llvm-project/llvm/unittests/IR/DominatorTreeTest.cpp
Jakub Kuderski eb59ff22e4 [Dominators] Implement incremental deletions
Summary:
This patch implements incremental edge deletions.

It also makes DominatorTreeBase store a pointer to the parent function. The parent function is needed to perform full rebuilts during some deletions, but it is also used to verify that inserted and deleted edges come from the same function.

Reviewers: dberlin, davide, grosser, sanjoy, brzycki

Reviewed By: dberlin

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D35342

llvm-svn: 308062
2017-07-14 21:58:53 +00:00

578 lines
20 KiB
C++

//===- llvm/unittests/IR/DominatorTreeTest.cpp - Constants unit tests -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/PostDominators.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "CFGBuilder.h"
#include "gtest/gtest.h"
using namespace llvm;
struct PostDomTree : PostDomTreeBase<BasicBlock> {
PostDomTree(Function &F) { recalculate(F); }
};
/// Build the dominator tree for the function and run the Test.
static void runWithDomTree(
Module &M, StringRef FuncName,
function_ref<void(Function &F, DominatorTree *DT, PostDomTree *PDT)> Test) {
auto *F = M.getFunction(FuncName);
ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
// Compute the dominator tree for the function.
DominatorTree DT(*F);
PostDomTree PDT(*F);
Test(*F, &DT, &PDT);
}
static std::unique_ptr<Module> makeLLVMModule(LLVMContext &Context,
StringRef ModuleStr) {
SMDiagnostic Err;
std::unique_ptr<Module> M = parseAssemblyString(ModuleStr, Err, Context);
assert(M && "Bad assembly?");
return M;
}
TEST(DominatorTree, Unreachable) {
StringRef ModuleString =
"declare i32 @g()\n"
"define void @f(i32 %x) personality i32 ()* @g {\n"
"bb0:\n"
" %y1 = add i32 %x, 1\n"
" %y2 = add i32 %x, 1\n"
" %y3 = invoke i32 @g() to label %bb1 unwind label %bb2\n"
"bb1:\n"
" %y4 = add i32 %x, 1\n"
" br label %bb4\n"
"bb2:\n"
" %y5 = landingpad i32\n"
" cleanup\n"
" br label %bb4\n"
"bb3:\n"
" %y6 = add i32 %x, 1\n"
" %y7 = add i32 %x, 1\n"
" ret void\n"
"bb4:\n"
" %y8 = phi i32 [0, %bb2], [%y4, %bb1]\n"
" %y9 = phi i32 [0, %bb2], [%y4, %bb1]\n"
" ret void\n"
"}\n";
// Parse the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
runWithDomTree(
*M, "f", [&](Function &F, DominatorTree *DT, PostDomTree *PDT) {
Function::iterator FI = F.begin();
BasicBlock *BB0 = &*FI++;
BasicBlock::iterator BBI = BB0->begin();
Instruction *Y1 = &*BBI++;
Instruction *Y2 = &*BBI++;
Instruction *Y3 = &*BBI++;
BasicBlock *BB1 = &*FI++;
BBI = BB1->begin();
Instruction *Y4 = &*BBI++;
BasicBlock *BB2 = &*FI++;
BBI = BB2->begin();
Instruction *Y5 = &*BBI++;
BasicBlock *BB3 = &*FI++;
BBI = BB3->begin();
Instruction *Y6 = &*BBI++;
Instruction *Y7 = &*BBI++;
BasicBlock *BB4 = &*FI++;
BBI = BB4->begin();
Instruction *Y8 = &*BBI++;
Instruction *Y9 = &*BBI++;
// Reachability
EXPECT_TRUE(DT->isReachableFromEntry(BB0));
EXPECT_TRUE(DT->isReachableFromEntry(BB1));
EXPECT_TRUE(DT->isReachableFromEntry(BB2));
EXPECT_FALSE(DT->isReachableFromEntry(BB3));
EXPECT_TRUE(DT->isReachableFromEntry(BB4));
// BB dominance
EXPECT_TRUE(DT->dominates(BB0, BB0));
EXPECT_TRUE(DT->dominates(BB0, BB1));
EXPECT_TRUE(DT->dominates(BB0, BB2));
EXPECT_TRUE(DT->dominates(BB0, BB3));
EXPECT_TRUE(DT->dominates(BB0, BB4));
EXPECT_FALSE(DT->dominates(BB1, BB0));
EXPECT_TRUE(DT->dominates(BB1, BB1));
EXPECT_FALSE(DT->dominates(BB1, BB2));
EXPECT_TRUE(DT->dominates(BB1, BB3));
EXPECT_FALSE(DT->dominates(BB1, BB4));
EXPECT_FALSE(DT->dominates(BB2, BB0));
EXPECT_FALSE(DT->dominates(BB2, BB1));
EXPECT_TRUE(DT->dominates(BB2, BB2));
EXPECT_TRUE(DT->dominates(BB2, BB3));
EXPECT_FALSE(DT->dominates(BB2, BB4));
EXPECT_FALSE(DT->dominates(BB3, BB0));
EXPECT_FALSE(DT->dominates(BB3, BB1));
EXPECT_FALSE(DT->dominates(BB3, BB2));
EXPECT_TRUE(DT->dominates(BB3, BB3));
EXPECT_FALSE(DT->dominates(BB3, BB4));
// BB proper dominance
EXPECT_FALSE(DT->properlyDominates(BB0, BB0));
EXPECT_TRUE(DT->properlyDominates(BB0, BB1));
EXPECT_TRUE(DT->properlyDominates(BB0, BB2));
EXPECT_TRUE(DT->properlyDominates(BB0, BB3));
EXPECT_FALSE(DT->properlyDominates(BB1, BB0));
EXPECT_FALSE(DT->properlyDominates(BB1, BB1));
EXPECT_FALSE(DT->properlyDominates(BB1, BB2));
EXPECT_TRUE(DT->properlyDominates(BB1, BB3));
EXPECT_FALSE(DT->properlyDominates(BB2, BB0));
EXPECT_FALSE(DT->properlyDominates(BB2, BB1));
EXPECT_FALSE(DT->properlyDominates(BB2, BB2));
EXPECT_TRUE(DT->properlyDominates(BB2, BB3));
EXPECT_FALSE(DT->properlyDominates(BB3, BB0));
EXPECT_FALSE(DT->properlyDominates(BB3, BB1));
EXPECT_FALSE(DT->properlyDominates(BB3, BB2));
EXPECT_FALSE(DT->properlyDominates(BB3, BB3));
// Instruction dominance in the same reachable BB
EXPECT_FALSE(DT->dominates(Y1, Y1));
EXPECT_TRUE(DT->dominates(Y1, Y2));
EXPECT_FALSE(DT->dominates(Y2, Y1));
EXPECT_FALSE(DT->dominates(Y2, Y2));
// Instruction dominance in the same unreachable BB
EXPECT_TRUE(DT->dominates(Y6, Y6));
EXPECT_TRUE(DT->dominates(Y6, Y7));
EXPECT_TRUE(DT->dominates(Y7, Y6));
EXPECT_TRUE(DT->dominates(Y7, Y7));
// Invoke
EXPECT_TRUE(DT->dominates(Y3, Y4));
EXPECT_FALSE(DT->dominates(Y3, Y5));
// Phi
EXPECT_TRUE(DT->dominates(Y2, Y9));
EXPECT_FALSE(DT->dominates(Y3, Y9));
EXPECT_FALSE(DT->dominates(Y8, Y9));
// Anything dominates unreachable
EXPECT_TRUE(DT->dominates(Y1, Y6));
EXPECT_TRUE(DT->dominates(Y3, Y6));
// Unreachable doesn't dominate reachable
EXPECT_FALSE(DT->dominates(Y6, Y1));
// Instruction, BB dominance
EXPECT_FALSE(DT->dominates(Y1, BB0));
EXPECT_TRUE(DT->dominates(Y1, BB1));
EXPECT_TRUE(DT->dominates(Y1, BB2));
EXPECT_TRUE(DT->dominates(Y1, BB3));
EXPECT_TRUE(DT->dominates(Y1, BB4));
EXPECT_FALSE(DT->dominates(Y3, BB0));
EXPECT_TRUE(DT->dominates(Y3, BB1));
EXPECT_FALSE(DT->dominates(Y3, BB2));
EXPECT_TRUE(DT->dominates(Y3, BB3));
EXPECT_FALSE(DT->dominates(Y3, BB4));
EXPECT_TRUE(DT->dominates(Y6, BB3));
// Post dominance.
EXPECT_TRUE(PDT->dominates(BB0, BB0));
EXPECT_FALSE(PDT->dominates(BB1, BB0));
EXPECT_FALSE(PDT->dominates(BB2, BB0));
EXPECT_FALSE(PDT->dominates(BB3, BB0));
EXPECT_TRUE(PDT->dominates(BB4, BB1));
// Dominance descendants.
SmallVector<BasicBlock *, 8> DominatedBBs, PostDominatedBBs;
DT->getDescendants(BB0, DominatedBBs);
PDT->getDescendants(BB0, PostDominatedBBs);
EXPECT_EQ(DominatedBBs.size(), 4UL);
EXPECT_EQ(PostDominatedBBs.size(), 1UL);
// BB3 is unreachable. It should have no dominators nor postdominators.
DominatedBBs.clear();
PostDominatedBBs.clear();
DT->getDescendants(BB3, DominatedBBs);
DT->getDescendants(BB3, PostDominatedBBs);
EXPECT_EQ(DominatedBBs.size(), 0UL);
EXPECT_EQ(PostDominatedBBs.size(), 0UL);
// Check DFS Numbers before
DT->updateDFSNumbers();
EXPECT_EQ(DT->getNode(BB0)->getDFSNumIn(), 0UL);
EXPECT_EQ(DT->getNode(BB0)->getDFSNumOut(), 7UL);
EXPECT_EQ(DT->getNode(BB1)->getDFSNumIn(), 1UL);
EXPECT_EQ(DT->getNode(BB1)->getDFSNumOut(), 2UL);
EXPECT_EQ(DT->getNode(BB2)->getDFSNumIn(), 5UL);
EXPECT_EQ(DT->getNode(BB2)->getDFSNumOut(), 6UL);
EXPECT_EQ(DT->getNode(BB4)->getDFSNumIn(), 3UL);
EXPECT_EQ(DT->getNode(BB4)->getDFSNumOut(), 4UL);
// Check levels before
EXPECT_EQ(DT->getNode(BB0)->getLevel(), 0U);
EXPECT_EQ(DT->getNode(BB1)->getLevel(), 1U);
EXPECT_EQ(DT->getNode(BB2)->getLevel(), 1U);
EXPECT_EQ(DT->getNode(BB4)->getLevel(), 1U);
// Reattach block 3 to block 1 and recalculate
BB1->getTerminator()->eraseFromParent();
BranchInst::Create(BB4, BB3, ConstantInt::getTrue(F.getContext()), BB1);
DT->recalculate(F);
// Check DFS Numbers after
DT->updateDFSNumbers();
EXPECT_EQ(DT->getNode(BB0)->getDFSNumIn(), 0UL);
EXPECT_EQ(DT->getNode(BB0)->getDFSNumOut(), 9UL);
EXPECT_EQ(DT->getNode(BB1)->getDFSNumIn(), 1UL);
EXPECT_EQ(DT->getNode(BB1)->getDFSNumOut(), 4UL);
EXPECT_EQ(DT->getNode(BB2)->getDFSNumIn(), 7UL);
EXPECT_EQ(DT->getNode(BB2)->getDFSNumOut(), 8UL);
EXPECT_EQ(DT->getNode(BB3)->getDFSNumIn(), 2UL);
EXPECT_EQ(DT->getNode(BB3)->getDFSNumOut(), 3UL);
EXPECT_EQ(DT->getNode(BB4)->getDFSNumIn(), 5UL);
EXPECT_EQ(DT->getNode(BB4)->getDFSNumOut(), 6UL);
// Check levels after
EXPECT_EQ(DT->getNode(BB0)->getLevel(), 0U);
EXPECT_EQ(DT->getNode(BB1)->getLevel(), 1U);
EXPECT_EQ(DT->getNode(BB2)->getLevel(), 1U);
EXPECT_EQ(DT->getNode(BB3)->getLevel(), 2U);
EXPECT_EQ(DT->getNode(BB4)->getLevel(), 1U);
// Change root node
DT->verifyDomTree();
BasicBlock *NewEntry =
BasicBlock::Create(F.getContext(), "new_entry", &F, BB0);
BranchInst::Create(BB0, NewEntry);
EXPECT_EQ(F.begin()->getName(), NewEntry->getName());
EXPECT_TRUE(&F.getEntryBlock() == NewEntry);
DT->setNewRoot(NewEntry);
DT->verifyDomTree();
});
}
TEST(DominatorTree, NonUniqueEdges) {
StringRef ModuleString =
"define i32 @f(i32 %i, i32 *%p) {\n"
"bb0:\n"
" store i32 %i, i32 *%p\n"
" switch i32 %i, label %bb2 [\n"
" i32 0, label %bb1\n"
" i32 1, label %bb1\n"
" ]\n"
" bb1:\n"
" ret i32 1\n"
" bb2:\n"
" ret i32 4\n"
"}\n";
// Parse the module.
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleString);
runWithDomTree(
*M, "f", [&](Function &F, DominatorTree *DT, PostDomTree *PDT) {
Function::iterator FI = F.begin();
BasicBlock *BB0 = &*FI++;
BasicBlock *BB1 = &*FI++;
BasicBlock *BB2 = &*FI++;
const TerminatorInst *TI = BB0->getTerminator();
assert(TI->getNumSuccessors() == 3 && "Switch has three successors");
BasicBlockEdge Edge_BB0_BB2(BB0, TI->getSuccessor(0));
assert(Edge_BB0_BB2.getEnd() == BB2 &&
"Default label is the 1st successor");
BasicBlockEdge Edge_BB0_BB1_a(BB0, TI->getSuccessor(1));
assert(Edge_BB0_BB1_a.getEnd() == BB1 && "BB1 is the 2nd successor");
BasicBlockEdge Edge_BB0_BB1_b(BB0, TI->getSuccessor(2));
assert(Edge_BB0_BB1_b.getEnd() == BB1 && "BB1 is the 3rd successor");
EXPECT_TRUE(DT->dominates(Edge_BB0_BB2, BB2));
EXPECT_FALSE(DT->dominates(Edge_BB0_BB2, BB1));
EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_a, BB1));
EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_b, BB1));
EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_a, BB2));
EXPECT_FALSE(DT->dominates(Edge_BB0_BB1_b, BB2));
});
}
namespace {
const auto Insert = CFGBuilder::ActionKind::Insert;
const auto Delete = CFGBuilder::ActionKind::Delete;
bool CompUpdates(const CFGBuilder::Update &A, const CFGBuilder::Update &B) {
return std::tie(A.Action, A.Edge.From, A.Edge.To) <
std::tie(B.Action, B.Edge.From, B.Edge.To);
};
} // namespace
TEST(DominatorTree, InsertReachable) {
CFGHolder Holder;
std::vector<CFGBuilder::Arc> Arcs = {
{"1", "2"}, {"2", "3"}, {"3", "4"}, {"4", "5"}, {"5", "6"}, {"5", "7"},
{"3", "8"}, {"8", "9"}, {"9", "10"}, {"8", "11"}, {"11", "12"}};
std::vector<CFGBuilder::Update> Updates = {{Insert, {"12", "10"}},
{Insert, {"10", "9"}},
{Insert, {"7", "6"}},
{Insert, {"7", "5"}}};
CFGBuilder B(Holder.F, Arcs, Updates);
DominatorTree DT(*Holder.F);
EXPECT_TRUE(DT.verify());
PostDomTree PDT(*Holder.F);
EXPECT_TRUE(PDT.verify());
Optional<CFGBuilder::Update> LastUpdate;
while ((LastUpdate = B.applyUpdate())) {
EXPECT_EQ(LastUpdate->Action, Insert);
BasicBlock *From = B.getOrAddBlock(LastUpdate->Edge.From);
BasicBlock *To = B.getOrAddBlock(LastUpdate->Edge.To);
DT.insertEdge(From, To);
EXPECT_TRUE(DT.verify());
PDT.insertEdge(From, To);
EXPECT_TRUE(PDT.verify());
}
}
TEST(DominatorTree, InsertUnreachable) {
CFGHolder Holder;
std::vector<CFGBuilder::Arc> Arcs = {{"1", "2"}, {"2", "3"}, {"3", "4"},
{"5", "6"}, {"5", "7"}, {"3", "8"},
{"9", "10"}, {"11", "12"}};
std::vector<CFGBuilder::Update> Updates = {{Insert, {"4", "5"}},
{Insert, {"8", "9"}},
{Insert, {"10", "12"}},
{Insert, {"10", "11"}}};
CFGBuilder B(Holder.F, Arcs, Updates);
DominatorTree DT(*Holder.F);
EXPECT_TRUE(DT.verify());
PostDomTree PDT(*Holder.F);
EXPECT_TRUE(PDT.verify());
Optional<CFGBuilder::Update> LastUpdate;
while ((LastUpdate = B.applyUpdate())) {
EXPECT_EQ(LastUpdate->Action, Insert);
BasicBlock *From = B.getOrAddBlock(LastUpdate->Edge.From);
BasicBlock *To = B.getOrAddBlock(LastUpdate->Edge.To);
DT.insertEdge(From, To);
EXPECT_TRUE(DT.verify());
PDT.insertEdge(From, To);
EXPECT_TRUE(PDT.verify());
}
}
TEST(DominatorTree, InsertMixed) {
CFGHolder Holder;
std::vector<CFGBuilder::Arc> Arcs = {
{"1", "2"}, {"2", "3"}, {"3", "4"}, {"5", "6"}, {"5", "7"},
{"8", "9"}, {"9", "10"}, {"8", "11"}, {"11", "12"}, {"7", "3"}};
std::vector<CFGBuilder::Update> Updates = {
{Insert, {"4", "5"}}, {Insert, {"2", "5"}}, {Insert, {"10", "9"}},
{Insert, {"12", "10"}}, {Insert, {"12", "10"}}, {Insert, {"7", "8"}},
{Insert, {"7", "5"}}};
CFGBuilder B(Holder.F, Arcs, Updates);
DominatorTree DT(*Holder.F);
EXPECT_TRUE(DT.verify());
PostDomTree PDT(*Holder.F);
EXPECT_TRUE(PDT.verify());
Optional<CFGBuilder::Update> LastUpdate;
while ((LastUpdate = B.applyUpdate())) {
EXPECT_EQ(LastUpdate->Action, Insert);
BasicBlock *From = B.getOrAddBlock(LastUpdate->Edge.From);
BasicBlock *To = B.getOrAddBlock(LastUpdate->Edge.To);
DT.insertEdge(From, To);
EXPECT_TRUE(DT.verify());
PDT.insertEdge(From, To);
EXPECT_TRUE(PDT.verify());
}
}
TEST(DominatorTree, InsertPermut) {
std::vector<CFGBuilder::Arc> Arcs = {
{"1", "2"}, {"2", "3"}, {"3", "4"}, {"5", "6"}, {"5", "7"},
{"8", "9"}, {"9", "10"}, {"8", "11"}, {"11", "12"}, {"7", "3"}};
std::vector<CFGBuilder::Update> Updates = {{Insert, {"4", "5"}},
{Insert, {"2", "5"}},
{Insert, {"10", "9"}},
{Insert, {"12", "10"}}};
while (std::next_permutation(Updates.begin(), Updates.end(), CompUpdates)) {
CFGHolder Holder;
CFGBuilder B(Holder.F, Arcs, Updates);
DominatorTree DT(*Holder.F);
EXPECT_TRUE(DT.verify());
PostDomTree PDT(*Holder.F);
EXPECT_TRUE(PDT.verify());
Optional<CFGBuilder::Update> LastUpdate;
while ((LastUpdate = B.applyUpdate())) {
EXPECT_EQ(LastUpdate->Action, Insert);
BasicBlock *From = B.getOrAddBlock(LastUpdate->Edge.From);
BasicBlock *To = B.getOrAddBlock(LastUpdate->Edge.To);
DT.insertEdge(From, To);
EXPECT_TRUE(DT.verify());
PDT.insertEdge(From, To);
EXPECT_TRUE(PDT.verify());
}
}
}
TEST(DominatorTree, DeleteReachable) {
CFGHolder Holder;
std::vector<CFGBuilder::Arc> Arcs = {
{"1", "2"}, {"2", "3"}, {"2", "4"}, {"3", "4"}, {"4", "5"}, {"5", "6"},
{"5", "7"}, {"7", "8"}, {"3", "8"}, {"8", "9"}, {"9", "10"}, {"10", "2"}};
std::vector<CFGBuilder::Update> Updates = {
{Delete, {"2", "4"}}, {Delete, {"7", "8"}}, {Delete, {"10", "2"}}};
CFGBuilder B(Holder.F, Arcs, Updates);
DominatorTree DT(*Holder.F);
EXPECT_TRUE(DT.verify());
PostDomTree PDT(*Holder.F);
EXPECT_TRUE(PDT.verify());
Optional<CFGBuilder::Update> LastUpdate;
while ((LastUpdate = B.applyUpdate())) {
EXPECT_EQ(LastUpdate->Action, Delete);
BasicBlock *From = B.getOrAddBlock(LastUpdate->Edge.From);
BasicBlock *To = B.getOrAddBlock(LastUpdate->Edge.To);
DT.deleteEdge(From, To);
EXPECT_TRUE(DT.verify());
PDT.deleteEdge(From, To);
EXPECT_TRUE(PDT.verify());
}
}
TEST(DominatorTree, DeleteUnreachable) {
CFGHolder Holder;
std::vector<CFGBuilder::Arc> Arcs = {
{"1", "2"}, {"2", "3"}, {"3", "4"}, {"4", "5"}, {"5", "6"}, {"5", "7"},
{"7", "8"}, {"3", "8"}, {"8", "9"}, {"9", "10"}, {"10", "2"}};
std::vector<CFGBuilder::Update> Updates = {
{Delete, {"8", "9"}}, {Delete, {"7", "8"}}, {Delete, {"3", "4"}}};
CFGBuilder B(Holder.F, Arcs, Updates);
DominatorTree DT(*Holder.F);
EXPECT_TRUE(DT.verify());
PostDomTree PDT(*Holder.F);
EXPECT_TRUE(PDT.verify());
Optional<CFGBuilder::Update> LastUpdate;
while ((LastUpdate = B.applyUpdate())) {
EXPECT_EQ(LastUpdate->Action, Delete);
BasicBlock *From = B.getOrAddBlock(LastUpdate->Edge.From);
BasicBlock *To = B.getOrAddBlock(LastUpdate->Edge.To);
DT.deleteEdge(From, To);
EXPECT_TRUE(DT.verify());
PDT.deleteEdge(From, To);
EXPECT_TRUE(PDT.verify());
}
}
TEST(DominatorTree, InsertDelete) {
std::vector<CFGBuilder::Arc> Arcs = {
{"1", "2"}, {"2", "3"}, {"3", "4"}, {"4", "5"}, {"5", "6"}, {"5", "7"},
{"3", "8"}, {"8", "9"}, {"9", "10"}, {"8", "11"}, {"11", "12"}};
std::vector<CFGBuilder::Update> Updates = {
{Insert, {"2", "4"}}, {Insert, {"12", "10"}}, {Insert, {"10", "9"}},
{Insert, {"7", "6"}}, {Insert, {"7", "5"}}, {Delete, {"3", "8"}},
{Insert, {"10", "7"}}, {Insert, {"2", "8"}}, {Delete, {"3", "4"}},
{Delete, {"8", "9"}}, {Delete, {"11", "12"}}};
CFGHolder Holder;
CFGBuilder B(Holder.F, Arcs, Updates);
DominatorTree DT(*Holder.F);
EXPECT_TRUE(DT.verify());
PostDomTree PDT(*Holder.F);
EXPECT_TRUE(PDT.verify());
Optional<CFGBuilder::Update> LastUpdate;
while ((LastUpdate = B.applyUpdate())) {
BasicBlock *From = B.getOrAddBlock(LastUpdate->Edge.From);
BasicBlock *To = B.getOrAddBlock(LastUpdate->Edge.To);
if (LastUpdate->Action == Insert) {
DT.insertEdge(From, To);
PDT.insertEdge(From, To);
} else {
DT.deleteEdge(From, To);
PDT.deleteEdge(From, To);
}
EXPECT_TRUE(DT.verify());
EXPECT_TRUE(PDT.verify());
}
}
TEST(DominatorTree, InsertDeleteExhaustive) {
std::vector<CFGBuilder::Arc> Arcs = {
{"1", "2"}, {"2", "3"}, {"3", "4"}, {"4", "5"}, {"5", "6"}, {"5", "7"},
{"3", "8"}, {"8", "9"}, {"9", "10"}, {"8", "11"}, {"11", "12"}};
std::vector<CFGBuilder::Update> Updates = {
{Insert, {"2", "4"}}, {Insert, {"12", "10"}}, {Insert, {"10", "9"}},
{Insert, {"7", "6"}}, {Insert, {"7", "5"}}, {Delete, {"3", "8"}},
{Insert, {"10", "7"}}, {Insert, {"2", "8"}}, {Delete, {"3", "4"}},
{Delete, {"8", "9"}}, {Delete, {"11", "12"}}};
std::mt19937 Generator(0);
for (unsigned i = 0; i < 16; ++i) {
std::shuffle(Updates.begin(), Updates.end(), Generator);
CFGHolder Holder;
CFGBuilder B(Holder.F, Arcs, Updates);
DominatorTree DT(*Holder.F);
EXPECT_TRUE(DT.verify());
PostDomTree PDT(*Holder.F);
EXPECT_TRUE(PDT.verify());
Optional<CFGBuilder::Update> LastUpdate;
while ((LastUpdate = B.applyUpdate())) {
BasicBlock *From = B.getOrAddBlock(LastUpdate->Edge.From);
BasicBlock *To = B.getOrAddBlock(LastUpdate->Edge.To);
if (LastUpdate->Action == Insert) {
DT.insertEdge(From, To);
PDT.insertEdge(From, To);
} else {
DT.deleteEdge(From, To);
PDT.deleteEdge(From, To);
}
EXPECT_TRUE(DT.verify());
EXPECT_TRUE(PDT.verify());
}
}
}