
|
|
class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}
|
|
};
|
|
|
|
}
|
|
|
|
bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
|
|
// SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Bool:
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF) const {
|
|
// FIXME: Implement
|
|
return 0;
|
|
}
|
|
|
|
|
|
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
if (RetTy->isVoidType()) {
|
|
return ABIArgInfo::getIgnore();
|
|
} else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
|
|
return ABIArgInfo::getIndirect(0);
|
|
} else {
|
|
return (isPromotableIntegerType(RetTy) ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
}
|
|
|
|
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
|
|
ASTContext &Context,
|
|
llvm::LLVMContext &VMContext) const {
|
|
if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
|
|
return ABIArgInfo::getIndirect(0);
|
|
} else {
|
|
return (isPromotableIntegerType(Ty) ?
|
|
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
|
|
}
|
|
}
|
|
|
|
// MSP430 ABI Implementation
|
|
|
|
namespace {
|
|
|
|
class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
|
|
void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const;
|
|
};
|
|
|
|
}
|
|
|
|
void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
|
|
llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &M) const {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
|
|
// Handle 'interrupt' attribute:
|
|
llvm::Function *F = cast<llvm::Function>(GV);
|
|
|
|
// Step 1: Set ISR calling convention.
|
|
F->setCallingConv(llvm::CallingConv::MSP430_INTR);
|
|
|
|
// Step 2: Add attributes goodness.
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
|
|
// Step 3: Emit ISR vector alias.
|
|
unsigned Num = attr->getNumber() + 0xffe0;
|
|
new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
|
|
"vector_" +
|
|
llvm::LowercaseString(llvm::utohexstr(Num)),
|
|
GV, &M.getModule());
|
|
}
|
|
}
|
|
}
|
|
|
|
const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const {
|
|
if (TheTargetCodeGenInfo)
|
|
return *TheTargetCodeGenInfo;
|
|
|
|
// For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
|
|
// free it.
|
|
|
|
const llvm::Triple &Triple(getContext().Target.getTriple());
|
|
switch (Triple.getArch()) {
|
|
default:
|
|
return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo);
|
|
|
|
case llvm::Triple::arm:
|
|
case llvm::Triple::thumb:
|
|
// FIXME: We want to know the float calling convention as well.
|
|
if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
|
|
return *(TheTargetCodeGenInfo =
|
|
new ARMTargetCodeGenInfo(ARMABIInfo::APCS));
|
|
|
|
return *(TheTargetCodeGenInfo =
|
|
new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS));
|
|
|
|
case llvm::Triple::pic16:
|
|
return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo());
|
|
|
|
case llvm::Triple::systemz:
|
|
return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo());
|
|
|
|
case llvm::Triple::msp430:
|
|
return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo());
|
|
|
|
case llvm::Triple::x86:
|
|
switch (Triple.getOS()) {
|
|
case llvm::Triple::Darwin:
|
|
return *(TheTargetCodeGenInfo =
|
|
new X86_32TargetCodeGenInfo(Context, true, true));
|
|
case llvm::Triple::Cygwin:
|
|
case llvm::Triple::MinGW32:
|
|
case llvm::Triple::MinGW64:
|
|
case llvm::Triple::AuroraUX:
|
|
case llvm::Triple::DragonFly:
|
|
case llvm::Triple::FreeBSD:
|
|
case llvm::Triple::OpenBSD:
|
|
return *(TheTargetCodeGenInfo =
|
|
new X86_32TargetCodeGenInfo(Context, false, true));
|
|
|
|
default:
|
|
return *(TheTargetCodeGenInfo =
|
|
new X86_32TargetCodeGenInfo(Context, false, false));
|
|
}
|
|
|
|
case llvm::Triple::x86_64:
|
|
return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo());
|
|
}
|
|
}
|