Peter Klausler e6373de53d [flang] Allow assignment to host association in BLOCK in PURE subprogram
We need to distinguish BLOCK host association from subprogram host
association when checking assignments in PURE subprograms.
The specific case that is not allowed is an assignment to a variable
from the scope around the PURE subprogram.

Differential Revision: https://reviews.llvm.org/D131098
2022-08-07 14:48:53 -07:00

1597 lines
54 KiB
C++

//===-- lib/Semantics/tools.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Parser/tools.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/indirection.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/message.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
#include <variant>
namespace Fortran::semantics {
// Find this or containing scope that matches predicate
static const Scope *FindScopeContaining(
const Scope &start, std::function<bool(const Scope &)> predicate) {
for (const Scope *scope{&start};; scope = &scope->parent()) {
if (predicate(*scope)) {
return scope;
}
if (scope->IsTopLevel()) {
return nullptr;
}
}
}
const Scope &GetTopLevelUnitContaining(const Scope &start) {
CHECK(!start.IsTopLevel());
return DEREF(FindScopeContaining(
start, [](const Scope &scope) { return scope.parent().IsTopLevel(); }));
}
const Scope &GetTopLevelUnitContaining(const Symbol &symbol) {
return GetTopLevelUnitContaining(symbol.owner());
}
const Scope *FindModuleContaining(const Scope &start) {
return FindScopeContaining(
start, [](const Scope &scope) { return scope.IsModule(); });
}
const Scope *FindModuleFileContaining(const Scope &start) {
return FindScopeContaining(
start, [](const Scope &scope) { return scope.IsModuleFile(); });
}
const Scope &GetProgramUnitContaining(const Scope &start) {
CHECK(!start.IsTopLevel());
return DEREF(FindScopeContaining(start, [](const Scope &scope) {
switch (scope.kind()) {
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockData:
return true;
default:
return false;
}
}));
}
const Scope &GetProgramUnitContaining(const Symbol &symbol) {
return GetProgramUnitContaining(symbol.owner());
}
const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &start) {
CHECK(!start.IsTopLevel());
return DEREF(FindScopeContaining(start, [](const Scope &scope) {
switch (scope.kind()) {
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockData:
case Scope::Kind::BlockConstruct:
return true;
default:
return false;
}
}));
}
const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &symbol) {
return GetProgramUnitOrBlockConstructContaining(symbol.owner());
}
const Scope *FindPureProcedureContaining(const Scope &start) {
// N.B. We only need to examine the innermost containing program unit
// because an internal subprogram of a pure subprogram must also
// be pure (C1592).
if (start.IsTopLevel()) {
return nullptr;
} else {
const Scope &scope{GetProgramUnitContaining(start)};
return IsPureProcedure(scope) ? &scope : nullptr;
}
}
// 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its
// infrastructure to detect and handle comparisons on distinct (but "same")
// sequence/bind(C) derived types
static bool MightBeSameDerivedType(
const std::optional<evaluate::DynamicType> &lhsType,
const std::optional<evaluate::DynamicType> &rhsType) {
return lhsType && rhsType && lhsType->IsTkCompatibleWith(*rhsType);
}
Tristate IsDefinedAssignment(
const std::optional<evaluate::DynamicType> &lhsType, int lhsRank,
const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) {
if (!lhsType || !rhsType) {
return Tristate::No; // error or rhs is untyped
}
if (lhsType->IsUnlimitedPolymorphic()) {
return Tristate::No;
}
if (rhsType->IsUnlimitedPolymorphic()) {
return Tristate::Maybe;
}
TypeCategory lhsCat{lhsType->category()};
TypeCategory rhsCat{rhsType->category()};
if (rhsRank > 0 && lhsRank != rhsRank) {
return Tristate::Yes;
} else if (lhsCat != TypeCategory::Derived) {
return ToTristate(lhsCat != rhsCat &&
(!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat)));
} else if (MightBeSameDerivedType(lhsType, rhsType)) {
return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic
} else {
return Tristate::Yes;
}
}
bool IsIntrinsicRelational(common::RelationalOperator opr,
const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
if (!evaluate::AreConformable(rank0, rank1)) {
return false;
} else {
auto cat0{type0.category()};
auto cat1{type1.category()};
if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) {
// numeric types: EQ/NE always ok, others ok for non-complex
return opr == common::RelationalOperator::EQ ||
opr == common::RelationalOperator::NE ||
(cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex);
} else {
// not both numeric: only Character is ok
return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character;
}
}
}
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) {
return IsNumericTypeCategory(type0.category());
}
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
IsNumericTypeCategory(type0.category()) &&
IsNumericTypeCategory(type1.category());
}
bool IsIntrinsicLogical(const evaluate::DynamicType &type0) {
return type0.category() == TypeCategory::Logical;
}
bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
type0.category() == TypeCategory::Logical &&
type1.category() == TypeCategory::Logical;
}
bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
type0.category() == TypeCategory::Character &&
type1.category() == TypeCategory::Character &&
type0.kind() == type1.kind();
}
bool IsGenericDefinedOp(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
return generic->kind().IsDefinedOperator();
} else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) {
return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp;
} else {
return false;
}
}
bool IsDefinedOperator(SourceName name) {
const char *begin{name.begin()};
const char *end{name.end()};
return begin != end && begin[0] == '.' && end[-1] == '.';
}
std::string MakeOpName(SourceName name) {
std::string result{name.ToString()};
return IsDefinedOperator(name) ? "OPERATOR(" + result + ")"
: result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result)
: result;
}
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) {
const auto &objects{block.get<CommonBlockDetails>().objects()};
auto found{std::find(objects.begin(), objects.end(), object)};
return found != objects.end();
}
bool IsUseAssociated(const Symbol &symbol, const Scope &scope) {
const Scope &owner{
GetProgramUnitOrBlockConstructContaining(symbol.GetUltimate().owner())};
return owner.kind() == Scope::Kind::Module &&
owner != GetProgramUnitOrBlockConstructContaining(scope);
}
bool DoesScopeContain(
const Scope *maybeAncestor, const Scope &maybeDescendent) {
return maybeAncestor && !maybeDescendent.IsTopLevel() &&
FindScopeContaining(maybeDescendent.parent(),
[&](const Scope &scope) { return &scope == maybeAncestor; });
}
bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) {
return DoesScopeContain(maybeAncestor, symbol.owner());
}
static const Symbol &FollowHostAssoc(const Symbol &symbol) {
for (const Symbol *s{&symbol};;) {
const auto *details{s->detailsIf<HostAssocDetails>()};
if (!details) {
return *s;
}
s = &details->symbol();
}
}
bool IsHostAssociated(const Symbol &symbol, const Scope &scope) {
return DoesScopeContain(
&GetProgramUnitOrBlockConstructContaining(FollowHostAssoc(symbol)),
GetProgramUnitOrBlockConstructContaining(scope));
}
bool IsHostAssociatedIntoSubprogram(const Symbol &symbol, const Scope &scope) {
return DoesScopeContain(
&GetProgramUnitOrBlockConstructContaining(FollowHostAssoc(symbol)),
GetProgramUnitContaining(scope));
}
bool IsInStmtFunction(const Symbol &symbol) {
if (const Symbol * function{symbol.owner().symbol()}) {
return IsStmtFunction(*function);
}
return false;
}
bool IsStmtFunctionDummy(const Symbol &symbol) {
return IsDummy(symbol) && IsInStmtFunction(symbol);
}
bool IsStmtFunctionResult(const Symbol &symbol) {
return IsFunctionResult(symbol) && IsInStmtFunction(symbol);
}
bool IsPointerDummy(const Symbol &symbol) {
return IsPointer(symbol) && IsDummy(symbol);
}
bool IsBindCProcedure(const Symbol &symbol) {
if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
if (const Symbol * procInterface{procDetails->interface().symbol()}) {
// procedure component with a BIND(C) interface
return IsBindCProcedure(*procInterface);
}
}
return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol);
}
bool IsBindCProcedure(const Scope &scope) {
if (const Symbol * symbol{scope.GetSymbol()}) {
return IsBindCProcedure(*symbol);
} else {
return false;
}
}
static const Symbol *FindPointerComponent(
const Scope &scope, std::set<const Scope *> &visited) {
if (!scope.IsDerivedType()) {
return nullptr;
}
if (!visited.insert(&scope).second) {
return nullptr;
}
// If there's a top-level pointer component, return it for clearer error
// messaging.
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (IsPointer(symbol)) {
return &symbol;
}
}
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (const Scope * nested{derived->scope()}) {
if (const Symbol *
pointer{FindPointerComponent(*nested, visited)}) {
return pointer;
}
}
}
}
}
}
return nullptr;
}
const Symbol *FindPointerComponent(const Scope &scope) {
std::set<const Scope *> visited;
return FindPointerComponent(scope, visited);
}
const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) {
if (const Scope * scope{derived.scope()}) {
return FindPointerComponent(*scope);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec &type) {
if (const DerivedTypeSpec * derived{type.AsDerived()}) {
return FindPointerComponent(*derived);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec *type) {
return type ? FindPointerComponent(*type) : nullptr;
}
const Symbol *FindPointerComponent(const Symbol &symbol) {
return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType());
}
// C1594 specifies several ways by which an object might be globally visible.
const Symbol *FindExternallyVisibleObject(
const Symbol &object, const Scope &scope) {
// TODO: Storage association with any object for which this predicate holds,
// once EQUIVALENCE is supported.
const Symbol &ultimate{GetAssociationRoot(object)};
if (IsDummy(ultimate)) {
if (IsIntentIn(ultimate)) {
return &ultimate;
}
if (IsPointer(ultimate) && IsPureProcedure(ultimate.owner()) &&
IsFunction(ultimate.owner())) {
return &ultimate;
}
} else if (&GetProgramUnitContaining(ultimate) !=
&GetProgramUnitContaining(scope)) {
return &object;
} else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) {
return block;
}
return nullptr;
}
const Symbol &BypassGeneric(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
if (const Symbol * specific{generic->specific()}) {
return *specific;
}
}
return symbol;
}
bool ExprHasTypeCategory(
const SomeExpr &expr, const common::TypeCategory &type) {
auto dynamicType{expr.GetType()};
return dynamicType && dynamicType->category() == type;
}
bool ExprTypeKindIsDefault(
const SomeExpr &expr, const SemanticsContext &context) {
auto dynamicType{expr.GetType()};
return dynamicType &&
dynamicType->category() != common::TypeCategory::Derived &&
dynamicType->kind() == context.GetDefaultKind(dynamicType->category());
}
// If an analyzed expr or assignment is missing, dump the node and die.
template <typename T>
static void CheckMissingAnalysis(
bool crash, SemanticsContext *context, const T &x) {
if (crash && !(context && context->AnyFatalError())) {
std::string buf;
llvm::raw_string_ostream ss{buf};
ss << "node has not been analyzed:\n";
parser::DumpTree(ss, x);
common::die(ss.str().c_str());
}
}
const SomeExpr *GetExprHelper::Get(const parser::Expr &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const SomeExpr *GetExprHelper::Get(const parser::Variable &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) {
CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
}
const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) {
return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v)
: nullptr;
}
const evaluate::Assignment *GetAssignment(
const parser::PointerAssignmentStmt &x) {
return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v)
: nullptr;
}
const Symbol *FindInterface(const Symbol &symbol) {
return common::visit(
common::visitors{
[](const ProcEntityDetails &details) {
return details.interface().symbol();
},
[](const ProcBindingDetails &details) { return &details.symbol(); },
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindSubprogram(const Symbol &symbol) {
return common::visit(
common::visitors{
[&](const ProcEntityDetails &details) -> const Symbol * {
if (const Symbol * interface{details.interface().symbol()}) {
return FindSubprogram(*interface);
} else {
return &symbol;
}
},
[](const ProcBindingDetails &details) {
return FindSubprogram(details.symbol());
},
[&](const SubprogramDetails &) { return &symbol; },
[](const UseDetails &details) {
return FindSubprogram(details.symbol());
},
[](const HostAssocDetails &details) {
return FindSubprogram(details.symbol());
},
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindOverriddenBinding(const Symbol &symbol) {
if (symbol.has<ProcBindingDetails>()) {
if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) {
if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) {
if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) {
return parentScope->FindComponent(symbol.name());
}
}
}
}
return nullptr;
}
const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) {
return FindParentTypeSpec(derived.typeSymbol());
}
const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) {
if (const DerivedTypeSpec * derived{decl.AsDerived()}) {
return FindParentTypeSpec(*derived);
} else {
return nullptr;
}
}
const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) {
if (scope.kind() == Scope::Kind::DerivedType) {
if (const auto *symbol{scope.symbol()}) {
return FindParentTypeSpec(*symbol);
}
}
return nullptr;
}
const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) {
if (const Scope * scope{symbol.scope()}) {
if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
if (const Symbol * parent{details->GetParentComponent(*scope)}) {
return parent->GetType();
}
}
}
return nullptr;
}
const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) {
for (const EquivalenceObject &object : set) {
if (object.symbol == ultimate) {
return &set;
}
}
}
return nullptr;
}
bool IsOrContainsEventOrLockComponent(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
return IsEventTypeOrLockType(derived) ||
FindEventOrLockPotentialComponent(*derived);
}
}
}
return false;
}
// Check this symbol suitable as a type-bound procedure - C769
bool CanBeTypeBoundProc(const Symbol *symbol) {
if (!symbol || IsDummy(*symbol) || IsProcedurePointer(*symbol)) {
return false;
} else if (symbol->has<SubprogramNameDetails>()) {
return symbol->owner().kind() == Scope::Kind::Module;
} else if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
return symbol->owner().kind() == Scope::Kind::Module ||
details->isInterface();
} else if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) {
return !symbol->attrs().test(Attr::INTRINSIC) &&
proc->HasExplicitInterface();
} else {
return false;
}
}
bool HasDeclarationInitializer(const Symbol &symbol) {
if (IsNamedConstant(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
return object->init().has_value();
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
return proc->init().has_value();
} else {
return false;
}
}
bool IsInitialized(
const Symbol &symbol, bool ignoreDataStatements, bool ignoreAllocatable) {
if (!ignoreAllocatable && IsAllocatable(symbol)) {
return true;
} else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) {
return true;
} else if (HasDeclarationInitializer(symbol)) {
return true;
} else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) ||
IsPointer(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (!object->isDummy() && object->type()) {
if (const auto *derived{object->type()->AsDerived()}) {
return derived->HasDefaultInitialization(ignoreAllocatable);
}
}
}
return false;
}
bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) {
if (IsAllocatable(symbol) || IsAutomatic(symbol)) {
return true;
} else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) ||
IsPointer(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (!object->isDummy() && object->type()) {
if (const auto *derived{object->type()->AsDerived()}) {
return &derived->typeSymbol() != derivedTypeSymbol &&
derived->HasDestruction();
}
}
}
return false;
}
bool HasIntrinsicTypeName(const Symbol &symbol) {
std::string name{symbol.name().ToString()};
if (name == "doubleprecision") {
return true;
} else if (name == "derived") {
return false;
} else {
for (int i{0}; i != common::TypeCategory_enumSize; ++i) {
if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) {
return true;
}
}
return false;
}
}
bool IsSeparateModuleProcedureInterface(const Symbol *symbol) {
if (symbol && symbol->attrs().test(Attr::MODULE)) {
if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
return details->isInterface();
}
}
return false;
}
bool IsFinalizable(
const Symbol &symbol, std::set<const DerivedTypeSpec *> *inProgress) {
if (IsPointer(symbol)) {
return false;
}
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (object->isDummy() && !IsIntentOut(symbol)) {
return false;
}
const DeclTypeSpec *type{object->type()};
const DerivedTypeSpec *typeSpec{type ? type->AsDerived() : nullptr};
return typeSpec && IsFinalizable(*typeSpec, inProgress);
}
return false;
}
bool IsFinalizable(const DerivedTypeSpec &derived,
std::set<const DerivedTypeSpec *> *inProgress) {
if (!derived.typeSymbol().get<DerivedTypeDetails>().finals().empty()) {
return true;
}
std::set<const DerivedTypeSpec *> basis;
if (inProgress) {
if (inProgress->find(&derived) != inProgress->end()) {
return false; // don't loop on recursive type
}
} else {
inProgress = &basis;
}
auto iterator{inProgress->insert(&derived).first};
PotentialComponentIterator components{derived};
bool result{bool{std::find_if(
components.begin(), components.end(), [=](const Symbol &component) {
return IsFinalizable(component, inProgress);
})}};
inProgress->erase(iterator);
return result;
}
bool HasImpureFinal(const DerivedTypeSpec &derived) {
if (const auto *details{
derived.typeSymbol().detailsIf<DerivedTypeDetails>()}) {
const auto &finals{details->finals()};
return std::any_of(finals.begin(), finals.end(),
[](const auto &x) { return !IsPureProcedure(*x.second); });
} else {
return false;
}
}
bool IsAssumedLengthCharacter(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->category() == DeclTypeSpec::Character &&
type->characterTypeSpec().length().isAssumed();
} else {
return false;
}
}
bool IsInBlankCommon(const Symbol &symbol) {
const Symbol *block{FindCommonBlockContaining(symbol)};
return block && block->name().empty();
}
// C722 and C723: For a function to be assumed length, it must be external and
// of CHARACTER type
bool IsExternal(const Symbol &symbol) {
return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External;
}
// Most scopes have no EQUIVALENCE, and this function is a fast no-op for them.
std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &scope) {
UnorderedSymbolSet distinct;
for (const EquivalenceSet &set : scope.equivalenceSets()) {
for (const EquivalenceObject &object : set) {
distinct.emplace(object.symbol);
}
}
// This set is ordered by ascending offsets, with ties broken by greatest
// size. A multiset is used here because multiple symbols may have the
// same offset and size; the symbols in the set, however, are distinct.
std::multiset<SymbolRef, SymbolOffsetCompare> associated;
for (SymbolRef ref : distinct) {
associated.emplace(*ref);
}
std::list<std::list<SymbolRef>> result;
std::size_t limit{0};
const Symbol *currentCommon{nullptr};
for (const Symbol &symbol : associated) {
const Symbol *thisCommon{FindCommonBlockContaining(symbol)};
if (result.empty() || symbol.offset() >= limit ||
thisCommon != currentCommon) {
// Start a new group
result.emplace_back(std::list<SymbolRef>{});
limit = 0;
currentCommon = thisCommon;
}
result.back().emplace_back(symbol);
limit = std::max(limit, symbol.offset() + symbol.size());
}
return result;
}
bool IsModuleProcedure(const Symbol &symbol) {
return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module;
}
const Symbol *IsExternalInPureContext(
const Symbol &symbol, const Scope &scope) {
if (const auto *pureProc{FindPureProcedureContaining(scope)}) {
return FindExternallyVisibleObject(symbol.GetUltimate(), *pureProc);
}
return nullptr;
}
PotentialComponentIterator::const_iterator FindPolymorphicPotentialComponent(
const DerivedTypeSpec &derived) {
PotentialComponentIterator potentials{derived};
return std::find_if(
potentials.begin(), potentials.end(), [](const Symbol &component) {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
const DeclTypeSpec *type{details->type()};
return type && type->IsPolymorphic();
}
return false;
});
}
bool IsOrContainsPolymorphicComponent(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (type->IsPolymorphic()) {
return true;
}
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
return (bool)FindPolymorphicPotentialComponent(*derived);
}
}
}
return false;
}
bool InProtectedContext(const Symbol &symbol, const Scope &currentScope) {
return IsProtected(symbol) && !IsHostAssociated(symbol, currentScope);
}
// C1101 and C1158
// Modifiability checks on the leftmost symbol ("base object")
// of a data-ref
static std::optional<parser::Message> WhyNotModifiableFirst(
parser::CharBlock at, const Symbol &symbol, const Scope &scope) {
if (const auto *assoc{symbol.detailsIf<AssocEntityDetails>()}) {
if (assoc->rank().has_value()) {
return std::nullopt; // SELECT RANK always modifiable variable
} else if (IsVariable(assoc->expr())) {
if (evaluate::HasVectorSubscript(assoc->expr().value())) {
return parser::Message{
at, "Construct association has a vector subscript"_en_US};
} else {
return WhyNotModifiable(at, *assoc->expr(), scope);
}
} else {
return parser::Message{at,
"'%s' is construct associated with an expression"_en_US,
symbol.name()};
}
} else if (IsExternalInPureContext(symbol, scope)) {
return parser::Message{at,
"'%s' is externally visible and referenced in a pure"
" procedure"_en_US,
symbol.name()};
} else if (!IsVariableName(symbol)) {
return parser::Message{at, "'%s' is not a variable"_en_US, symbol.name()};
} else {
return std::nullopt;
}
}
// Modifiability checks on the rightmost symbol of a data-ref
static std::optional<parser::Message> WhyNotModifiableLast(
parser::CharBlock at, const Symbol &symbol, const Scope &scope) {
if (IsOrContainsEventOrLockComponent(symbol)) {
return parser::Message{at,
"'%s' is an entity with either an EVENT_TYPE or LOCK_TYPE"_en_US,
symbol.name()};
} else {
return std::nullopt;
}
}
// Modifiability checks on the leftmost (base) symbol of a data-ref
// that apply only when there are no pointer components or a base
// that is a pointer.
static std::optional<parser::Message> WhyNotModifiableIfNoPtr(
parser::CharBlock at, const Symbol &symbol, const Scope &scope) {
if (InProtectedContext(symbol, scope)) {
return parser::Message{
at, "'%s' is protected in this scope"_en_US, symbol.name()};
} else if (IsIntentIn(symbol)) {
return parser::Message{
at, "'%s' is an INTENT(IN) dummy argument"_en_US, symbol.name()};
} else {
return std::nullopt;
}
}
// Apply all modifiability checks to a single symbol
std::optional<parser::Message> WhyNotModifiable(
const Symbol &original, const Scope &scope) {
const Symbol &symbol{GetAssociationRoot(original)};
if (auto first{WhyNotModifiableFirst(symbol.name(), symbol, scope)}) {
return first;
} else if (auto last{WhyNotModifiableLast(symbol.name(), symbol, scope)}) {
return last;
} else if (!IsPointer(symbol)) {
return WhyNotModifiableIfNoPtr(symbol.name(), symbol, scope);
} else {
return std::nullopt;
}
}
// Modifiability checks for a data-ref
std::optional<parser::Message> WhyNotModifiable(parser::CharBlock at,
const SomeExpr &expr, const Scope &scope, bool vectorSubscriptIsOk) {
if (auto dataRef{evaluate::ExtractDataRef(expr, true)}) {
if (!vectorSubscriptIsOk && evaluate::HasVectorSubscript(expr)) {
return parser::Message{at, "Variable has a vector subscript"_en_US};
}
const Symbol &first{GetAssociationRoot(dataRef->GetFirstSymbol())};
if (auto maybeWhyFirst{WhyNotModifiableFirst(at, first, scope)}) {
return maybeWhyFirst;
}
const Symbol &last{dataRef->GetLastSymbol()};
if (auto maybeWhyLast{WhyNotModifiableLast(at, last, scope)}) {
return maybeWhyLast;
}
if (!GetLastPointerSymbol(*dataRef)) {
if (auto maybeWhyFirst{WhyNotModifiableIfNoPtr(at, first, scope)}) {
return maybeWhyFirst;
}
}
} else if (!evaluate::IsVariable(expr)) {
return parser::Message{
at, "'%s' is not a variable"_en_US, expr.AsFortran()};
} else {
// reference to function returning POINTER
}
return std::nullopt;
}
class ImageControlStmtHelper {
using ImageControlStmts =
std::variant<parser::ChangeTeamConstruct, parser::CriticalConstruct,
parser::EventPostStmt, parser::EventWaitStmt, parser::FormTeamStmt,
parser::LockStmt, parser::SyncAllStmt, parser::SyncImagesStmt,
parser::SyncMemoryStmt, parser::SyncTeamStmt, parser::UnlockStmt>;
public:
template <typename T> bool operator()(const T &) {
return common::HasMember<T, ImageControlStmts>;
}
template <typename T> bool operator()(const common::Indirection<T> &x) {
return (*this)(x.value());
}
bool operator()(const parser::AllocateStmt &stmt) {
const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)};
for (const auto &allocation : allocationList) {
const auto &allocateObject{
std::get<parser::AllocateObject>(allocation.t)};
if (IsCoarrayObject(allocateObject)) {
return true;
}
}
return false;
}
bool operator()(const parser::DeallocateStmt &stmt) {
const auto &allocateObjectList{
std::get<std::list<parser::AllocateObject>>(stmt.t)};
for (const auto &allocateObject : allocateObjectList) {
if (IsCoarrayObject(allocateObject)) {
return true;
}
}
return false;
}
bool operator()(const parser::CallStmt &stmt) {
const auto &procedureDesignator{
std::get<parser::ProcedureDesignator>(stmt.v.t)};
if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) {
// TODO: also ensure that the procedure is, in fact, an intrinsic
if (name->source == "move_alloc") {
const auto &args{std::get<std::list<parser::ActualArgSpec>>(stmt.v.t)};
if (!args.empty()) {
const parser::ActualArg &actualArg{
std::get<parser::ActualArg>(args.front().t)};
if (const auto *argExpr{
std::get_if<common::Indirection<parser::Expr>>(
&actualArg.u)}) {
return HasCoarray(argExpr->value());
}
}
}
}
return false;
}
bool operator()(const parser::StopStmt &stmt) {
// STOP is an image control statement; ERROR STOP is not
return std::get<parser::StopStmt::Kind>(stmt.t) ==
parser::StopStmt::Kind::Stop;
}
bool operator()(const parser::Statement<parser::ActionStmt> &stmt) {
return common::visit(*this, stmt.statement.u);
}
private:
bool IsCoarrayObject(const parser::AllocateObject &allocateObject) {
const parser::Name &name{GetLastName(allocateObject)};
return name.symbol && evaluate::IsCoarray(*name.symbol);
}
};
bool IsImageControlStmt(const parser::ExecutableConstruct &construct) {
return common::visit(ImageControlStmtHelper{}, construct.u);
}
std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg(
const parser::ExecutableConstruct &construct) {
if (const auto *actionStmt{
std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) {
return common::visit(
common::visitors{
[](const common::Indirection<parser::AllocateStmt> &)
-> std::optional<parser::MessageFixedText> {
return "ALLOCATE of a coarray is an image control"
" statement"_en_US;
},
[](const common::Indirection<parser::DeallocateStmt> &)
-> std::optional<parser::MessageFixedText> {
return "DEALLOCATE of a coarray is an image control"
" statement"_en_US;
},
[](const common::Indirection<parser::CallStmt> &)
-> std::optional<parser::MessageFixedText> {
return "MOVE_ALLOC of a coarray is an image control"
" statement "_en_US;
},
[](const auto &) -> std::optional<parser::MessageFixedText> {
return std::nullopt;
},
},
actionStmt->statement.u);
}
return std::nullopt;
}
parser::CharBlock GetImageControlStmtLocation(
const parser::ExecutableConstruct &executableConstruct) {
return common::visit(
common::visitors{
[](const common::Indirection<parser::ChangeTeamConstruct>
&construct) {
return std::get<parser::Statement<parser::ChangeTeamStmt>>(
construct.value().t)
.source;
},
[](const common::Indirection<parser::CriticalConstruct> &construct) {
return std::get<parser::Statement<parser::CriticalStmt>>(
construct.value().t)
.source;
},
[](const parser::Statement<parser::ActionStmt> &actionStmt) {
return actionStmt.source;
},
[](const auto &) { return parser::CharBlock{}; },
},
executableConstruct.u);
}
bool HasCoarray(const parser::Expr &expression) {
if (const auto *expr{GetExpr(nullptr, expression)}) {
for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
if (evaluate::IsCoarray(symbol)) {
return true;
}
}
}
return false;
}
bool IsPolymorphic(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->IsPolymorphic();
}
return false;
}
bool IsPolymorphicAllocatable(const Symbol &symbol) {
return IsAllocatable(symbol) && IsPolymorphic(symbol);
}
std::optional<parser::MessageFormattedText> CheckAccessibleComponent(
const Scope &scope, const Symbol &symbol) {
CHECK(symbol.owner().IsDerivedType()); // symbol must be a component
if (symbol.attrs().test(Attr::PRIVATE)) {
if (FindModuleFileContaining(scope)) {
// Don't enforce component accessibility checks in module files;
// there may be forward-substituted named constants of derived type
// whose structure constructors reference private components.
} else if (const Scope *
moduleScope{FindModuleContaining(symbol.owner())}) {
if (!moduleScope->Contains(scope)) {
return parser::MessageFormattedText{
"PRIVATE component '%s' is only accessible within module '%s'"_err_en_US,
symbol.name(), moduleScope->GetName().value()};
}
}
}
return std::nullopt;
}
std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) {
std::list<SourceName> result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterNames(spec->typeSymbol());
}
const auto &paramNames{typeSymbol.get<DerivedTypeDetails>().paramNames()};
result.insert(result.end(), paramNames.begin(), paramNames.end());
return result;
}
SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) {
SymbolVector result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterDeclarations(spec->typeSymbol());
}
const auto &paramDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()};
result.insert(result.end(), paramDecls.begin(), paramDecls.end());
return result;
}
const DeclTypeSpec &FindOrInstantiateDerivedType(
Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) {
spec.EvaluateParameters(scope.context());
if (const DeclTypeSpec *
type{scope.FindInstantiatedDerivedType(spec, category)}) {
return *type;
}
// Create a new instantiation of this parameterized derived type
// for this particular distinct set of actual parameter values.
DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))};
type.derivedTypeSpec().Instantiate(scope);
return type;
}
const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) {
if (proc) {
if (const auto *subprogram{proc->detailsIf<SubprogramDetails>()}) {
if (const Symbol * iface{subprogram->moduleInterface()}) {
return iface;
}
}
}
return nullptr;
}
ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2
const Symbol &ultimate{symbol.GetUltimate()};
if (!IsProcedure(ultimate)) {
return ProcedureDefinitionClass::None;
} else if (ultimate.attrs().test(Attr::INTRINSIC)) {
return ProcedureDefinitionClass::Intrinsic;
} else if (ultimate.attrs().test(Attr::EXTERNAL)) {
return ProcedureDefinitionClass::External;
} else if (const auto *procDetails{ultimate.detailsIf<ProcEntityDetails>()}) {
if (procDetails->isDummy()) {
return ProcedureDefinitionClass::Dummy;
} else if (IsPointer(ultimate)) {
return ProcedureDefinitionClass::Pointer;
}
} else if (const Symbol * subp{FindSubprogram(symbol)}) {
if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) {
if (subpDetails->stmtFunction()) {
return ProcedureDefinitionClass::StatementFunction;
}
}
switch (ultimate.owner().kind()) {
case Scope::Kind::Global:
case Scope::Kind::IntrinsicModules:
return ProcedureDefinitionClass::External;
case Scope::Kind::Module:
return ProcedureDefinitionClass::Module;
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
return ProcedureDefinitionClass::Internal;
default:
break;
}
}
return ProcedureDefinitionClass::None;
}
// ComponentIterator implementation
template <ComponentKind componentKind>
typename ComponentIterator<componentKind>::const_iterator
ComponentIterator<componentKind>::const_iterator::Create(
const DerivedTypeSpec &derived) {
const_iterator it{};
it.componentPath_.emplace_back(derived);
it.Increment(); // cue up first relevant component, if any
return it;
}
template <ComponentKind componentKind>
const DerivedTypeSpec *
ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal(
const Symbol &component) const {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const auto *derived{type->AsDerived()}) {
bool traverse{false};
if constexpr (componentKind == ComponentKind::Ordered) {
// Order Component (only visit parents)
traverse = component.test(Symbol::Flag::ParentComp);
} else if constexpr (componentKind == ComponentKind::Direct) {
traverse = !IsAllocatableOrPointer(component);
} else if constexpr (componentKind == ComponentKind::Ultimate) {
traverse = !IsAllocatableOrPointer(component);
} else if constexpr (componentKind == ComponentKind::Potential) {
traverse = !IsPointer(component);
} else if constexpr (componentKind == ComponentKind::Scope) {
traverse = !IsAllocatableOrPointer(component);
}
if (traverse) {
const Symbol &newTypeSymbol{derived->typeSymbol()};
// Avoid infinite loop if the type is already part of the types
// being visited. It is possible to have "loops in type" because
// C744 does not forbid to use not yet declared type for
// ALLOCATABLE or POINTER components.
for (const auto &node : componentPath_) {
if (&newTypeSymbol == &node.GetTypeSymbol()) {
return nullptr;
}
}
return derived;
}
}
} // intrinsic & unlimited polymorphic not traversable
}
return nullptr;
}
template <ComponentKind componentKind>
static bool StopAtComponentPre(const Symbol &component) {
if constexpr (componentKind == ComponentKind::Ordered) {
// Parent components need to be iterated upon after their
// sub-components in structure constructor analysis.
return !component.test(Symbol::Flag::ParentComp);
} else if constexpr (componentKind == ComponentKind::Direct) {
return true;
} else if constexpr (componentKind == ComponentKind::Ultimate) {
return component.has<ProcEntityDetails>() ||
IsAllocatableOrPointer(component) ||
(component.get<ObjectEntityDetails>().type() &&
component.get<ObjectEntityDetails>().type()->AsIntrinsic());
} else if constexpr (componentKind == ComponentKind::Potential) {
return !IsPointer(component);
}
}
template <ComponentKind componentKind>
static bool StopAtComponentPost(const Symbol &component) {
return componentKind == ComponentKind::Ordered &&
component.test(Symbol::Flag::ParentComp);
}
template <ComponentKind componentKind>
void ComponentIterator<componentKind>::const_iterator::Increment() {
while (!componentPath_.empty()) {
ComponentPathNode &deepest{componentPath_.back()};
if (deepest.component()) {
if (!deepest.descended()) {
deepest.set_descended(true);
if (const DerivedTypeSpec *
derived{PlanComponentTraversal(*deepest.component())}) {
componentPath_.emplace_back(*derived);
continue;
}
} else if (!deepest.visited()) {
deepest.set_visited(true);
return; // this is the next component to visit, after descending
}
}
auto &nameIterator{deepest.nameIterator()};
if (nameIterator == deepest.nameEnd()) {
componentPath_.pop_back();
} else if constexpr (componentKind == ComponentKind::Scope) {
deepest.set_component(*nameIterator++->second);
deepest.set_descended(false);
deepest.set_visited(true);
return; // this is the next component to visit, before descending
} else {
const Scope &scope{deepest.GetScope()};
auto scopeIter{scope.find(*nameIterator++)};
if (scopeIter != scope.cend()) {
const Symbol &component{*scopeIter->second};
deepest.set_component(component);
deepest.set_descended(false);
if (StopAtComponentPre<componentKind>(component)) {
deepest.set_visited(true);
return; // this is the next component to visit, before descending
} else {
deepest.set_visited(!StopAtComponentPost<componentKind>(component));
}
}
}
}
}
template <ComponentKind componentKind>
std::string
ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName()
const {
std::string designator{""};
for (const auto &node : componentPath_) {
designator += "%" + DEREF(node.component()).name().ToString();
}
return designator;
}
template class ComponentIterator<ComponentKind::Ordered>;
template class ComponentIterator<ComponentKind::Direct>;
template class ComponentIterator<ComponentKind::Ultimate>;
template class ComponentIterator<ComponentKind::Potential>;
template class ComponentIterator<ComponentKind::Scope>;
UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(),
[](const Symbol &symbol) { return evaluate::IsCoarray(symbol); });
}
UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsPointer);
}
PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
const DerivedTypeSpec &derived) {
PotentialComponentIterator potentials{derived};
return std::find_if(
potentials.begin(), potentials.end(), [](const Symbol &component) {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
const DeclTypeSpec *type{details->type()};
return type && IsEventTypeOrLockType(type->AsDerived());
}
return false;
});
}
UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable);
}
DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent(
const DerivedTypeSpec &derived) {
DirectComponentIterator directs{derived};
return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer);
}
UltimateComponentIterator::const_iterator
FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(
ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable);
}
UltimateComponentIterator::const_iterator
FindPolymorphicAllocatableNonCoarrayUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), [](const Symbol &x) {
return IsPolymorphicAllocatable(x) && !evaluate::IsCoarray(x);
});
}
const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived,
const std::function<bool(const Symbol &)> &predicate) {
UltimateComponentIterator ultimates{derived};
if (auto it{std::find_if(ultimates.begin(), ultimates.end(),
[&predicate](const Symbol &component) -> bool {
return predicate(component);
})}) {
return &*it;
}
return nullptr;
}
const Symbol *FindUltimateComponent(const Symbol &symbol,
const std::function<bool(const Symbol &)> &predicate) {
if (predicate(symbol)) {
return &symbol;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const auto *type{object->type()}) {
if (const auto *derived{type->AsDerived()}) {
return FindUltimateComponent(*derived, predicate);
}
}
}
return nullptr;
}
const Symbol *FindImmediateComponent(const DerivedTypeSpec &type,
const std::function<bool(const Symbol &)> &predicate) {
if (const Scope * scope{type.scope()}) {
const Symbol *parent{nullptr};
for (const auto &pair : *scope) {
const Symbol *symbol{&*pair.second};
if (predicate(*symbol)) {
return symbol;
}
if (symbol->test(Symbol::Flag::ParentComp)) {
parent = symbol;
}
}
if (parent) {
if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) {
if (const auto *type{object->type()}) {
if (const auto *derived{type->AsDerived()}) {
return FindImmediateComponent(*derived, predicate);
}
}
}
}
}
return nullptr;
}
const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) {
if (IsFunctionResult(symbol)) {
if (const Symbol * function{symbol.owner().symbol()}) {
if (symbol.name() == function->name()) {
return function;
}
}
// Check ENTRY result symbols too
const Scope &outer{symbol.owner().parent()};
auto iter{outer.find(symbol.name())};
if (iter != outer.end()) {
const Symbol &outerSym{*iter->second};
if (const auto *subp{outerSym.detailsIf<SubprogramDetails>()}) {
if (subp->entryScope() == &symbol.owner() &&
symbol.name() == outerSym.name()) {
return &outerSym;
}
}
}
}
return nullptr;
}
void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) {
checkLabelUse(gotoStmt.v);
}
void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) {
for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) {
checkLabelUse(i);
}
}
void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) {
checkLabelUse(std::get<1>(arithmeticIfStmt.t));
checkLabelUse(std::get<2>(arithmeticIfStmt.t));
checkLabelUse(std::get<3>(arithmeticIfStmt.t));
}
void LabelEnforce::Post(const parser::AssignStmt &assignStmt) {
checkLabelUse(std::get<parser::Label>(assignStmt.t));
}
void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) {
for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) {
checkLabelUse(i);
}
}
void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) {
checkLabelUse(altReturnSpec.v);
}
void LabelEnforce::Post(const parser::ErrLabel &errLabel) {
checkLabelUse(errLabel.v);
}
void LabelEnforce::Post(const parser::EndLabel &endLabel) {
checkLabelUse(endLabel.v);
}
void LabelEnforce::Post(const parser::EorLabel &eorLabel) {
checkLabelUse(eorLabel.v);
}
void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) {
if (labels_.find(labelUsed) == labels_.end()) {
SayWithConstruct(context_, currentStatementSourcePosition_,
parser::MessageFormattedText{
"Control flow escapes from %s"_err_en_US, construct_},
constructSourcePosition_);
}
}
parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() {
return {"Enclosing %s statement"_en_US, construct_};
}
void LabelEnforce::SayWithConstruct(SemanticsContext &context,
parser::CharBlock stmtLocation, parser::MessageFormattedText &&message,
parser::CharBlock constructLocation) {
context.Say(stmtLocation, message)
.Attach(constructLocation, GetEnclosingConstructMsg());
}
bool HasAlternateReturns(const Symbol &subprogram) {
for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) {
if (!dummyArg) {
return true;
}
}
return false;
}
bool InCommonBlock(const Symbol &symbol) {
const auto *details{symbol.detailsIf<ObjectEntityDetails>()};
return details && details->commonBlock();
}
const std::optional<parser::Name> &MaybeGetNodeName(
const ConstructNode &construct) {
return common::visit(
common::visitors{
[&](const parser::BlockConstruct *blockConstruct)
-> const std::optional<parser::Name> & {
return std::get<0>(blockConstruct->t).statement.v;
},
[&](const auto *a) -> const std::optional<parser::Name> & {
return std::get<0>(std::get<0>(a->t).statement.t);
},
},
construct);
}
std::optional<ArraySpec> ToArraySpec(
evaluate::FoldingContext &context, const evaluate::Shape &shape) {
if (auto extents{evaluate::AsConstantExtents(context, shape)}) {
ArraySpec result;
for (const auto &extent : *extents) {
result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent}));
}
return {std::move(result)};
} else {
return std::nullopt;
}
}
std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context,
const std::optional<evaluate::Shape> &shape) {
return shape ? ToArraySpec(context, *shape) : std::nullopt;
}
bool HasDefinedIo(GenericKind::DefinedIo which, const DerivedTypeSpec &derived,
const Scope *scope) {
if (const Scope * dtScope{derived.scope()}) {
for (const auto &pair : *dtScope) {
const Symbol &symbol{*pair.second};
if (const auto *generic{symbol.detailsIf<GenericDetails>()}) {
GenericKind kind{generic->kind()};
if (const auto *io{std::get_if<GenericKind::DefinedIo>(&kind.u)}) {
if (*io == which) {
return true; // type-bound GENERIC exists
}
}
}
}
}
if (scope) {
SourceName name{GenericKind::AsFortran(which)};
evaluate::DynamicType dyDerived{derived};
for (; scope && !scope->IsGlobal(); scope = &scope->parent()) {
auto iter{scope->find(name)};
if (iter != scope->end()) {
const auto &generic{iter->second->GetUltimate().get<GenericDetails>()};
for (auto ref : generic.specificProcs()) {
const Symbol &procSym{ref->GetUltimate()};
if (const auto *subp{procSym.detailsIf<SubprogramDetails>()}) {
if (!subp->dummyArgs().empty()) {
if (const Symbol * first{subp->dummyArgs().at(0)}) {
if (const DeclTypeSpec * dtSpec{first->GetType()}) {
if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) {
if (dyDummy->IsTkCompatibleWith(dyDerived)) {
return true; // GENERIC or INTERFACE not in type
}
}
}
}
}
}
}
}
}
}
return false;
}
const Symbol *FindUnsafeIoDirectComponent(GenericKind::DefinedIo which,
const DerivedTypeSpec &derived, const Scope *scope) {
if (HasDefinedIo(which, derived, scope)) {
return nullptr;
}
if (const Scope * dtScope{derived.scope()}) {
for (const auto &pair : *dtScope) {
const Symbol &symbol{*pair.second};
if (IsAllocatableOrPointer(symbol)) {
return &symbol;
}
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (type->category() == DeclTypeSpec::Category::TypeDerived) {
if (const Symbol *
bad{FindUnsafeIoDirectComponent(
which, type->derivedTypeSpec(), scope)}) {
return bad;
}
}
}
}
}
}
return nullptr;
}
} // namespace Fortran::semantics