mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 10:36:06 +00:00
619 lines
23 KiB
C++
619 lines
23 KiB
C++
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This tablegen backend is responsible for emitting the memory fold tables of
|
||
// the X86 backend instructions.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "CodeGenInstruction.h"
|
||
#include "CodeGenTarget.h"
|
||
#include "X86RecognizableInstr.h"
|
||
#include "llvm/ADT/DenseMap.h"
|
||
#include "llvm/Support/FormattedStream.h"
|
||
#include "llvm/Support/X86FoldTablesUtils.h"
|
||
#include "llvm/TableGen/Record.h"
|
||
#include "llvm/TableGen/TableGenBackend.h"
|
||
|
||
using namespace llvm;
|
||
using namespace X86Disassembler;
|
||
|
||
namespace {
|
||
// Represents an entry in the manual mapped instructions set.
|
||
struct ManualMapEntry {
|
||
const char *RegInstStr;
|
||
const char *MemInstStr;
|
||
uint16_t Strategy;
|
||
};
|
||
|
||
// List of instructions requiring explicitly aligned memory.
|
||
const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
|
||
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
|
||
|
||
// List of instructions NOT requiring explicit memory alignment.
|
||
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
|
||
"PCMPESTRM", "PCMPESTRI",
|
||
"PCMPISTRM", "PCMPISTRI" };
|
||
|
||
const ManualMapEntry ManualMapSet[] = {
|
||
#define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS},
|
||
#include "X86ManualFoldTables.def"
|
||
};
|
||
|
||
const std::set<StringRef> NoFoldSet= {
|
||
#define NOFOLD(INSN) #INSN,
|
||
#include "X86ManualFoldTables.def"
|
||
};
|
||
|
||
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
|
||
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
|
||
return Inst->TheDef->getName().contains(InstStr);
|
||
});
|
||
}
|
||
|
||
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
|
||
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
|
||
return Inst->TheDef->getName().contains(InstStr);
|
||
});
|
||
}
|
||
|
||
class X86FoldTablesEmitter {
|
||
RecordKeeper &Records;
|
||
CodeGenTarget Target;
|
||
|
||
// Represents an entry in the folding table
|
||
class X86FoldTableEntry {
|
||
const CodeGenInstruction *RegInst;
|
||
const CodeGenInstruction *MemInst;
|
||
|
||
public:
|
||
bool CannotUnfold = false;
|
||
bool CannotFold = false;
|
||
bool IsLoad = false;
|
||
bool IsStore = false;
|
||
bool IsAligned = false;
|
||
Align Alignment;
|
||
|
||
X86FoldTableEntry() = default;
|
||
X86FoldTableEntry(const CodeGenInstruction *RegInst,
|
||
const CodeGenInstruction *MemInst)
|
||
: RegInst(RegInst), MemInst(MemInst) {}
|
||
|
||
void print(formatted_raw_ostream &OS) const {
|
||
OS.indent(2);
|
||
OS << "{X86::" << RegInst->TheDef->getName() << ", ";
|
||
OS << "X86::" << MemInst->TheDef->getName() << ", ";
|
||
|
||
std::string Attrs;
|
||
if (IsLoad)
|
||
Attrs += "TB_FOLDED_LOAD|";
|
||
if (IsStore)
|
||
Attrs += "TB_FOLDED_STORE|";
|
||
if (CannotUnfold)
|
||
Attrs += "TB_NO_REVERSE|";
|
||
if (CannotFold)
|
||
Attrs += "TB_NO_FORWARD|";
|
||
if (IsAligned)
|
||
Attrs += "TB_ALIGN_" + std::to_string(Alignment.value()) + "|";
|
||
|
||
StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|");
|
||
if (SimplifiedAttrs.empty())
|
||
SimplifiedAttrs = "0";
|
||
|
||
OS << SimplifiedAttrs << "},\n";
|
||
}
|
||
|
||
};
|
||
|
||
// NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the enum of the
|
||
// instruction, which is computed in CodeGenTarget::ComputeInstrsByEnum. So we should
|
||
// use the same comparator here.
|
||
// FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum?
|
||
struct CompareInstrsByEnum {
|
||
bool operator()(const CodeGenInstruction *LHS,
|
||
const CodeGenInstruction *RHS) const {
|
||
assert(LHS && RHS && "LHS and RHS shouldn't be nullptr");
|
||
const auto &D1 = *LHS->TheDef;
|
||
const auto &D2 = *RHS->TheDef;
|
||
return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
|
||
std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
|
||
}
|
||
};
|
||
|
||
typedef std::map<const CodeGenInstruction *, X86FoldTableEntry,
|
||
CompareInstrsByEnum>
|
||
FoldTable;
|
||
// std::vector for each folding table.
|
||
// Table2Addr - Holds instructions which their memory form performs load+store
|
||
// Table#i - Holds instructions which the their memory form perform a load OR
|
||
// a store, and their #i'th operand is folded.
|
||
FoldTable Table2Addr;
|
||
FoldTable Table0;
|
||
FoldTable Table1;
|
||
FoldTable Table2;
|
||
FoldTable Table3;
|
||
FoldTable Table4;
|
||
|
||
public:
|
||
X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
|
||
|
||
// run - Generate the 6 X86 memory fold tables.
|
||
void run(raw_ostream &OS);
|
||
|
||
private:
|
||
// Decides to which table to add the entry with the given instructions.
|
||
// S sets the strategy of adding the TB_NO_REVERSE flag.
|
||
void updateTables(const CodeGenInstruction *RegInstr,
|
||
const CodeGenInstruction *MemInstr, const uint16_t S = 0,
|
||
bool IsManual = false);
|
||
|
||
// Generates X86FoldTableEntry with the given instructions and fill it with
|
||
// the appropriate flags - then adds it to Table.
|
||
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
|
||
const CodeGenInstruction *MemInstr, const uint16_t S,
|
||
const unsigned int FoldedInd, bool isManual);
|
||
|
||
// Print the given table as a static const C++ array of type
|
||
// X86MemoryFoldTableEntry.
|
||
void printTable(const FoldTable &Table, StringRef TableName,
|
||
formatted_raw_ostream &OS) {
|
||
OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName
|
||
<< "[] = {\n";
|
||
|
||
for (auto &E : Table)
|
||
E.second.print(OS);
|
||
|
||
OS << "};\n\n";
|
||
}
|
||
};
|
||
|
||
// Return true if one of the instruction's operands is a RST register class
|
||
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
|
||
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
|
||
return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
|
||
});
|
||
}
|
||
|
||
// Return true if one of the instruction's operands is a ptr_rc_tailcall
|
||
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
|
||
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
|
||
return OpIn.Rec->getName() == "ptr_rc_tailcall";
|
||
});
|
||
}
|
||
|
||
static uint8_t byteFromBitsInit(const BitsInit *B) {
|
||
unsigned N = B->getNumBits();
|
||
assert(N <= 8 && "Field is too large for uint8_t!");
|
||
|
||
uint8_t Value = 0;
|
||
for (unsigned I = 0; I != N; ++I) {
|
||
BitInit *Bit = cast<BitInit>(B->getBit(I));
|
||
Value |= Bit->getValue() << I;
|
||
}
|
||
return Value;
|
||
}
|
||
|
||
static bool mayFoldFromForm(uint8_t Form) {
|
||
switch (Form) {
|
||
default:
|
||
return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r;
|
||
case X86Local::MRMXr:
|
||
case X86Local::MRMXrCC:
|
||
case X86Local::MRMDestReg:
|
||
case X86Local::MRMSrcReg:
|
||
case X86Local::MRMSrcReg4VOp3:
|
||
case X86Local::MRMSrcRegOp4:
|
||
case X86Local::MRMSrcRegCC:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
static bool mayFoldToForm(uint8_t Form) {
|
||
switch (Form) {
|
||
default:
|
||
return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m;
|
||
case X86Local::MRMXm:
|
||
case X86Local::MRMXmCC:
|
||
case X86Local::MRMDestMem:
|
||
case X86Local::MRMSrcMem:
|
||
case X86Local::MRMSrcMem4VOp3:
|
||
case X86Local::MRMSrcMemOp4:
|
||
case X86Local::MRMSrcMemCC:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) {
|
||
switch (LHS) {
|
||
default:
|
||
llvm_unreachable("Unexpected Form!");
|
||
case X86Local::MRM0r:
|
||
return RHS == X86Local::MRM0m;
|
||
case X86Local::MRM1r:
|
||
return RHS == X86Local::MRM1m;
|
||
case X86Local::MRM2r:
|
||
return RHS == X86Local::MRM2m;
|
||
case X86Local::MRM3r:
|
||
return RHS == X86Local::MRM3m;
|
||
case X86Local::MRM4r:
|
||
return RHS == X86Local::MRM4m;
|
||
case X86Local::MRM5r:
|
||
return RHS == X86Local::MRM5m;
|
||
case X86Local::MRM6r:
|
||
return RHS == X86Local::MRM6m;
|
||
case X86Local::MRM7r:
|
||
return RHS == X86Local::MRM7m;
|
||
case X86Local::MRMXr:
|
||
return RHS == X86Local::MRMXm;
|
||
case X86Local::MRMXrCC:
|
||
return RHS == X86Local::MRMXmCC;
|
||
case X86Local::MRMDestReg:
|
||
return RHS == X86Local::MRMDestMem;
|
||
case X86Local::MRMSrcReg:
|
||
return RHS == X86Local::MRMSrcMem;
|
||
case X86Local::MRMSrcReg4VOp3:
|
||
return RHS == X86Local::MRMSrcMem4VOp3;
|
||
case X86Local::MRMSrcRegOp4:
|
||
return RHS == X86Local::MRMSrcMemOp4;
|
||
case X86Local::MRMSrcRegCC:
|
||
return RHS == X86Local::MRMSrcMemCC;
|
||
}
|
||
}
|
||
|
||
static bool isNOREXRegClass(const Record *Op) {
|
||
return Op->getName().contains("_NOREX");
|
||
}
|
||
|
||
// Function object - Operator() returns true if the given Reg instruction
|
||
// matches the Mem instruction of this object.
|
||
class IsMatch {
|
||
const CodeGenInstruction *MemInst;
|
||
const X86Disassembler::RecognizableInstrBase MemRI;
|
||
const unsigned Variant;
|
||
|
||
public:
|
||
IsMatch(const CodeGenInstruction *Inst, unsigned V)
|
||
: MemInst(Inst), MemRI(*MemInst), Variant(V) {}
|
||
|
||
bool operator()(const CodeGenInstruction *RegInst) {
|
||
X86Disassembler::RecognizableInstrBase RegRI(*RegInst);
|
||
const Record *RegRec = RegInst->TheDef;
|
||
const Record *MemRec = MemInst->TheDef;
|
||
|
||
// EVEX_B means different things for memory and register forms.
|
||
if (RegRI.HasEVEX_B != 0 || MemRI.HasEVEX_B != 0)
|
||
return false;
|
||
|
||
if (!mayFoldFromLeftToRight(RegRI.Form, MemRI.Form))
|
||
return false;
|
||
|
||
// X86 encoding is crazy, e.g
|
||
//
|
||
// f3 0f c7 30 vmxon (%rax)
|
||
// f3 0f c7 f0 senduipi %rax
|
||
//
|
||
// This two instruction have similiar encoding fields but are unrelated
|
||
if (X86Disassembler::getMnemonic(MemInst, Variant) !=
|
||
X86Disassembler::getMnemonic(RegInst, Variant))
|
||
return false;
|
||
|
||
// Return false if any of the following fields of does not match.
|
||
if (std::make_tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix,
|
||
RegRI.OpMap, RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W,
|
||
RegRI.HasVEX_4V, RegRI.HasVEX_L, RegRI.IgnoresVEX_L,
|
||
RegRI.IgnoresVEX_W, RegRI.HasEVEX_K, RegRI.HasEVEX_KZ,
|
||
RegRI.HasEVEX_L2, RegRec->getValueAsBit("hasEVEX_RC"),
|
||
RegRec->getValueAsBit("hasLockPrefix"),
|
||
RegRec->getValueAsBit("hasNoTrackPrefix"),
|
||
RegRec->getValueAsBit("EVEX_W1_VEX_W0")) !=
|
||
std::make_tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix,
|
||
MemRI.OpMap, MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W,
|
||
MemRI.HasVEX_4V, MemRI.HasVEX_L, MemRI.IgnoresVEX_L,
|
||
MemRI.IgnoresVEX_W, MemRI.HasEVEX_K, MemRI.HasEVEX_KZ,
|
||
MemRI.HasEVEX_L2, MemRec->getValueAsBit("hasEVEX_RC"),
|
||
MemRec->getValueAsBit("hasLockPrefix"),
|
||
MemRec->getValueAsBit("hasNoTrackPrefix"),
|
||
MemRec->getValueAsBit("EVEX_W1_VEX_W0")))
|
||
return false;
|
||
|
||
// Make sure the sizes of the operands of both instructions suit each other.
|
||
// This is needed for instructions with intrinsic version (_Int).
|
||
// Where the only difference is the size of the operands.
|
||
// For example: VUCOMISDZrm and Int_VUCOMISDrm
|
||
// Also for instructions that their EVEX version was upgraded to work with
|
||
// k-registers. For example VPCMPEQBrm (xmm output register) and
|
||
// VPCMPEQBZ128rm (k register output register).
|
||
bool ArgFolded = false;
|
||
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
|
||
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
|
||
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
||
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
||
|
||
// Instructions with one output in their memory form use the memory folded
|
||
// operand as source and destination (Read-Modify-Write).
|
||
unsigned RegStartIdx =
|
||
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
|
||
|
||
for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
|
||
Record *MemOpRec = MemInst->Operands[i].Rec;
|
||
Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
|
||
|
||
if (MemOpRec == RegOpRec)
|
||
continue;
|
||
|
||
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
|
||
if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
|
||
isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
|
||
return false;
|
||
} else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
|
||
if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
|
||
return false;
|
||
} else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
|
||
if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
|
||
return false;
|
||
} else {
|
||
// Only one operand can be folded.
|
||
if (ArgFolded)
|
||
return false;
|
||
|
||
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
|
||
ArgFolded = true;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
};
|
||
|
||
} // end anonymous namespace
|
||
|
||
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
|
||
const CodeGenInstruction *RegInstr,
|
||
const CodeGenInstruction *MemInstr,
|
||
const uint16_t S,
|
||
const unsigned int FoldedInd,
|
||
bool isManual) {
|
||
|
||
X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
|
||
Record *RegRec = RegInstr->TheDef;
|
||
Record *MemRec = MemInstr->TheDef;
|
||
|
||
if (isManual) {
|
||
Result.CannotUnfold = (S & TB_NO_REVERSE) != 0;
|
||
Result.CannotFold = (S & TB_NO_FORWARD) != 0;
|
||
Result.IsLoad = (S & TB_FOLDED_LOAD) != 0;
|
||
Result.IsStore = (S & TB_FOLDED_STORE) != 0;
|
||
Result.IsAligned = (S & TB_ALIGN_MASK) != 0;
|
||
Result.Alignment = Align(1 << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT));
|
||
Table[RegInstr] = Result;
|
||
return;
|
||
}
|
||
|
||
// Only table0 entries should explicitly specify a load or store flag.
|
||
if (&Table == &Table0) {
|
||
unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
||
unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
||
// If the instruction writes to the folded operand, it will appear as an
|
||
// output in the register form instruction and as an input in the memory
|
||
// form instruction.
|
||
// If the instruction reads from the folded operand, it well appear as in
|
||
// input in both forms.
|
||
if (MemInOpsNum == RegInOpsNum)
|
||
Result.IsLoad = true;
|
||
else
|
||
Result.IsStore = true;
|
||
}
|
||
|
||
Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
|
||
Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
|
||
|
||
// Unfolding code generates a load/store instruction according to the size of
|
||
// the register in the register form instruction.
|
||
// If the register's size is greater than the memory's operand size, do not
|
||
// allow unfolding.
|
||
|
||
// the unfolded load size will be based on the register size. If that’s bigger
|
||
// than the memory operand size, the unfolded load will load more memory and
|
||
// potentially cause a memory fault.
|
||
if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
|
||
Result.CannotUnfold = true;
|
||
|
||
// Check no-kz version's isMoveReg
|
||
StringRef RegInstName = RegRec->getName();
|
||
Record *BaseDef = nullptr;
|
||
if (RegInstName.endswith("rkz") &&
|
||
(BaseDef = Records.getDef(RegInstName.drop_back(2)))) {
|
||
Result.CannotUnfold =
|
||
Target.getInstruction(BaseDef).isMoveReg ? true : Result.CannotUnfold;
|
||
} else if (RegInstName.endswith("rk") &&
|
||
(BaseDef = Records.getDef(RegInstName.drop_back(1)))) {
|
||
Result.CannotUnfold =
|
||
Target.getInstruction(BaseDef).isMoveReg ? true : Result.CannotUnfold;
|
||
} else if (RegInstr->isMoveReg && Result.IsStore)
|
||
Result.CannotUnfold = true;
|
||
|
||
uint8_t Enc = byteFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
|
||
if (isExplicitAlign(RegInstr)) {
|
||
// The instruction require explicitly aligned memory.
|
||
BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
|
||
Result.IsAligned = true;
|
||
Result.Alignment = Align(byteFromBitsInit(VectSize));
|
||
} else if (!Enc && !isExplicitUnalign(RegInstr) &&
|
||
getMemOperandSize(MemOpRec) > 64) {
|
||
// Instructions with XOP/VEX/EVEX encoding do not require alignment while
|
||
// SSE packed vector instructions require a 16 byte alignment.
|
||
Result.IsAligned = true;
|
||
Result.Alignment = Align(16);
|
||
}
|
||
// Expand is only ever created as a masked instruction. It is not safe to
|
||
// unfold a masked expand because we don't know if it came from an expand load
|
||
// intrinsic or folding a plain load. If it is from a expand load intrinsic,
|
||
// Unfolding to plain load would read more elements and could trigger a fault.
|
||
if (RegRec->getName().contains("EXPAND"))
|
||
Result.CannotUnfold = true;
|
||
|
||
Table[RegInstr] = Result;
|
||
}
|
||
|
||
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
|
||
const CodeGenInstruction *MemInstr,
|
||
const uint16_t S, bool IsManual) {
|
||
|
||
Record *RegRec = RegInstr->TheDef;
|
||
Record *MemRec = MemInstr->TheDef;
|
||
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
|
||
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
|
||
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
||
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
||
|
||
// Instructions which Read-Modify-Write should be added to Table2Addr.
|
||
if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) {
|
||
addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0, IsManual);
|
||
return;
|
||
}
|
||
|
||
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
|
||
// Load-Folding cases.
|
||
// If the i'th register form operand is a register and the i'th memory form
|
||
// operand is a memory operand, add instructions to Table#i.
|
||
for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
|
||
Record *RegOpRec = RegInstr->Operands[i].Rec;
|
||
Record *MemOpRec = MemInstr->Operands[i].Rec;
|
||
// PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64, TAILJMPr64_REX
|
||
if ((isRegisterOperand(RegOpRec) ||
|
||
RegOpRec->isSubClassOf("PointerLikeRegClass")) &&
|
||
isMemoryOperand(MemOpRec)) {
|
||
switch (i) {
|
||
case 0:
|
||
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0, IsManual);
|
||
return;
|
||
case 1:
|
||
addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1, IsManual);
|
||
return;
|
||
case 2:
|
||
addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2, IsManual);
|
||
return;
|
||
case 3:
|
||
addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3, IsManual);
|
||
return;
|
||
case 4:
|
||
addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4, IsManual);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
|
||
// Store-Folding cases.
|
||
// If the memory form instruction performs a store, the *output*
|
||
// register of the register form instructions disappear and instead a
|
||
// memory *input* operand appears in the memory form instruction.
|
||
// For example:
|
||
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
|
||
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
|
||
Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
|
||
Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
|
||
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
|
||
getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec))
|
||
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0, IsManual);
|
||
}
|
||
}
|
||
|
||
void X86FoldTablesEmitter::run(raw_ostream &o) {
|
||
formatted_raw_ostream OS(o);
|
||
|
||
// Holds all memory instructions
|
||
std::vector<const CodeGenInstruction *> MemInsts;
|
||
// Holds all register instructions - divided according to opcode.
|
||
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
|
||
|
||
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
|
||
Target.getInstructionsByEnumValue();
|
||
|
||
for (const CodeGenInstruction *Inst : NumberedInstructions) {
|
||
const Record *Rec = Inst->TheDef;
|
||
if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly"))
|
||
continue;
|
||
|
||
if (NoFoldSet.find(Rec->getName()) != NoFoldSet.end())
|
||
continue;
|
||
|
||
// - Instructions including RST register class operands are not relevant
|
||
// for memory folding (for further details check the explanation in
|
||
// lib/Target/X86/X86InstrFPStack.td file).
|
||
// - Some instructions (listed in the manual map above) use the register
|
||
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
|
||
// safe mapping of these instruction we manually map them and exclude
|
||
// them from the automation.
|
||
if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
|
||
continue;
|
||
|
||
// Add all the memory form instructions to MemInsts, and all the register
|
||
// form instructions to RegInsts[Opc], where Opc is the opcode of each
|
||
// instructions. this helps reducing the runtime of the backend.
|
||
const BitsInit *FormBits = Rec->getValueAsBitsInit("FormBits");
|
||
uint8_t Form = byteFromBitsInit(FormBits);
|
||
if (mayFoldToForm(Form))
|
||
MemInsts.push_back(Inst);
|
||
else if (mayFoldFromForm(Form)) {
|
||
uint8_t Opc = byteFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
|
||
RegInsts[Opc].push_back(Inst);
|
||
}
|
||
}
|
||
|
||
Record *AsmWriter = Target.getAsmWriter();
|
||
unsigned Variant = AsmWriter->getValueAsInt("Variant");
|
||
// For each memory form instruction, try to find its register form
|
||
// instruction.
|
||
for (const CodeGenInstruction *MemInst : MemInsts) {
|
||
uint8_t Opc =
|
||
byteFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
|
||
|
||
auto RegInstsIt = RegInsts.find(Opc);
|
||
if (RegInstsIt == RegInsts.end())
|
||
continue;
|
||
|
||
// Two forms (memory & register) of the same instruction must have the same
|
||
// opcode. try matching only with register form instructions with the same
|
||
// opcode.
|
||
std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
|
||
|
||
auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Variant));
|
||
if (Match != OpcRegInsts.end()) {
|
||
const CodeGenInstruction *RegInst = *Match;
|
||
StringRef RegInstName = RegInst->TheDef->getName();
|
||
if (RegInstName.endswith("_REV") || RegInstName.endswith("_alt")) {
|
||
if (auto *RegAltRec = Records.getDef(RegInstName.drop_back(4))) {
|
||
RegInst = &Target.getInstruction(RegAltRec);
|
||
}
|
||
}
|
||
updateTables(RegInst, MemInst);
|
||
OpcRegInsts.erase(Match);
|
||
}
|
||
}
|
||
|
||
// Add the manually mapped instructions listed above.
|
||
for (const ManualMapEntry &Entry : ManualMapSet) {
|
||
Record *RegInstIter = Records.getDef(Entry.RegInstStr);
|
||
Record *MemInstIter = Records.getDef(Entry.MemInstStr);
|
||
|
||
updateTables(&(Target.getInstruction(RegInstIter)),
|
||
&(Target.getInstruction(MemInstIter)), Entry.Strategy, true);
|
||
}
|
||
|
||
// Print all tables.
|
||
printTable(Table2Addr, "Table2Addr", OS);
|
||
printTable(Table0, "Table0", OS);
|
||
printTable(Table1, "Table1", OS);
|
||
printTable(Table2, "Table2", OS);
|
||
printTable(Table3, "Table3", OS);
|
||
printTable(Table4, "Table4", OS);
|
||
}
|
||
|
||
static TableGen::Emitter::OptClass<X86FoldTablesEmitter>
|
||
X("gen-x86-fold-tables", "Generate X86 fold tables");
|