Utkarsh Saxena 985deba931 Revert "Temporarily Revert "[clangd] Add Random Forest runtime for code completion.""
We intend to replace heuristics based code completion ranking with a Decision Forest Model.

This patch introduces a format for representing the model and an inference runtime that is code-generated at build time.
- Forest.json contains all the trees as an array of trees.
- Features.json describes the features to be used.
- Codegen file takes the above two files and generates CompletionModel containing Feature struct and corresponding Evaluate function.
   The Evaluate function maps a feature to a real number describing the relevance of this candidate.
- The codegen is part of build system and these files are generated at build time.
- Proposes a way to test the generated runtime using a test model.
  - Replicates the model structure in unittests.
  - unittest tests both the test model (for correct tree traversal) and the real model (for sanity).

This reverts commit 549e55b3d5634870aa9d42135f51ad46a6a0e347.
2020-09-19 10:54:04 +02:00

30 lines
815 B
C++

#include "DecisionForestRuntimeTest.h"
#include "decision_forest_model/CategoricalFeature.h"
#include "gtest/gtest.h"
namespace clang {
namespace clangd {
TEST(DecisionForestRuntime, Evaluate) {
using Example = ::ns1::ns2::test::Example;
using Cat = ::ns1::ns2::TestEnum;
using ::ns1::ns2::test::Evaluate;
Example E;
E.setANumber(200); // True
E.setAFloat(0); // True: +10.0
E.setACategorical(Cat::A); // True: +5.0
EXPECT_EQ(Evaluate(E), 15.0);
E.setANumber(200); // True
E.setAFloat(-2.5); // False: -20.0
E.setACategorical(Cat::B); // True: +5.0
EXPECT_EQ(Evaluate(E), -15.0);
E.setANumber(100); // False
E.setACategorical(Cat::C); // True: +3.0, False: -6.0
EXPECT_EQ(Evaluate(E), -3.0);
}
} // namespace clangd
} // namespace clang