llvm-project/llvm/tools/llvm-profgen/ProfiledBinary.h
Hongtao Yu d5a963ab8b [PseudoProbe] Replace relocation with offset for entry probe.
Currently pseudo probe encoding for a function is like:
	- For the first probe, a relocation from it to its physical position in the code body
	- For subsequent probes, an incremental offset from the current probe to the previous probe

The relocation could potentially cause relocation overflow during link time. I'm now replacing it with an offset from the first probe to the function start address.

A source function could be lowered into multiple binary functions due to outlining (e.g, coro-split). Since those binary function have independent link-time layout, to really avoid relocations from .pseudo_probe sections to .text sections, the offset to replace with should really be the offset from the probe's enclosing binary function, rather than from the entry of the source function. This requires some changes to previous section-based emission scheme which now switches to be function-based. The assembly form of pseudo probe directive is also changed correspondingly, i.e, reflecting the binary function name.

Most of the source functions end up with only one binary function. For those don't, a sentinel probe is emitted for each of the binary functions with a different name from the source. The sentinel probe indicates the binary function name to differentiate subsequent probes from the ones from a different binary function. For examples, given source function

```
Foo() {
  …
  Probe 1
  …
  Probe 2
}
```

If it is transformed into two binary functions:

```
Foo:
   …

Foo.outlined:
   …
```

The encoding for the two binary functions will be separate:

```

GUID of Foo
  Probe 1

GUID of Foo
  Sentinel probe of Foo.outlined
  Probe 2
```

Then probe1 will be decoded against binary `Foo`'s address, and Probe 2 will be decoded against `Foo.outlined`. The sentinel probe of `Foo.outlined` makes sure there's not accidental relocation from `Foo.outlined`'s probes to `Foo`'s entry address.

On the BOLT side, to be minimal intrusive, the pseudo probe re-encoding sticks with the old encoding format. This is fine since unlike linker, Bolt processes the pseudo probe section as a whole and it is free from relocation overflow issues.

The change is downwards compatible as long as there's no mixed use of the old encoding and the new encoding.

Reviewed By: wenlei, maksfb

Differential Revision: https://reviews.llvm.org/D135912
Differential Revision: https://reviews.llvm.org/D135914
Differential Revision: https://reviews.llvm.org/D136394
2022-10-27 13:28:22 -07:00

582 lines
21 KiB
C++

//===-- ProfiledBinary.h - Binary decoder -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
#define LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
#include "CallContext.h"
#include "ErrorHandling.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCPseudoProbe.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Path.h"
#include "llvm/Transforms/IPO/SampleContextTracker.h"
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
extern cl::opt<bool> EnableCSPreInliner;
extern cl::opt<bool> UseContextCostForPreInliner;
using namespace llvm;
using namespace sampleprof;
using namespace llvm::object;
namespace llvm {
namespace sampleprof {
class ProfiledBinary;
struct InstructionPointer {
const ProfiledBinary *Binary;
// Address of the executable segment of the binary.
uint64_t Address;
// Index to the sorted code address array of the binary.
uint64_t Index = 0;
InstructionPointer(const ProfiledBinary *Binary, uint64_t Address,
bool RoundToNext = false);
bool advance();
bool backward();
void update(uint64_t Addr);
};
// The special frame addresses.
enum SpecialFrameAddr {
// Dummy root of frame trie.
DummyRoot = 0,
// Represent all the addresses outside of current binary.
// This's also used to indicate the call stack should be truncated since this
// isn't a real call context the compiler will see.
ExternalAddr = 1,
};
using RangesTy = std::vector<std::pair<uint64_t, uint64_t>>;
struct BinaryFunction {
StringRef FuncName;
// End of range is an exclusive bound.
RangesTy Ranges;
uint64_t getFuncSize() {
uint64_t Sum = 0;
for (auto &R : Ranges) {
Sum += R.second - R.first;
}
return Sum;
}
};
// Info about function range. A function can be split into multiple
// non-continuous ranges, each range corresponds to one FuncRange.
struct FuncRange {
uint64_t StartAddress;
// EndAddress is an exclusive bound.
uint64_t EndAddress;
// Function the range belongs to
BinaryFunction *Func;
// Whether the start address is the real entry of the function.
bool IsFuncEntry = false;
StringRef getFuncName() { return Func->FuncName; }
};
// PrologEpilog address tracker, used to filter out broken stack samples
// Currently we use a heuristic size (two) to infer prolog and epilog
// based on the start address and return address. In the future,
// we will switch to Dwarf CFI based tracker
struct PrologEpilogTracker {
// A set of prolog and epilog addresses. Used by virtual unwinding.
std::unordered_set<uint64_t> PrologEpilogSet;
ProfiledBinary *Binary;
PrologEpilogTracker(ProfiledBinary *Bin) : Binary(Bin){};
// Take the two addresses from the start of function as prolog
void
inferPrologAddresses(std::map<uint64_t, FuncRange> &FuncStartAddressMap) {
for (auto I : FuncStartAddressMap) {
PrologEpilogSet.insert(I.first);
InstructionPointer IP(Binary, I.first);
if (!IP.advance())
break;
PrologEpilogSet.insert(IP.Address);
}
}
// Take the last two addresses before the return address as epilog
void inferEpilogAddresses(std::unordered_set<uint64_t> &RetAddrs) {
for (auto Addr : RetAddrs) {
PrologEpilogSet.insert(Addr);
InstructionPointer IP(Binary, Addr);
if (!IP.backward())
break;
PrologEpilogSet.insert(IP.Address);
}
}
};
// Track function byte size under different context (outlined version as well as
// various inlined versions). It also provides query support to get function
// size with the best matching context, which is used to help pre-inliner use
// accurate post-optimization size to make decisions.
// TODO: If an inlinee is completely optimized away, ideally we should have zero
// for its context size, currently we would misss such context since it doesn't
// have instructions. To fix this, we need to mark all inlinee with entry probe
// but without instructions as having zero size.
class BinarySizeContextTracker {
public:
// Add instruction with given size to a context
void addInstructionForContext(const SampleContextFrameVector &Context,
uint32_t InstrSize);
// Get function size with a specific context. When there's no exact match
// for the given context, try to retrieve the size of that function from
// closest matching context.
uint32_t getFuncSizeForContext(const ContextTrieNode *Context);
// For inlinees that are full optimized away, we can establish zero size using
// their remaining probes.
void trackInlineesOptimizedAway(MCPseudoProbeDecoder &ProbeDecoder);
using ProbeFrameStack = SmallVector<std::pair<StringRef, uint32_t>>;
void trackInlineesOptimizedAway(MCPseudoProbeDecoder &ProbeDecoder,
MCDecodedPseudoProbeInlineTree &ProbeNode,
ProbeFrameStack &Context);
void dump() { RootContext.dumpTree(); }
private:
// Root node for context trie tree, node that this is a reverse context trie
// with callee as parent and caller as child. This way we can traverse from
// root to find the best/longest matching context if an exact match does not
// exist. It gives us the best possible estimate for function's post-inline,
// post-optimization byte size.
ContextTrieNode RootContext;
};
using AddressRange = std::pair<uint64_t, uint64_t>;
class ProfiledBinary {
// Absolute path of the executable binary.
std::string Path;
// Path of the debug info binary.
std::string DebugBinaryPath;
// Path of symbolizer path which should be pointed to binary with debug info.
StringRef SymbolizerPath;
// The target triple.
Triple TheTriple;
// The runtime base address that the first executable segment is loaded at.
uint64_t BaseAddress = 0;
// The runtime base address that the first loadabe segment is loaded at.
uint64_t FirstLoadableAddress = 0;
// The preferred load address of each executable segment.
std::vector<uint64_t> PreferredTextSegmentAddresses;
// The file offset of each executable segment.
std::vector<uint64_t> TextSegmentOffsets;
// Mutiple MC component info
std::unique_ptr<const MCRegisterInfo> MRI;
std::unique_ptr<const MCAsmInfo> AsmInfo;
std::unique_ptr<const MCSubtargetInfo> STI;
std::unique_ptr<const MCInstrInfo> MII;
std::unique_ptr<MCDisassembler> DisAsm;
std::unique_ptr<const MCInstrAnalysis> MIA;
std::unique_ptr<MCInstPrinter> IPrinter;
// A list of text sections sorted by start RVA and size. Used to check
// if a given RVA is a valid code address.
std::set<std::pair<uint64_t, uint64_t>> TextSections;
// A map of mapping function name to BinaryFunction info.
std::unordered_map<std::string, BinaryFunction> BinaryFunctions;
// A list of binary functions that have samples.
std::unordered_set<const BinaryFunction *> ProfiledFunctions;
// GUID to Elf symbol start address map
DenseMap<uint64_t, uint64_t> SymbolStartAddrs;
// Start address to Elf symbol GUID map
std::unordered_multimap<uint64_t, uint64_t> StartAddrToSymMap;
// An ordered map of mapping function's start address to function range
// relevant info. Currently to determine if the offset of ELF is the start of
// a real function, we leverage the function range info from DWARF.
std::map<uint64_t, FuncRange> StartAddrToFuncRangeMap;
// Address to context location map. Used to expand the context.
std::unordered_map<uint64_t, SampleContextFrameVector> AddressToLocStackMap;
// Address to instruction size map. Also used for quick Address lookup.
std::unordered_map<uint64_t, uint64_t> AddressToInstSizeMap;
// An array of Addresses of all instructions sorted in increasing order. The
// sorting is needed to fast advance to the next forward/backward instruction.
std::vector<uint64_t> CodeAddressVec;
// A set of call instruction addresses. Used by virtual unwinding.
std::unordered_set<uint64_t> CallAddressSet;
// A set of return instruction addresses. Used by virtual unwinding.
std::unordered_set<uint64_t> RetAddressSet;
// An ordered set of unconditional branch instruction addresses.
std::set<uint64_t> UncondBranchAddrSet;
// A set of branch instruction addresses.
std::unordered_set<uint64_t> BranchAddressSet;
// Estimate and track function prolog and epilog ranges.
PrologEpilogTracker ProEpilogTracker;
// Track function sizes under different context
BinarySizeContextTracker FuncSizeTracker;
// The symbolizer used to get inline context for an instruction.
std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
// String table owning function name strings created from the symbolizer.
std::unordered_set<std::string> NameStrings;
// A collection of functions to print disassembly for.
StringSet<> DisassembleFunctionSet;
// Pseudo probe decoder
MCPseudoProbeDecoder ProbeDecoder;
// Function name to probe frame map for top-level outlined functions.
StringMap<MCDecodedPseudoProbeInlineTree *> TopLevelProbeFrameMap;
bool UsePseudoProbes = false;
bool UseFSDiscriminator = false;
// Whether we need to symbolize all instructions to get function context size.
bool TrackFuncContextSize = false;
// Indicate if the base loading address is parsed from the mmap event or uses
// the preferred address
bool IsLoadedByMMap = false;
// Use to avoid redundant warning.
bool MissingMMapWarned = false;
void setPreferredTextSegmentAddresses(const ELFObjectFileBase *O);
template <class ELFT>
void setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj,
StringRef FileName);
void checkPseudoProbe(const ELFObjectFileBase *Obj);
void decodePseudoProbe(const ELFObjectFileBase *Obj);
void
checkUseFSDiscriminator(const ELFObjectFileBase *Obj,
std::map<SectionRef, SectionSymbolsTy> &AllSymbols);
// Set up disassembler and related components.
void setUpDisassembler(const ELFObjectFileBase *Obj);
void setupSymbolizer();
// Load debug info of subprograms from DWARF section.
void loadSymbolsFromDWARF(ObjectFile &Obj);
// Load debug info from DWARF unit.
void loadSymbolsFromDWARFUnit(DWARFUnit &CompilationUnit);
// Create elf symbol to its start address mapping.
void populateElfSymbolAddressList(const ELFObjectFileBase *O);
// A function may be spilt into multiple non-continuous address ranges. We use
// this to set whether start address of a function is the real entry of the
// function and also set false to the non-function label.
void setIsFuncEntry(uint64_t Address, StringRef RangeSymName);
// Warn if no entry range exists in the function.
void warnNoFuncEntry();
/// Dissassemble the text section and build various address maps.
void disassemble(const ELFObjectFileBase *O);
/// Helper function to dissassemble the symbol and extract info for unwinding
bool dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
SectionSymbolsTy &Symbols, const SectionRef &Section);
/// Symbolize a given instruction pointer and return a full call context.
SampleContextFrameVector symbolize(const InstructionPointer &IP,
bool UseCanonicalFnName = false,
bool UseProbeDiscriminator = false);
/// Decode the interesting parts of the binary and build internal data
/// structures. On high level, the parts of interest are:
/// 1. Text sections, including the main code section and the PLT
/// entries that will be used to handle cross-module call transitions.
/// 2. The .debug_line section, used by Dwarf-based profile generation.
/// 3. Pseudo probe related sections, used by probe-based profile
/// generation.
void load();
public:
ProfiledBinary(const StringRef ExeBinPath, const StringRef DebugBinPath)
: Path(ExeBinPath), DebugBinaryPath(DebugBinPath), ProEpilogTracker(this),
TrackFuncContextSize(EnableCSPreInliner &&
UseContextCostForPreInliner) {
// Point to executable binary if debug info binary is not specified.
SymbolizerPath = DebugBinPath.empty() ? ExeBinPath : DebugBinPath;
setupSymbolizer();
load();
}
void decodePseudoProbe();
StringRef getPath() const { return Path; }
StringRef getName() const { return llvm::sys::path::filename(Path); }
uint64_t getBaseAddress() const { return BaseAddress; }
void setBaseAddress(uint64_t Address) { BaseAddress = Address; }
// Canonicalize to use preferred load address as base address.
uint64_t canonicalizeVirtualAddress(uint64_t Address) {
return Address - BaseAddress + getPreferredBaseAddress();
}
// Return the preferred load address for the first executable segment.
uint64_t getPreferredBaseAddress() const {
return PreferredTextSegmentAddresses[0];
}
// Return the preferred load address for the first loadable segment.
uint64_t getFirstLoadableAddress() const { return FirstLoadableAddress; }
// Return the file offset for the first executable segment.
uint64_t getTextSegmentOffset() const { return TextSegmentOffsets[0]; }
const std::vector<uint64_t> &getPreferredTextSegmentAddresses() const {
return PreferredTextSegmentAddresses;
}
const std::vector<uint64_t> &getTextSegmentOffsets() const {
return TextSegmentOffsets;
}
uint64_t getInstSize(uint64_t Address) const {
auto I = AddressToInstSizeMap.find(Address);
if (I == AddressToInstSizeMap.end())
return 0;
return I->second;
}
bool addressIsCode(uint64_t Address) const {
return AddressToInstSizeMap.find(Address) != AddressToInstSizeMap.end();
}
bool addressIsCall(uint64_t Address) const {
return CallAddressSet.count(Address);
}
bool addressIsReturn(uint64_t Address) const {
return RetAddressSet.count(Address);
}
bool addressInPrologEpilog(uint64_t Address) const {
return ProEpilogTracker.PrologEpilogSet.count(Address);
}
bool addressIsTransfer(uint64_t Address) {
return BranchAddressSet.count(Address) || RetAddressSet.count(Address) ||
CallAddressSet.count(Address);
}
bool rangeCrossUncondBranch(uint64_t Start, uint64_t End) {
if (Start >= End)
return false;
auto R = UncondBranchAddrSet.lower_bound(Start);
return R != UncondBranchAddrSet.end() && *R < End;
}
uint64_t getAddressforIndex(uint64_t Index) const {
return CodeAddressVec[Index];
}
size_t getCodeAddrVecSize() const { return CodeAddressVec.size(); }
bool usePseudoProbes() const { return UsePseudoProbes; }
bool useFSDiscriminator() const { return UseFSDiscriminator; }
// Get the index in CodeAddressVec for the address
// As we might get an address which is not the code
// here it would round to the next valid code address by
// using lower bound operation
uint32_t getIndexForAddr(uint64_t Address) const {
auto Low = llvm::lower_bound(CodeAddressVec, Address);
return Low - CodeAddressVec.begin();
}
uint64_t getCallAddrFromFrameAddr(uint64_t FrameAddr) const {
if (FrameAddr == ExternalAddr)
return ExternalAddr;
auto I = getIndexForAddr(FrameAddr);
FrameAddr = I ? getAddressforIndex(I - 1) : 0;
if (FrameAddr && addressIsCall(FrameAddr))
return FrameAddr;
return 0;
}
FuncRange *findFuncRangeForStartAddr(uint64_t Address) {
auto I = StartAddrToFuncRangeMap.find(Address);
if (I == StartAddrToFuncRangeMap.end())
return nullptr;
return &I->second;
}
// Binary search the function range which includes the input address.
FuncRange *findFuncRange(uint64_t Address) {
auto I = StartAddrToFuncRangeMap.upper_bound(Address);
if (I == StartAddrToFuncRangeMap.begin())
return nullptr;
I--;
if (Address >= I->second.EndAddress)
return nullptr;
return &I->second;
}
// Get all ranges of one function.
RangesTy getRanges(uint64_t Address) {
auto *FRange = findFuncRange(Address);
// Ignore the range which falls into plt section or system lib.
if (!FRange)
return RangesTy();
return FRange->Func->Ranges;
}
const std::unordered_map<std::string, BinaryFunction> &
getAllBinaryFunctions() {
return BinaryFunctions;
}
std::unordered_set<const BinaryFunction *> &getProfiledFunctions() {
return ProfiledFunctions;
}
void setProfiledFunctions(std::unordered_set<const BinaryFunction *> &Funcs) {
ProfiledFunctions = Funcs;
}
BinaryFunction *getBinaryFunction(StringRef FName) {
auto I = BinaryFunctions.find(FName.str());
if (I == BinaryFunctions.end())
return nullptr;
return &I->second;
}
uint32_t getFuncSizeForContext(const ContextTrieNode *ContextNode) {
return FuncSizeTracker.getFuncSizeForContext(ContextNode);
}
// Load the symbols from debug table and populate into symbol list.
void populateSymbolListFromDWARF(ProfileSymbolList &SymbolList);
SampleContextFrameVector
getFrameLocationStack(uint64_t Address, bool UseProbeDiscriminator = false) {
InstructionPointer IP(this, Address);
return symbolize(IP, true, UseProbeDiscriminator);
}
const SampleContextFrameVector &
getCachedFrameLocationStack(uint64_t Address,
bool UseProbeDiscriminator = false) {
auto I = AddressToLocStackMap.emplace(Address, SampleContextFrameVector());
if (I.second) {
I.first->second = getFrameLocationStack(Address, UseProbeDiscriminator);
}
return I.first->second;
}
Optional<SampleContextFrame> getInlineLeafFrameLoc(uint64_t Address) {
const auto &Stack = getCachedFrameLocationStack(Address);
if (Stack.empty())
return {};
return Stack.back();
}
void flushSymbolizer() { Symbolizer.reset(); }
// Compare two addresses' inline context
bool inlineContextEqual(uint64_t Add1, uint64_t Add2);
// Get the full context of the current stack with inline context filled in.
// It will search the disassembling info stored in AddressToLocStackMap. This
// is used as the key of function sample map
SampleContextFrameVector
getExpandedContext(const SmallVectorImpl<uint64_t> &Stack,
bool &WasLeafInlined);
// Go through instructions among the given range and record its size for the
// inline context.
void computeInlinedContextSizeForRange(uint64_t StartAddress,
uint64_t EndAddress);
void computeInlinedContextSizeForFunc(const BinaryFunction *Func);
const MCDecodedPseudoProbe *getCallProbeForAddr(uint64_t Address) const {
return ProbeDecoder.getCallProbeForAddr(Address);
}
void getInlineContextForProbe(const MCDecodedPseudoProbe *Probe,
SampleContextFrameVector &InlineContextStack,
bool IncludeLeaf = false) const {
SmallVector<MCPseduoProbeFrameLocation, 16> ProbeInlineContext;
ProbeDecoder.getInlineContextForProbe(Probe, ProbeInlineContext,
IncludeLeaf);
for (uint32_t I = 0; I < ProbeInlineContext.size(); I++) {
auto &Callsite = ProbeInlineContext[I];
// Clear the current context for an unknown probe.
if (Callsite.second == 0 && I != ProbeInlineContext.size() - 1) {
InlineContextStack.clear();
continue;
}
InlineContextStack.emplace_back(Callsite.first,
LineLocation(Callsite.second, 0));
}
}
const AddressProbesMap &getAddress2ProbesMap() const {
return ProbeDecoder.getAddress2ProbesMap();
}
const MCPseudoProbeFuncDesc *getFuncDescForGUID(uint64_t GUID) {
return ProbeDecoder.getFuncDescForGUID(GUID);
}
const MCPseudoProbeFuncDesc *
getInlinerDescForProbe(const MCDecodedPseudoProbe *Probe) {
return ProbeDecoder.getInlinerDescForProbe(Probe);
}
bool getTrackFuncContextSize() { return TrackFuncContextSize; }
bool getIsLoadedByMMap() { return IsLoadedByMMap; }
void setIsLoadedByMMap(bool Value) { IsLoadedByMMap = Value; }
bool getMissingMMapWarned() { return MissingMMapWarned; }
void setMissingMMapWarned(bool Value) { MissingMMapWarned = Value; }
};
} // end namespace sampleprof
} // end namespace llvm
#endif