Sirraide f01b56ffb3
[Clang] [NFC] Introduce helpers for defining compatibilty warnings (#132129)
This introduces some tablegen helpers for defining compatibility
warnings. The main aim of this is to both simplify adding new
compatibility warnings as well as to unify the naming of compatibility
warnings.

I’ve refactored ~half of the compatiblity warnings (that follow the
usual scheme) in `DiagnosticSemaKinds.td` for illustration purposes and
also to simplify/unify the wording of some of them (I also corrected a
typo in one of them as a drive-by fix).

I haven’t (yet) migrated *all* warnings even in that one file, and there
are some more specialised ones for which the scheme I’ve established
here doesn’t work (e.g. because they’re warning+error instead of
warning+extwarn; however, warning+extension *is* supported), but the
point of this isn’t to implement *all* compatibility-related warnings
this way, only to make the common case a bit easier to handle.

This currently also only handles C++ compatibility warnings, but it
should be fairly straight-forward to extend the tablegen code so it can
also be used for C compatibility warnings (if this gets merged, I’m
planning to do that in a follow-up pr).

The vast majority of compatibility warnings are emitted by writing
```c++
Diag(Loc, getLangOpts().CPlusPlusYZ ? diag::ext_... : diag::warn_...)
```
in accordance with which I’ve chosen the following naming scheme:
```c++
Diag(Loc, getLangOpts().CPlusPlusYZ ? diag::compat_cxxyz_foo : diag::compat_pre_cxxyz_foo)
```
That is, for a warning about a C++20 feature—i.e. C++≤17
compatibility—we get:
```c++
Diag(Loc, getLangOpts().CPlusPlus20 ? diag::compat_cxx20_foo : diag::compat_pre_cxx20_foo)
```
While there is an argument to be made against writing ‘`compat_cxx20`’
here since is technically a case of ‘C++17 compatibility’ and not ‘C++20
compatibility’, I at least find this easier to reason about, because I
can just write the same number 3 times instead of having to use
`ext_cxx20_foo` but `warn_cxx17_foo`. Instead, I like to read this as a
warning about the ‘compatibility *of* a C++20 feature’ rather than
‘*with* C++17’.

I also experimented with moving all compatibility warnings to a separate
file, but 1. I don’t think it’s worth the effort, and 2. I think it
hurts compile times a bit because at least in my testing I felt that I
had to recompile more code than if we just keep e.g. Sema-specific
compat warnings in the Sema diagnostics file.

Instead, I’ve opted to put them all in the same place within any one
file; currently this is a the very top but I don’t really have strong
opinions about this.
2025-03-21 03:55:42 +01:00
2025-01-28 19:48:43 -08:00
2025-02-13 17:49:48 +00:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5 GiB
Languages
LLVM 39.9%
C++ 32.5%
C 13.5%
Assembly 9.4%
MLIR 1.4%
Other 2.8%