llvm-project/llvm/utils/TableGen/X86FoldTablesEmitter.cpp

619 lines
23 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting the memory fold tables of
// the X86 backend instructions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "X86RecognizableInstr.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/X86FoldTablesUtils.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
using namespace llvm;
using namespace X86Disassembler;
namespace {
// Represents an entry in the manual mapped instructions set.
struct ManualMapEntry {
const char *RegInstStr;
const char *MemInstStr;
uint16_t Strategy;
};
// List of instructions requiring explicitly aligned memory.
const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
// List of instructions NOT requiring explicit memory alignment.
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
"PCMPESTRM", "PCMPESTRI",
"PCMPISTRM", "PCMPISTRI" };
const ManualMapEntry ManualMapSet[] = {
#define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS},
#include "X86ManualFoldTables.def"
};
const std::set<StringRef> NoFoldSet= {
#define NOFOLD(INSN) #INSN,
#include "X86ManualFoldTables.def"
};
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
class X86FoldTablesEmitter {
RecordKeeper &Records;
CodeGenTarget Target;
// Represents an entry in the folding table
class X86FoldTableEntry {
const CodeGenInstruction *RegInst;
const CodeGenInstruction *MemInst;
public:
bool CannotUnfold = false;
bool CannotFold = false;
bool IsLoad = false;
bool IsStore = false;
bool IsAligned = false;
Align Alignment;
X86FoldTableEntry() = default;
X86FoldTableEntry(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst)
: RegInst(RegInst), MemInst(MemInst) {}
void print(formatted_raw_ostream &OS) const {
OS.indent(2);
OS << "{X86::" << RegInst->TheDef->getName() << ", ";
OS << "X86::" << MemInst->TheDef->getName() << ", ";
std::string Attrs;
if (IsLoad)
Attrs += "TB_FOLDED_LOAD|";
if (IsStore)
Attrs += "TB_FOLDED_STORE|";
if (CannotUnfold)
Attrs += "TB_NO_REVERSE|";
if (CannotFold)
Attrs += "TB_NO_FORWARD|";
if (IsAligned)
Attrs += "TB_ALIGN_" + std::to_string(Alignment.value()) + "|";
StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|");
if (SimplifiedAttrs.empty())
SimplifiedAttrs = "0";
OS << SimplifiedAttrs << "},\n";
}
};
// NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the enum of the
// instruction, which is computed in CodeGenTarget::ComputeInstrsByEnum. So we should
// use the same comparator here.
// FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum?
struct CompareInstrsByEnum {
bool operator()(const CodeGenInstruction *LHS,
const CodeGenInstruction *RHS) const {
assert(LHS && RHS && "LHS and RHS shouldn't be nullptr");
const auto &D1 = *LHS->TheDef;
const auto &D2 = *RHS->TheDef;
return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
}
};
typedef std::map<const CodeGenInstruction *, X86FoldTableEntry,
CompareInstrsByEnum>
FoldTable;
// std::vector for each folding table.
// Table2Addr - Holds instructions which their memory form performs load+store
// Table#i - Holds instructions which the their memory form perform a load OR
// a store, and their #i'th operand is folded.
FoldTable Table2Addr;
FoldTable Table0;
FoldTable Table1;
FoldTable Table2;
FoldTable Table3;
FoldTable Table4;
public:
X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
// run - Generate the 6 X86 memory fold tables.
void run(raw_ostream &OS);
private:
// Decides to which table to add the entry with the given instructions.
// S sets the strategy of adding the TB_NO_REVERSE flag.
void updateTables(const CodeGenInstruction *RegInstr,
const CodeGenInstruction *MemInstr, const uint16_t S = 0,
bool IsManual = false);
// Generates X86FoldTableEntry with the given instructions and fill it with
// the appropriate flags - then adds it to Table.
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
const CodeGenInstruction *MemInstr, const uint16_t S,
const unsigned int FoldedInd, bool isManual);
// Print the given table as a static const C++ array of type
// X86MemoryFoldTableEntry.
void printTable(const FoldTable &Table, StringRef TableName,
formatted_raw_ostream &OS) {
OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName
<< "[] = {\n";
for (auto &E : Table)
E.second.print(OS);
OS << "};\n\n";
}
};
// Return true if one of the instruction's operands is a RST register class
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
});
}
// Return true if one of the instruction's operands is a ptr_rc_tailcall
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "ptr_rc_tailcall";
});
}
static uint8_t byteFromBitsInit(const BitsInit *B) {
unsigned N = B->getNumBits();
assert(N <= 8 && "Field is too large for uint8_t!");
uint8_t Value = 0;
for (unsigned I = 0; I != N; ++I) {
BitInit *Bit = cast<BitInit>(B->getBit(I));
Value |= Bit->getValue() << I;
}
return Value;
}
static bool mayFoldFromForm(uint8_t Form) {
switch (Form) {
default:
return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r;
case X86Local::MRMXr:
case X86Local::MRMXrCC:
case X86Local::MRMDestReg:
case X86Local::MRMSrcReg:
case X86Local::MRMSrcReg4VOp3:
case X86Local::MRMSrcRegOp4:
case X86Local::MRMSrcRegCC:
return true;
}
}
static bool mayFoldToForm(uint8_t Form) {
switch (Form) {
default:
return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m;
case X86Local::MRMXm:
case X86Local::MRMXmCC:
case X86Local::MRMDestMem:
case X86Local::MRMSrcMem:
case X86Local::MRMSrcMem4VOp3:
case X86Local::MRMSrcMemOp4:
case X86Local::MRMSrcMemCC:
return true;
}
}
static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) {
switch (LHS) {
default:
llvm_unreachable("Unexpected Form!");
case X86Local::MRM0r:
return RHS == X86Local::MRM0m;
case X86Local::MRM1r:
return RHS == X86Local::MRM1m;
case X86Local::MRM2r:
return RHS == X86Local::MRM2m;
case X86Local::MRM3r:
return RHS == X86Local::MRM3m;
case X86Local::MRM4r:
return RHS == X86Local::MRM4m;
case X86Local::MRM5r:
return RHS == X86Local::MRM5m;
case X86Local::MRM6r:
return RHS == X86Local::MRM6m;
case X86Local::MRM7r:
return RHS == X86Local::MRM7m;
case X86Local::MRMXr:
return RHS == X86Local::MRMXm;
case X86Local::MRMXrCC:
return RHS == X86Local::MRMXmCC;
case X86Local::MRMDestReg:
return RHS == X86Local::MRMDestMem;
case X86Local::MRMSrcReg:
return RHS == X86Local::MRMSrcMem;
case X86Local::MRMSrcReg4VOp3:
return RHS == X86Local::MRMSrcMem4VOp3;
case X86Local::MRMSrcRegOp4:
return RHS == X86Local::MRMSrcMemOp4;
case X86Local::MRMSrcRegCC:
return RHS == X86Local::MRMSrcMemCC;
}
}
static bool isNOREXRegClass(const Record *Op) {
return Op->getName().contains("_NOREX");
}
// Function object - Operator() returns true if the given Reg instruction
// matches the Mem instruction of this object.
class IsMatch {
const CodeGenInstruction *MemInst;
const X86Disassembler::RecognizableInstrBase MemRI;
const unsigned Variant;
public:
IsMatch(const CodeGenInstruction *Inst, unsigned V)
: MemInst(Inst), MemRI(*MemInst), Variant(V) {}
bool operator()(const CodeGenInstruction *RegInst) {
X86Disassembler::RecognizableInstrBase RegRI(*RegInst);
const Record *RegRec = RegInst->TheDef;
const Record *MemRec = MemInst->TheDef;
// EVEX_B means different things for memory and register forms.
if (RegRI.HasEVEX_B != 0 || MemRI.HasEVEX_B != 0)
return false;
if (!mayFoldFromLeftToRight(RegRI.Form, MemRI.Form))
return false;
// X86 encoding is crazy, e.g
//
// f3 0f c7 30 vmxon (%rax)
// f3 0f c7 f0 senduipi %rax
//
// This two instruction have similiar encoding fields but are unrelated
if (X86Disassembler::getMnemonic(MemInst, Variant) !=
X86Disassembler::getMnemonic(RegInst, Variant))
return false;
// Return false if any of the following fields of does not match.
if (std::make_tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix,
RegRI.OpMap, RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W,
RegRI.HasVEX_4V, RegRI.HasVEX_L, RegRI.IgnoresVEX_L,
RegRI.IgnoresVEX_W, RegRI.HasEVEX_K, RegRI.HasEVEX_KZ,
RegRI.HasEVEX_L2, RegRec->getValueAsBit("hasEVEX_RC"),
RegRec->getValueAsBit("hasLockPrefix"),
RegRec->getValueAsBit("hasNoTrackPrefix"),
RegRec->getValueAsBit("EVEX_W1_VEX_W0")) !=
std::make_tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix,
MemRI.OpMap, MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W,
MemRI.HasVEX_4V, MemRI.HasVEX_L, MemRI.IgnoresVEX_L,
MemRI.IgnoresVEX_W, MemRI.HasEVEX_K, MemRI.HasEVEX_KZ,
MemRI.HasEVEX_L2, MemRec->getValueAsBit("hasEVEX_RC"),
MemRec->getValueAsBit("hasLockPrefix"),
MemRec->getValueAsBit("hasNoTrackPrefix"),
MemRec->getValueAsBit("EVEX_W1_VEX_W0")))
return false;
// Make sure the sizes of the operands of both instructions suit each other.
// This is needed for instructions with intrinsic version (_Int).
// Where the only difference is the size of the operands.
// For example: VUCOMISDZrm and Int_VUCOMISDrm
// Also for instructions that their EVEX version was upgraded to work with
// k-registers. For example VPCMPEQBrm (xmm output register) and
// VPCMPEQBZ128rm (k register output register).
bool ArgFolded = false;
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions with one output in their memory form use the memory folded
// operand as source and destination (Read-Modify-Write).
unsigned RegStartIdx =
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
Record *MemOpRec = MemInst->Operands[i].Rec;
Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
if (MemOpRec == RegOpRec)
continue;
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
return false;
} else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
return false;
} else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
return false;
} else {
// Only one operand can be folded.
if (ArgFolded)
return false;
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
ArgFolded = true;
}
}
return true;
}
};
} // end anonymous namespace
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
const CodeGenInstruction *RegInstr,
const CodeGenInstruction *MemInstr,
const uint16_t S,
const unsigned int FoldedInd,
bool isManual) {
X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
Record *RegRec = RegInstr->TheDef;
Record *MemRec = MemInstr->TheDef;
if (isManual) {
Result.CannotUnfold = (S & TB_NO_REVERSE) != 0;
Result.CannotFold = (S & TB_NO_FORWARD) != 0;
Result.IsLoad = (S & TB_FOLDED_LOAD) != 0;
Result.IsStore = (S & TB_FOLDED_STORE) != 0;
Result.IsAligned = (S & TB_ALIGN_MASK) != 0;
Result.Alignment = Align(1 << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT));
Table[RegInstr] = Result;
return;
}
// Only table0 entries should explicitly specify a load or store flag.
if (&Table == &Table0) {
unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// If the instruction writes to the folded operand, it will appear as an
// output in the register form instruction and as an input in the memory
// form instruction.
// If the instruction reads from the folded operand, it well appear as in
// input in both forms.
if (MemInOpsNum == RegInOpsNum)
Result.IsLoad = true;
else
Result.IsStore = true;
}
Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
// Unfolding code generates a load/store instruction according to the size of
// the register in the register form instruction.
// If the register's size is greater than the memory's operand size, do not
// allow unfolding.
// the unfolded load size will be based on the register size. If thats bigger
// than the memory operand size, the unfolded load will load more memory and
// potentially cause a memory fault.
if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
Result.CannotUnfold = true;
// Check no-kz version's isMoveReg
StringRef RegInstName = RegRec->getName();
Record *BaseDef = nullptr;
if (RegInstName.endswith("rkz") &&
(BaseDef = Records.getDef(RegInstName.drop_back(2)))) {
Result.CannotUnfold =
Target.getInstruction(BaseDef).isMoveReg ? true : Result.CannotUnfold;
} else if (RegInstName.endswith("rk") &&
(BaseDef = Records.getDef(RegInstName.drop_back(1)))) {
Result.CannotUnfold =
Target.getInstruction(BaseDef).isMoveReg ? true : Result.CannotUnfold;
} else if (RegInstr->isMoveReg && Result.IsStore)
Result.CannotUnfold = true;
uint8_t Enc = byteFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
if (isExplicitAlign(RegInstr)) {
// The instruction require explicitly aligned memory.
BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
Result.IsAligned = true;
Result.Alignment = Align(byteFromBitsInit(VectSize));
} else if (!Enc && !isExplicitUnalign(RegInstr) &&
getMemOperandSize(MemOpRec) > 64) {
// Instructions with XOP/VEX/EVEX encoding do not require alignment while
// SSE packed vector instructions require a 16 byte alignment.
Result.IsAligned = true;
Result.Alignment = Align(16);
}
// Expand is only ever created as a masked instruction. It is not safe to
// unfold a masked expand because we don't know if it came from an expand load
// intrinsic or folding a plain load. If it is from a expand load intrinsic,
// Unfolding to plain load would read more elements and could trigger a fault.
if (RegRec->getName().contains("EXPAND"))
Result.CannotUnfold = true;
Table[RegInstr] = Result;
}
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
const CodeGenInstruction *MemInstr,
const uint16_t S, bool IsManual) {
Record *RegRec = RegInstr->TheDef;
Record *MemRec = MemInstr->TheDef;
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions which Read-Modify-Write should be added to Table2Addr.
if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) {
addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0, IsManual);
return;
}
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
// Load-Folding cases.
// If the i'th register form operand is a register and the i'th memory form
// operand is a memory operand, add instructions to Table#i.
for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
Record *RegOpRec = RegInstr->Operands[i].Rec;
Record *MemOpRec = MemInstr->Operands[i].Rec;
// PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64, TAILJMPr64_REX
if ((isRegisterOperand(RegOpRec) ||
RegOpRec->isSubClassOf("PointerLikeRegClass")) &&
isMemoryOperand(MemOpRec)) {
switch (i) {
case 0:
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0, IsManual);
return;
case 1:
addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1, IsManual);
return;
case 2:
addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2, IsManual);
return;
case 3:
addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3, IsManual);
return;
case 4:
addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4, IsManual);
return;
}
}
}
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
// Store-Folding cases.
// If the memory form instruction performs a store, the *output*
// register of the register form instructions disappear and instead a
// memory *input* operand appears in the memory form instruction.
// For example:
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec))
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0, IsManual);
}
}
void X86FoldTablesEmitter::run(raw_ostream &o) {
formatted_raw_ostream OS(o);
// Holds all memory instructions
std::vector<const CodeGenInstruction *> MemInsts;
// Holds all register instructions - divided according to opcode.
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
Target.getInstructionsByEnumValue();
for (const CodeGenInstruction *Inst : NumberedInstructions) {
const Record *Rec = Inst->TheDef;
if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly"))
continue;
if (NoFoldSet.find(Rec->getName()) != NoFoldSet.end())
continue;
// - Instructions including RST register class operands are not relevant
// for memory folding (for further details check the explanation in
// lib/Target/X86/X86InstrFPStack.td file).
// - Some instructions (listed in the manual map above) use the register
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
// safe mapping of these instruction we manually map them and exclude
// them from the automation.
if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
continue;
// Add all the memory form instructions to MemInsts, and all the register
// form instructions to RegInsts[Opc], where Opc is the opcode of each
// instructions. this helps reducing the runtime of the backend.
const BitsInit *FormBits = Rec->getValueAsBitsInit("FormBits");
uint8_t Form = byteFromBitsInit(FormBits);
if (mayFoldToForm(Form))
MemInsts.push_back(Inst);
else if (mayFoldFromForm(Form)) {
uint8_t Opc = byteFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
RegInsts[Opc].push_back(Inst);
}
}
Record *AsmWriter = Target.getAsmWriter();
unsigned Variant = AsmWriter->getValueAsInt("Variant");
// For each memory form instruction, try to find its register form
// instruction.
for (const CodeGenInstruction *MemInst : MemInsts) {
uint8_t Opc =
byteFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
auto RegInstsIt = RegInsts.find(Opc);
if (RegInstsIt == RegInsts.end())
continue;
// Two forms (memory & register) of the same instruction must have the same
// opcode. try matching only with register form instructions with the same
// opcode.
std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Variant));
if (Match != OpcRegInsts.end()) {
const CodeGenInstruction *RegInst = *Match;
StringRef RegInstName = RegInst->TheDef->getName();
if (RegInstName.endswith("_REV") || RegInstName.endswith("_alt")) {
if (auto *RegAltRec = Records.getDef(RegInstName.drop_back(4))) {
RegInst = &Target.getInstruction(RegAltRec);
}
}
updateTables(RegInst, MemInst);
OpcRegInsts.erase(Match);
}
}
// Add the manually mapped instructions listed above.
for (const ManualMapEntry &Entry : ManualMapSet) {
Record *RegInstIter = Records.getDef(Entry.RegInstStr);
Record *MemInstIter = Records.getDef(Entry.MemInstStr);
updateTables(&(Target.getInstruction(RegInstIter)),
&(Target.getInstruction(MemInstIter)), Entry.Strategy, true);
}
// Print all tables.
printTable(Table2Addr, "Table2Addr", OS);
printTable(Table0, "Table0", OS);
printTable(Table1, "Table1", OS);
printTable(Table2, "Table2", OS);
printTable(Table3, "Table3", OS);
printTable(Table4, "Table4", OS);
}
static TableGen::Emitter::OptClass<X86FoldTablesEmitter>
X("gen-x86-fold-tables", "Generate X86 fold tables");