mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-03 16:06:06 +00:00
376 lines
12 KiB
C++
376 lines
12 KiB
C++
//===--- ByteCodeEmitter.cpp - Instruction emitter for the VM ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ByteCodeEmitter.h"
|
|
#include "Context.h"
|
|
#include "FixedPoint.h"
|
|
#include "Floating.h"
|
|
#include "IntegralAP.h"
|
|
#include "Opcode.h"
|
|
#include "Program.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include <type_traits>
|
|
|
|
using namespace clang;
|
|
using namespace clang::interp;
|
|
|
|
Function *ByteCodeEmitter::compileFunc(const FunctionDecl *FuncDecl) {
|
|
|
|
// Manually created functions that haven't been assigned proper
|
|
// parameters yet.
|
|
if (!FuncDecl->param_empty() && !FuncDecl->param_begin())
|
|
return nullptr;
|
|
|
|
bool IsLambdaStaticInvoker = false;
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl);
|
|
MD && MD->isLambdaStaticInvoker()) {
|
|
// For a lambda static invoker, we might have to pick a specialized
|
|
// version if the lambda is generic. In that case, the picked function
|
|
// will *NOT* be a static invoker anymore. However, it will still
|
|
// be a non-static member function, this (usually) requiring an
|
|
// instance pointer. We suppress that later in this function.
|
|
IsLambdaStaticInvoker = true;
|
|
|
|
const CXXRecordDecl *ClosureClass = MD->getParent();
|
|
assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
|
|
if (ClosureClass->isGenericLambda()) {
|
|
const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
|
|
assert(MD->isFunctionTemplateSpecialization() &&
|
|
"A generic lambda's static-invoker function must be a "
|
|
"template specialization");
|
|
const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
|
|
FunctionTemplateDecl *CallOpTemplate =
|
|
LambdaCallOp->getDescribedFunctionTemplate();
|
|
void *InsertPos = nullptr;
|
|
const FunctionDecl *CorrespondingCallOpSpecialization =
|
|
CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
|
|
assert(CorrespondingCallOpSpecialization);
|
|
FuncDecl = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
|
|
}
|
|
}
|
|
|
|
// Set up argument indices.
|
|
unsigned ParamOffset = 0;
|
|
SmallVector<PrimType, 8> ParamTypes;
|
|
SmallVector<unsigned, 8> ParamOffsets;
|
|
llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors;
|
|
|
|
// If the return is not a primitive, a pointer to the storage where the
|
|
// value is initialized in is passed as the first argument. See 'RVO'
|
|
// elsewhere in the code.
|
|
QualType Ty = FuncDecl->getReturnType();
|
|
bool HasRVO = false;
|
|
if (!Ty->isVoidType() && !Ctx.classify(Ty)) {
|
|
HasRVO = true;
|
|
ParamTypes.push_back(PT_Ptr);
|
|
ParamOffsets.push_back(ParamOffset);
|
|
ParamOffset += align(primSize(PT_Ptr));
|
|
}
|
|
|
|
// If the function decl is a member decl, the next parameter is
|
|
// the 'this' pointer. This parameter is pop()ed from the
|
|
// InterpStack when calling the function.
|
|
bool HasThisPointer = false;
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) {
|
|
if (!IsLambdaStaticInvoker) {
|
|
HasThisPointer = MD->isInstance();
|
|
if (MD->isImplicitObjectMemberFunction()) {
|
|
ParamTypes.push_back(PT_Ptr);
|
|
ParamOffsets.push_back(ParamOffset);
|
|
ParamOffset += align(primSize(PT_Ptr));
|
|
}
|
|
}
|
|
|
|
// Set up lambda capture to closure record field mapping.
|
|
if (isLambdaCallOperator(MD)) {
|
|
// The parent record needs to be complete, we need to know about all
|
|
// the lambda captures.
|
|
if (!MD->getParent()->isCompleteDefinition())
|
|
return nullptr;
|
|
|
|
const Record *R = P.getOrCreateRecord(MD->getParent());
|
|
llvm::DenseMap<const ValueDecl *, FieldDecl *> LC;
|
|
FieldDecl *LTC;
|
|
|
|
MD->getParent()->getCaptureFields(LC, LTC);
|
|
|
|
for (auto Cap : LC) {
|
|
// Static lambdas cannot have any captures. If this one does,
|
|
// it has already been diagnosed and we can only ignore it.
|
|
if (MD->isStatic())
|
|
return nullptr;
|
|
|
|
unsigned Offset = R->getField(Cap.second)->Offset;
|
|
this->LambdaCaptures[Cap.first] = {
|
|
Offset, Cap.second->getType()->isReferenceType()};
|
|
}
|
|
if (LTC) {
|
|
QualType CaptureType = R->getField(LTC)->Decl->getType();
|
|
this->LambdaThisCapture = {R->getField(LTC)->Offset,
|
|
CaptureType->isReferenceType() ||
|
|
CaptureType->isPointerType()};
|
|
}
|
|
}
|
|
}
|
|
|
|
// Assign descriptors to all parameters.
|
|
// Composite objects are lowered to pointers.
|
|
for (const ParmVarDecl *PD : FuncDecl->parameters()) {
|
|
std::optional<PrimType> T = Ctx.classify(PD->getType());
|
|
PrimType PT = T.value_or(PT_Ptr);
|
|
Descriptor *Desc = P.createDescriptor(PD, PT);
|
|
ParamDescriptors.insert({ParamOffset, {PT, Desc}});
|
|
Params.insert({PD, {ParamOffset, T != std::nullopt}});
|
|
ParamOffsets.push_back(ParamOffset);
|
|
ParamOffset += align(primSize(PT));
|
|
ParamTypes.push_back(PT);
|
|
}
|
|
|
|
// Create a handle over the emitted code.
|
|
Function *Func = P.getFunction(FuncDecl);
|
|
if (!Func) {
|
|
unsigned BuiltinID = FuncDecl->getBuiltinID();
|
|
Func =
|
|
P.createFunction(FuncDecl, ParamOffset, std::move(ParamTypes),
|
|
std::move(ParamDescriptors), std::move(ParamOffsets),
|
|
HasThisPointer, HasRVO, BuiltinID);
|
|
}
|
|
|
|
assert(Func);
|
|
// For not-yet-defined functions, we only create a Function instance and
|
|
// compile their body later.
|
|
if (!FuncDecl->isDefined() ||
|
|
(FuncDecl->willHaveBody() && !FuncDecl->hasBody())) {
|
|
Func->setDefined(false);
|
|
return Func;
|
|
}
|
|
|
|
Func->setDefined(true);
|
|
|
|
// Lambda static invokers are a special case that we emit custom code for.
|
|
bool IsEligibleForCompilation = false;
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
|
|
IsEligibleForCompilation = MD->isLambdaStaticInvoker();
|
|
if (!IsEligibleForCompilation)
|
|
IsEligibleForCompilation =
|
|
FuncDecl->isConstexpr() || FuncDecl->hasAttr<MSConstexprAttr>();
|
|
|
|
// Compile the function body.
|
|
if (!IsEligibleForCompilation || !visitFunc(FuncDecl)) {
|
|
Func->setIsFullyCompiled(true);
|
|
return Func;
|
|
}
|
|
|
|
// Create scopes from descriptors.
|
|
llvm::SmallVector<Scope, 2> Scopes;
|
|
for (auto &DS : Descriptors) {
|
|
Scopes.emplace_back(std::move(DS));
|
|
}
|
|
|
|
// Set the function's code.
|
|
Func->setCode(NextLocalOffset, std::move(Code), std::move(SrcMap),
|
|
std::move(Scopes), FuncDecl->hasBody());
|
|
Func->setIsFullyCompiled(true);
|
|
return Func;
|
|
}
|
|
|
|
/// Compile an ObjC block, i.e. ^(){}, that thing.
|
|
///
|
|
/// FIXME: We do not support calling the block though, so we create a function
|
|
/// here but do not compile any code for it.
|
|
Function *ByteCodeEmitter::compileObjCBlock(const BlockExpr *BE) {
|
|
const BlockDecl *BD = BE->getBlockDecl();
|
|
// Set up argument indices.
|
|
unsigned ParamOffset = 0;
|
|
SmallVector<PrimType, 8> ParamTypes;
|
|
SmallVector<unsigned, 8> ParamOffsets;
|
|
llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors;
|
|
|
|
// Assign descriptors to all parameters.
|
|
// Composite objects are lowered to pointers.
|
|
for (const ParmVarDecl *PD : BD->parameters()) {
|
|
std::optional<PrimType> T = Ctx.classify(PD->getType());
|
|
PrimType PT = T.value_or(PT_Ptr);
|
|
Descriptor *Desc = P.createDescriptor(PD, PT);
|
|
ParamDescriptors.insert({ParamOffset, {PT, Desc}});
|
|
Params.insert({PD, {ParamOffset, T != std::nullopt}});
|
|
ParamOffsets.push_back(ParamOffset);
|
|
ParamOffset += align(primSize(PT));
|
|
ParamTypes.push_back(PT);
|
|
}
|
|
|
|
if (BD->hasCaptures())
|
|
return nullptr;
|
|
|
|
// Create a handle over the emitted code.
|
|
Function *Func =
|
|
P.createFunction(BE, ParamOffset, std::move(ParamTypes),
|
|
std::move(ParamDescriptors), std::move(ParamOffsets),
|
|
/*HasThisPointer=*/false, /*HasRVO=*/false,
|
|
/*IsUnevaluatedBuiltin=*/false);
|
|
|
|
assert(Func);
|
|
Func->setDefined(true);
|
|
// We don't compile the BlockDecl code at all right now.
|
|
Func->setIsFullyCompiled(true);
|
|
return Func;
|
|
}
|
|
|
|
Scope::Local ByteCodeEmitter::createLocal(Descriptor *D) {
|
|
NextLocalOffset += sizeof(Block);
|
|
unsigned Location = NextLocalOffset;
|
|
NextLocalOffset += align(D->getAllocSize());
|
|
return {Location, D};
|
|
}
|
|
|
|
void ByteCodeEmitter::emitLabel(LabelTy Label) {
|
|
const size_t Target = Code.size();
|
|
LabelOffsets.insert({Label, Target});
|
|
|
|
if (auto It = LabelRelocs.find(Label); It != LabelRelocs.end()) {
|
|
for (unsigned Reloc : It->second) {
|
|
using namespace llvm::support;
|
|
|
|
// Rewrite the operand of all jumps to this label.
|
|
void *Location = Code.data() + Reloc - align(sizeof(int32_t));
|
|
assert(aligned(Location));
|
|
const int32_t Offset = Target - static_cast<int64_t>(Reloc);
|
|
endian::write<int32_t, llvm::endianness::native>(Location, Offset);
|
|
}
|
|
LabelRelocs.erase(It);
|
|
}
|
|
}
|
|
|
|
int32_t ByteCodeEmitter::getOffset(LabelTy Label) {
|
|
// Compute the PC offset which the jump is relative to.
|
|
const int64_t Position =
|
|
Code.size() + align(sizeof(Opcode)) + align(sizeof(int32_t));
|
|
assert(aligned(Position));
|
|
|
|
// If target is known, compute jump offset.
|
|
if (auto It = LabelOffsets.find(Label); It != LabelOffsets.end())
|
|
return It->second - Position;
|
|
|
|
// Otherwise, record relocation and return dummy offset.
|
|
LabelRelocs[Label].push_back(Position);
|
|
return 0ull;
|
|
}
|
|
|
|
/// Helper to write bytecode and bail out if 32-bit offsets become invalid.
|
|
/// Pointers will be automatically marshalled as 32-bit IDs.
|
|
template <typename T>
|
|
static void emit(Program &P, std::vector<std::byte> &Code, const T &Val,
|
|
bool &Success) {
|
|
size_t Size;
|
|
|
|
if constexpr (std::is_pointer_v<T>)
|
|
Size = sizeof(uint32_t);
|
|
else
|
|
Size = sizeof(T);
|
|
|
|
if (Code.size() + Size > std::numeric_limits<unsigned>::max()) {
|
|
Success = false;
|
|
return;
|
|
}
|
|
|
|
// Access must be aligned!
|
|
size_t ValPos = align(Code.size());
|
|
Size = align(Size);
|
|
assert(aligned(ValPos + Size));
|
|
Code.resize(ValPos + Size);
|
|
|
|
if constexpr (!std::is_pointer_v<T>) {
|
|
new (Code.data() + ValPos) T(Val);
|
|
} else {
|
|
uint32_t ID = P.getOrCreateNativePointer(Val);
|
|
new (Code.data() + ValPos) uint32_t(ID);
|
|
}
|
|
}
|
|
|
|
/// Emits a serializable value. These usually (potentially) contain
|
|
/// heap-allocated memory and aren't trivially copyable.
|
|
template <typename T>
|
|
static void emitSerialized(std::vector<std::byte> &Code, const T &Val,
|
|
bool &Success) {
|
|
size_t Size = Val.bytesToSerialize();
|
|
|
|
if (Code.size() + Size > std::numeric_limits<unsigned>::max()) {
|
|
Success = false;
|
|
return;
|
|
}
|
|
|
|
// Access must be aligned!
|
|
size_t ValPos = align(Code.size());
|
|
Size = align(Size);
|
|
assert(aligned(ValPos + Size));
|
|
Code.resize(ValPos + Size);
|
|
|
|
Val.serialize(Code.data() + ValPos);
|
|
}
|
|
|
|
template <>
|
|
void emit(Program &P, std::vector<std::byte> &Code, const Floating &Val,
|
|
bool &Success) {
|
|
emitSerialized(Code, Val, Success);
|
|
}
|
|
|
|
template <>
|
|
void emit(Program &P, std::vector<std::byte> &Code,
|
|
const IntegralAP<false> &Val, bool &Success) {
|
|
emitSerialized(Code, Val, Success);
|
|
}
|
|
|
|
template <>
|
|
void emit(Program &P, std::vector<std::byte> &Code, const IntegralAP<true> &Val,
|
|
bool &Success) {
|
|
emitSerialized(Code, Val, Success);
|
|
}
|
|
|
|
template <typename... Tys>
|
|
bool ByteCodeEmitter::emitOp(Opcode Op, const Tys &...Args,
|
|
const SourceInfo &SI) {
|
|
bool Success = true;
|
|
|
|
// The opcode is followed by arguments. The source info is
|
|
// attached to the address after the opcode.
|
|
emit(P, Code, Op, Success);
|
|
if (SI)
|
|
SrcMap.emplace_back(Code.size(), SI);
|
|
|
|
(..., emit(P, Code, Args, Success));
|
|
return Success;
|
|
}
|
|
|
|
bool ByteCodeEmitter::jumpTrue(const LabelTy &Label) {
|
|
return emitJt(getOffset(Label), SourceInfo{});
|
|
}
|
|
|
|
bool ByteCodeEmitter::jumpFalse(const LabelTy &Label) {
|
|
return emitJf(getOffset(Label), SourceInfo{});
|
|
}
|
|
|
|
bool ByteCodeEmitter::jump(const LabelTy &Label) {
|
|
return emitJmp(getOffset(Label), SourceInfo{});
|
|
}
|
|
|
|
bool ByteCodeEmitter::fallthrough(const LabelTy &Label) {
|
|
emitLabel(Label);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Opcode emitters
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_LINK_IMPL
|
|
#include "Opcodes.inc"
|
|
#undef GET_LINK_IMPL
|