llvm-project/flang/lib/Frontend/FrontendActions.cpp
Victor Kingi f04ccadf35 [Flang] Add support for fsave-optimization-record
Add support for generating and saving the optimization record.
Optimization record lists the optimizations performed by LLVM.

This patch enables the flag in Flang. Clang handles this functionality
using the BackendConsumer which Flang doesn't have, hence, was
implemented in CodeGenAction::executeAction

FlangOption added to all variants of fsave-optimization-record in
clang/include/clang/Driver/Options.td . Clang handles it the
same way.

opt_record_file, opt_record_passes and opt_record_format flags
in Options.td were moved out of the group [CC1Option, NoDriverOption]
to allow flang -fc1 support.

The renderRemarksOptions and willEmitRemarks functions in
clang/lib/Driver/ToolChains/Flang.cpp follow same syntax as clang.
In flang/lib/Frontend/CompilerInvocation.cpp we update the field
OptRecordFile with the provided optimization file value. Clang
doesn't do this as it processes the Options.td, mapping the
OptRecordFile earlier on.

Reviewed By: awarzynski, tblah

Differential Revision: https://reviews.llvm.org/D155452
2023-07-28 09:26:40 +00:00

1118 lines
41 KiB
C++

//===--- FrontendActions.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Frontend/FrontendActions.h"
#include "flang/Common/default-kinds.h"
#include "flang/Frontend/CompilerInstance.h"
#include "flang/Frontend/CompilerInvocation.h"
#include "flang/Frontend/FrontendOptions.h"
#include "flang/Frontend/PreprocessorOptions.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Support/Verifier.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/InitFIR.h"
#include "flang/Optimizer/Support/Utils.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/parsing.h"
#include "flang/Parser/provenance.h"
#include "flang/Parser/source.h"
#include "flang/Parser/unparse.h"
#include "flang/Semantics/runtime-type-info.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/unparse-with-symbols.h"
#include "flang/Tools/CrossToolHelpers.h"
#include "mlir/IR/Dialect.h"
#include "mlir/Parser/Parser.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/Import.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticFrontend.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/IR/LLVMRemarkStreamer.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/OffloadBinary.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <memory>
#include <system_error>
using namespace Fortran::frontend;
// Declare plugin extension function declarations.
#define HANDLE_EXTENSION(Ext) \
llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
#include "llvm/Support/Extension.def"
/// Save the given \c mlirModule to a temporary .mlir file, in a location
/// decided by the -save-temps flag. No files are produced if the flag is not
/// specified.
static bool saveMLIRTempFile(const CompilerInvocation &ci,
mlir::ModuleOp mlirModule,
llvm::StringRef inputFile,
llvm::StringRef outputTag) {
if (!ci.getCodeGenOpts().SaveTempsDir.has_value())
return true;
const llvm::StringRef compilerOutFile = ci.getFrontendOpts().outputFile;
const llvm::StringRef saveTempsDir = ci.getCodeGenOpts().SaveTempsDir.value();
auto dir = llvm::StringSwitch<llvm::StringRef>(saveTempsDir)
.Case("cwd", "")
.Case("obj", llvm::sys::path::parent_path(compilerOutFile))
.Default(saveTempsDir);
// Build path from the compiler output file name, triple, cpu and OpenMP
// information
llvm::SmallString<256> path(dir);
llvm::sys::path::append(path, llvm::sys::path::stem(inputFile) + "-" +
outputTag + ".mlir");
std::error_code ec;
llvm::ToolOutputFile out(path, ec, llvm::sys::fs::OF_Text);
if (ec)
return false;
mlirModule->print(out.os());
out.os().close();
out.keep();
return true;
}
//===----------------------------------------------------------------------===//
// Custom BeginSourceFileAction
//===----------------------------------------------------------------------===//
bool PrescanAction::beginSourceFileAction() { return runPrescan(); }
bool PrescanAndParseAction::beginSourceFileAction() {
return runPrescan() && runParse();
}
bool PrescanAndSemaAction::beginSourceFileAction() {
return runPrescan() && runParse() && runSemanticChecks() &&
generateRtTypeTables();
}
bool PrescanAndSemaDebugAction::beginSourceFileAction() {
// This is a "debug" action for development purposes. To facilitate this, the
// semantic checks are made to succeed unconditionally to prevent this action
// from exiting early (i.e. in the presence of semantic errors). We should
// never do this in actions intended for end-users or otherwise regular
// compiler workflows!
return runPrescan() && runParse() && (runSemanticChecks() || true) &&
(generateRtTypeTables() || true);
}
// Get feature string which represents combined explicit target features
// for AMD GPU and the target features specified by the user
static std::string
getExplicitAndImplicitAMDGPUTargetFeatures(CompilerInstance &ci,
const TargetOptions &targetOpts,
const llvm::Triple triple) {
llvm::StringRef cpu = targetOpts.cpu;
llvm::StringMap<bool> implicitFeaturesMap;
std::string errorMsg;
// Get the set of implicit target features
llvm::AMDGPU::fillAMDGPUFeatureMap(cpu, triple, implicitFeaturesMap);
// Add target features specified by the user
for (auto &userFeature : targetOpts.featuresAsWritten) {
std::string userKeyString = userFeature.substr(1);
implicitFeaturesMap[userKeyString] = (userFeature[0] == '+');
}
if (!llvm::AMDGPU::insertWaveSizeFeature(cpu, triple, implicitFeaturesMap,
errorMsg)) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Unsupported feature ID: %0");
ci.getDiagnostics().Report(diagID) << errorMsg.data();
return std::string();
}
llvm::SmallVector<std::string> featuresVec;
for (auto &implicitFeatureItem : implicitFeaturesMap) {
featuresVec.push_back((llvm::Twine(implicitFeatureItem.second ? "+" : "-") +
implicitFeatureItem.first().str())
.str());
}
llvm::sort(featuresVec);
return llvm::join(featuresVec, ",");
}
// Produces the string which represents target feature
static std::string getTargetFeatures(CompilerInstance &ci) {
const TargetOptions &targetOpts = ci.getInvocation().getTargetOpts();
const llvm::Triple triple(targetOpts.triple);
// Clang does not append all target features to the clang -cc1 invocation.
// Some target features are parsed implicitly by clang::TargetInfo child
// class. Clang::TargetInfo classes are the basic clang classes and
// they cannot be reused by Flang.
// That's why we need to extract implicit target features and add
// them to the target features specified by the user
if (triple.isAMDGPU()) {
return getExplicitAndImplicitAMDGPUTargetFeatures(ci, targetOpts, triple);
}
return llvm::join(targetOpts.featuresAsWritten.begin(),
targetOpts.featuresAsWritten.end(), ",");
}
static void setMLIRDataLayout(mlir::ModuleOp &mlirModule,
const llvm::DataLayout &dl) {
mlir::MLIRContext *context = mlirModule.getContext();
mlirModule->setAttr(
mlir::LLVM::LLVMDialect::getDataLayoutAttrName(),
mlir::StringAttr::get(context, dl.getStringRepresentation()));
mlir::DataLayoutSpecInterface dlSpec = mlir::translateDataLayout(dl, context);
mlirModule->setAttr(mlir::DLTIDialect::kDataLayoutAttrName, dlSpec);
}
bool CodeGenAction::beginSourceFileAction() {
llvmCtx = std::make_unique<llvm::LLVMContext>();
CompilerInstance &ci = this->getInstance();
// If the input is an LLVM file, just parse it and return.
if (this->getCurrentInput().getKind().getLanguage() == Language::LLVM_IR) {
llvm::SMDiagnostic err;
llvmModule = llvm::parseIRFile(getCurrentInput().getFile(), err, *llvmCtx);
if (!llvmModule || llvm::verifyModule(*llvmModule, &llvm::errs())) {
err.print("flang-new", llvm::errs());
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Could not parse IR");
ci.getDiagnostics().Report(diagID);
return false;
}
return true;
}
// Load the MLIR dialects required by Flang
mlir::DialectRegistry registry;
mlirCtx = std::make_unique<mlir::MLIRContext>(registry);
fir::support::registerNonCodegenDialects(registry);
fir::support::loadNonCodegenDialects(*mlirCtx);
fir::support::loadDialects(*mlirCtx);
fir::support::registerLLVMTranslation(*mlirCtx);
// If the input is an MLIR file, just parse it and return.
if (this->getCurrentInput().getKind().getLanguage() == Language::MLIR) {
llvm::SourceMgr sourceMgr;
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(getCurrentInput().getFile());
sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), llvm::SMLoc());
mlir::OwningOpRef<mlir::ModuleOp> module =
mlir::parseSourceFile<mlir::ModuleOp>(sourceMgr, mlirCtx.get());
if (!module || mlir::failed(module->verifyInvariants())) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Could not parse FIR");
ci.getDiagnostics().Report(diagID);
return false;
}
mlirModule = std::make_unique<mlir::ModuleOp>(module.release());
if (!setUpTargetMachine())
return false;
const llvm::DataLayout &dl = tm->createDataLayout();
setMLIRDataLayout(*mlirModule, dl);
return true;
}
// Otherwise, generate an MLIR module from the input Fortran source
if (getCurrentInput().getKind().getLanguage() != Language::Fortran) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error,
"Invalid input type - expecting a Fortran file");
ci.getDiagnostics().Report(diagID);
return false;
}
bool res = runPrescan() && runParse() && runSemanticChecks() &&
generateRtTypeTables();
if (!res)
return res;
// Create a LoweringBridge
const common::IntrinsicTypeDefaultKinds &defKinds =
ci.getInvocation().getSemanticsContext().defaultKinds();
fir::KindMapping kindMap(mlirCtx.get(), llvm::ArrayRef<fir::KindTy>{
fir::fromDefaultKinds(defKinds)});
lower::LoweringBridge lb = Fortran::lower::LoweringBridge::create(
*mlirCtx, ci.getInvocation().getSemanticsContext(), defKinds,
ci.getInvocation().getSemanticsContext().intrinsics(),
ci.getInvocation().getSemanticsContext().targetCharacteristics(),
ci.getParsing().allCooked(), ci.getInvocation().getTargetOpts().triple,
kindMap, ci.getInvocation().getLoweringOpts(),
ci.getInvocation().getFrontendOpts().envDefaults);
// Fetch module from lb, so we can set
mlirModule = std::make_unique<mlir::ModuleOp>(lb.getModule());
if (!setUpTargetMachine())
return false;
if (ci.getInvocation().getFrontendOpts().features.IsEnabled(
Fortran::common::LanguageFeature::OpenMP)) {
setOffloadModuleInterfaceAttributes(*mlirModule,
ci.getInvocation().getLangOpts());
setOffloadModuleInterfaceTargetAttribute(*mlirModule, tm->getTargetCPU(),
tm->getTargetFeatureString());
setOpenMPVersionAttribute(*mlirModule,
ci.getInvocation().getLangOpts().OpenMPVersion);
}
const llvm::DataLayout &dl = tm->createDataLayout();
setMLIRDataLayout(*mlirModule, dl);
// Create a parse tree and lower it to FIR
Fortran::parser::Program &parseTree{*ci.getParsing().parseTree()};
lb.lower(parseTree, ci.getInvocation().getSemanticsContext());
// run the default passes.
mlir::PassManager pm((*mlirModule)->getName(),
mlir::OpPassManager::Nesting::Implicit);
// Add OpenMP-related passes
// WARNING: These passes must be run immediately after the lowering to ensure
// that the FIR is correct with respect to OpenMP operations/attributes.
if (ci.getInvocation().getFrontendOpts().features.IsEnabled(
Fortran::common::LanguageFeature::OpenMP)) {
bool isDevice = false;
if (auto offloadMod = llvm::dyn_cast<mlir::omp::OffloadModuleInterface>(
mlirModule->getOperation()))
isDevice = offloadMod.getIsTargetDevice();
pm.addPass(fir::createOMPMarkDeclareTargetPass());
if (isDevice) {
pm.addPass(fir::createOMPEarlyOutliningPass());
// FIXME: This should eventually be moved out of the
// if, so that it also functions for host, however,
// we must fix the filtering to function reasonably
// for host first.
pm.addPass(fir::createOMPFunctionFilteringPass());
}
}
pm.enableVerifier(/*verifyPasses=*/true);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
if (mlir::failed(pm.run(*mlirModule))) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error,
"verification of lowering to FIR failed");
ci.getDiagnostics().Report(diagID);
return false;
}
// Print initial full MLIR module, before lowering or transformations, if
// -save-temps has been specified.
if (!saveMLIRTempFile(ci.getInvocation(), *mlirModule, getCurrentFile(),
"fir")) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Saving MLIR temp file failed");
ci.getDiagnostics().Report(diagID);
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Custom ExecuteAction
//===----------------------------------------------------------------------===//
void InputOutputTestAction::executeAction() {
CompilerInstance &ci = getInstance();
// Create a stream for errors
std::string buf;
llvm::raw_string_ostream errorStream{buf};
// Read the input file
Fortran::parser::AllSources &allSources{ci.getAllSources()};
std::string path{getCurrentFileOrBufferName()};
const Fortran::parser::SourceFile *sf;
if (path == "-")
sf = allSources.ReadStandardInput(errorStream);
else
sf = allSources.Open(path, errorStream, std::optional<std::string>{"."s});
llvm::ArrayRef<char> fileContent = sf->content();
// Output file descriptor to receive the contents of the input file.
std::unique_ptr<llvm::raw_ostream> os;
// Copy the contents from the input file to the output file
if (!ci.isOutputStreamNull()) {
// An output stream (outputStream_) was set earlier
ci.writeOutputStream(fileContent.data());
} else {
// No pre-set output stream - create an output file
os = ci.createDefaultOutputFile(
/*binary=*/true, getCurrentFileOrBufferName(), "txt");
if (!os)
return;
(*os) << fileContent.data();
}
}
void PrintPreprocessedAction::executeAction() {
std::string buf;
llvm::raw_string_ostream outForPP{buf};
// Format or dump the prescanner's output
CompilerInstance &ci = this->getInstance();
if (ci.getInvocation().getPreprocessorOpts().noReformat) {
ci.getParsing().DumpCookedChars(outForPP);
} else {
ci.getParsing().EmitPreprocessedSource(
outForPP, !ci.getInvocation().getPreprocessorOpts().noLineDirectives);
}
// Print getDiagnostics from the prescanner
ci.getParsing().messages().Emit(llvm::errs(), ci.getAllCookedSources());
// If a pre-defined output stream exists, dump the preprocessed content there
if (!ci.isOutputStreamNull()) {
// Send the output to the pre-defined output buffer.
ci.writeOutputStream(outForPP.str());
return;
}
// Create a file and save the preprocessed output there
std::unique_ptr<llvm::raw_pwrite_stream> os{ci.createDefaultOutputFile(
/*Binary=*/true, /*InFile=*/getCurrentFileOrBufferName())};
if (!os) {
return;
}
(*os) << outForPP.str();
}
void DebugDumpProvenanceAction::executeAction() {
this->getInstance().getParsing().DumpProvenance(llvm::outs());
}
void ParseSyntaxOnlyAction::executeAction() {}
void DebugUnparseNoSemaAction::executeAction() {
auto &invoc = this->getInstance().getInvocation();
auto &parseTree{getInstance().getParsing().parseTree()};
// TODO: Options should come from CompilerInvocation
Unparse(llvm::outs(), *parseTree,
/*encoding=*/Fortran::parser::Encoding::UTF_8,
/*capitalizeKeywords=*/true, /*backslashEscapes=*/false,
/*preStatement=*/nullptr,
invoc.getUseAnalyzedObjectsForUnparse() ? &invoc.getAsFortran()
: nullptr);
}
void DebugUnparseAction::executeAction() {
auto &invoc = this->getInstance().getInvocation();
auto &parseTree{getInstance().getParsing().parseTree()};
CompilerInstance &ci = this->getInstance();
auto os{ci.createDefaultOutputFile(
/*Binary=*/false, /*InFile=*/getCurrentFileOrBufferName())};
// TODO: Options should come from CompilerInvocation
Unparse(*os, *parseTree,
/*encoding=*/Fortran::parser::Encoding::UTF_8,
/*capitalizeKeywords=*/true, /*backslashEscapes=*/false,
/*preStatement=*/nullptr,
invoc.getUseAnalyzedObjectsForUnparse() ? &invoc.getAsFortran()
: nullptr);
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugUnparseWithSymbolsAction::executeAction() {
auto &parseTree{*getInstance().getParsing().parseTree()};
Fortran::semantics::UnparseWithSymbols(
llvm::outs(), parseTree, /*encoding=*/Fortran::parser::Encoding::UTF_8);
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugDumpSymbolsAction::executeAction() {
CompilerInstance &ci = this->getInstance();
if (!ci.getRtTyTables().schemata) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error,
"could not find module file for __fortran_type_info");
ci.getDiagnostics().Report(diagID);
llvm::errs() << "\n";
return;
}
// Dump symbols
ci.getSemantics().DumpSymbols(llvm::outs());
}
void DebugDumpAllAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Dump parse tree
auto &parseTree{getInstance().getParsing().parseTree()};
llvm::outs() << "========================";
llvm::outs() << " Flang: parse tree dump ";
llvm::outs() << "========================\n";
Fortran::parser::DumpTree(llvm::outs(), parseTree,
&ci.getInvocation().getAsFortran());
if (!ci.getRtTyTables().schemata) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error,
"could not find module file for __fortran_type_info");
ci.getDiagnostics().Report(diagID);
llvm::errs() << "\n";
return;
}
// Dump symbols
llvm::outs() << "=====================";
llvm::outs() << " Flang: symbols dump ";
llvm::outs() << "=====================\n";
ci.getSemantics().DumpSymbols(llvm::outs());
}
void DebugDumpParseTreeNoSemaAction::executeAction() {
auto &parseTree{getInstance().getParsing().parseTree()};
// Dump parse tree
Fortran::parser::DumpTree(
llvm::outs(), parseTree,
&this->getInstance().getInvocation().getAsFortran());
}
void DebugDumpParseTreeAction::executeAction() {
auto &parseTree{getInstance().getParsing().parseTree()};
// Dump parse tree
Fortran::parser::DumpTree(
llvm::outs(), parseTree,
&this->getInstance().getInvocation().getAsFortran());
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugMeasureParseTreeAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Parse. In case of failure, report and return.
ci.getParsing().Parse(llvm::outs());
if (!ci.getParsing().messages().empty() &&
(ci.getInvocation().getWarnAsErr() ||
ci.getParsing().messages().AnyFatalError())) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Could not parse %0");
ci.getDiagnostics().Report(diagID) << getCurrentFileOrBufferName();
ci.getParsing().messages().Emit(llvm::errs(),
this->getInstance().getAllCookedSources());
return;
}
// Report the getDiagnostics from parsing
ci.getParsing().messages().Emit(llvm::errs(), ci.getAllCookedSources());
auto &parseTree{*ci.getParsing().parseTree()};
// Measure the parse tree
MeasurementVisitor visitor;
Fortran::parser::Walk(parseTree, visitor);
llvm::outs() << "Parse tree comprises " << visitor.objects
<< " objects and occupies " << visitor.bytes
<< " total bytes.\n";
}
void DebugPreFIRTreeAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
auto &parseTree{*ci.getParsing().parseTree()};
// Dump pre-FIR tree
if (auto ast{Fortran::lower::createPFT(
parseTree, ci.getInvocation().getSemanticsContext())}) {
Fortran::lower::dumpPFT(llvm::outs(), *ast);
} else {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Pre FIR Tree is NULL.");
ci.getDiagnostics().Report(diagID);
}
}
void DebugDumpParsingLogAction::executeAction() {
CompilerInstance &ci = this->getInstance();
ci.getParsing().Parse(llvm::errs());
ci.getParsing().DumpParsingLog(llvm::outs());
}
void GetDefinitionAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
parser::AllCookedSources &cs = ci.getAllCookedSources();
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Symbol not found");
auto gdv = ci.getInvocation().getFrontendOpts().getDefVals;
auto charBlock{cs.GetCharBlockFromLineAndColumns(gdv.line, gdv.startColumn,
gdv.endColumn)};
if (!charBlock) {
ci.getDiagnostics().Report(diagID);
return;
}
llvm::outs() << "String range: >" << charBlock->ToString() << "<\n";
auto *symbol{ci.getInvocation()
.getSemanticsContext()
.FindScope(*charBlock)
.FindSymbol(*charBlock)};
if (!symbol) {
ci.getDiagnostics().Report(diagID);
return;
}
llvm::outs() << "Found symbol name: " << symbol->name().ToString() << "\n";
auto sourceInfo{cs.GetSourcePositionRange(symbol->name())};
if (!sourceInfo) {
llvm_unreachable(
"Failed to obtain SourcePosition."
"TODO: Please, write a test and replace this with a diagnostic!");
return;
}
llvm::outs() << "Found symbol name: " << symbol->name().ToString() << "\n";
llvm::outs() << symbol->name().ToString() << ": " << sourceInfo->first.path
<< ", " << sourceInfo->first.line << ", "
<< sourceInfo->first.column << "-" << sourceInfo->second.column
<< "\n";
}
void GetSymbolsSourcesAction::executeAction() {
CompilerInstance &ci = this->getInstance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
ci.getSemantics().DumpSymbolsSources(llvm::outs());
}
//===----------------------------------------------------------------------===//
// CodeGenActions
//===----------------------------------------------------------------------===//
CodeGenAction::~CodeGenAction() = default;
#include "flang/Tools/CLOptions.inc"
static llvm::OptimizationLevel
mapToLevel(const Fortran::frontend::CodeGenOptions &opts) {
switch (opts.OptimizationLevel) {
default:
llvm_unreachable("Invalid optimization level!");
case 0:
return llvm::OptimizationLevel::O0;
case 1:
return llvm::OptimizationLevel::O1;
case 2:
return llvm::OptimizationLevel::O2;
case 3:
return llvm::OptimizationLevel::O3;
}
}
// Lower using HLFIR then run the FIR to HLFIR pipeline
void CodeGenAction::lowerHLFIRToFIR() {
assert(mlirModule && "The MLIR module has not been generated yet.");
CompilerInstance &ci = this->getInstance();
auto opts = ci.getInvocation().getCodeGenOpts();
llvm::OptimizationLevel level = mapToLevel(opts);
fir::support::loadDialects(*mlirCtx);
// Set-up the MLIR pass manager
mlir::PassManager pm((*mlirModule)->getName(),
mlir::OpPassManager::Nesting::Implicit);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
pm.enableVerifier(/*verifyPasses=*/true);
// Create the pass pipeline
fir::createHLFIRToFIRPassPipeline(pm, level);
(void)mlir::applyPassManagerCLOptions(pm);
if (!mlir::succeeded(pm.run(*mlirModule))) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Lowering to FIR failed");
ci.getDiagnostics().Report(diagID);
}
}
// Lower the previously generated MLIR module into an LLVM IR module
void CodeGenAction::generateLLVMIR() {
assert(mlirModule && "The MLIR module has not been generated yet.");
CompilerInstance &ci = this->getInstance();
auto opts = ci.getInvocation().getCodeGenOpts();
llvm::OptimizationLevel level = mapToLevel(opts);
fir::support::loadDialects(*mlirCtx);
fir::support::registerLLVMTranslation(*mlirCtx);
// Set-up the MLIR pass manager
mlir::PassManager pm((*mlirModule)->getName(),
mlir::OpPassManager::Nesting::Implicit);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
pm.enableVerifier(/*verifyPasses=*/true);
// Create the pass pipeline
fir::createMLIRToLLVMPassPipeline(pm, level, opts.StackArrays,
opts.Underscoring, opts.LoopVersioning,
opts.getDebugInfo());
(void)mlir::applyPassManagerCLOptions(pm);
// run the pass manager
if (!mlir::succeeded(pm.run(*mlirModule))) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Lowering to LLVM IR failed");
ci.getDiagnostics().Report(diagID);
}
// Print final MLIR module, just before translation into LLVM IR, if
// -save-temps has been specified.
if (!saveMLIRTempFile(ci.getInvocation(), *mlirModule, getCurrentFile(),
"llvmir")) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Saving MLIR temp file failed");
ci.getDiagnostics().Report(diagID);
return;
}
// Translate to LLVM IR
std::optional<llvm::StringRef> moduleName = mlirModule->getName();
llvmModule = mlir::translateModuleToLLVMIR(
*mlirModule, *llvmCtx, moduleName ? *moduleName : "FIRModule");
if (!llvmModule) {
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the LLVM module");
ci.getDiagnostics().Report(diagID);
return;
}
// Set PIC/PIE level LLVM module flags.
if (opts.PICLevel > 0) {
llvmModule->setPICLevel(static_cast<llvm::PICLevel::Level>(opts.PICLevel));
if (opts.IsPIE)
llvmModule->setPIELevel(
static_cast<llvm::PIELevel::Level>(opts.PICLevel));
}
}
bool CodeGenAction::setUpTargetMachine() {
CompilerInstance &ci = this->getInstance();
const TargetOptions &targetOpts = ci.getInvocation().getTargetOpts();
const std::string &theTriple = targetOpts.triple;
// Create `Target`
std::string error;
const llvm::Target *theTarget =
llvm::TargetRegistry::lookupTarget(theTriple, error);
if (!theTarget) {
ci.getDiagnostics().Report(clang::diag::err_fe_unable_to_create_target)
<< error;
return false;
}
// Create `TargetMachine`
const auto &CGOpts = ci.getInvocation().getCodeGenOpts();
std::optional<llvm::CodeGenOpt::Level> OptLevelOrNone =
llvm::CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
assert(OptLevelOrNone && "Invalid optimization level!");
llvm::CodeGenOpt::Level OptLevel = *OptLevelOrNone;
std::string featuresStr = getTargetFeatures(ci);
tm.reset(theTarget->createTargetMachine(
theTriple, /*CPU=*/targetOpts.cpu,
/*Features=*/featuresStr, llvm::TargetOptions(),
/*Reloc::Model=*/CGOpts.getRelocationModel(),
/*CodeModel::Model=*/std::nullopt, OptLevel));
assert(tm && "Failed to create TargetMachine");
return true;
}
static std::unique_ptr<llvm::raw_pwrite_stream>
getOutputStream(CompilerInstance &ci, llvm::StringRef inFile,
BackendActionTy action) {
switch (action) {
case BackendActionTy::Backend_EmitAssembly:
return ci.createDefaultOutputFile(
/*Binary=*/false, inFile, /*extension=*/"s");
case BackendActionTy::Backend_EmitLL:
return ci.createDefaultOutputFile(
/*Binary=*/false, inFile, /*extension=*/"ll");
case BackendActionTy::Backend_EmitFIR:
LLVM_FALLTHROUGH;
case BackendActionTy::Backend_EmitHLFIR:
return ci.createDefaultOutputFile(
/*Binary=*/false, inFile, /*extension=*/"mlir");
case BackendActionTy::Backend_EmitBC:
return ci.createDefaultOutputFile(
/*Binary=*/true, inFile, /*extension=*/"bc");
case BackendActionTy::Backend_EmitObj:
return ci.createDefaultOutputFile(
/*Binary=*/true, inFile, /*extension=*/"o");
}
llvm_unreachable("Invalid action!");
}
/// Generate target-specific machine-code or assembly file from the input LLVM
/// module.
///
/// \param [in] diags Diagnostics engine for reporting errors
/// \param [in] tm Target machine to aid the code-gen pipeline set-up
/// \param [in] act Backend act to run (assembly vs machine-code generation)
/// \param [in] llvmModule LLVM module to lower to assembly/machine-code
/// \param [out] os Output stream to emit the generated code to
static void generateMachineCodeOrAssemblyImpl(clang::DiagnosticsEngine &diags,
llvm::TargetMachine &tm,
BackendActionTy act,
llvm::Module &llvmModule,
llvm::raw_pwrite_stream &os) {
assert(((act == BackendActionTy::Backend_EmitObj) ||
(act == BackendActionTy::Backend_EmitAssembly)) &&
"Unsupported action");
// Set-up the pass manager, i.e create an LLVM code-gen pass pipeline.
// Currently only the legacy pass manager is supported.
// TODO: Switch to the new PM once it's available in the backend.
llvm::legacy::PassManager codeGenPasses;
codeGenPasses.add(
createTargetTransformInfoWrapperPass(tm.getTargetIRAnalysis()));
llvm::Triple triple(llvmModule.getTargetTriple());
std::unique_ptr<llvm::TargetLibraryInfoImpl> tlii =
std::make_unique<llvm::TargetLibraryInfoImpl>(triple);
assert(tlii && "Failed to create TargetLibraryInfo");
codeGenPasses.add(new llvm::TargetLibraryInfoWrapperPass(*tlii));
llvm::CodeGenFileType cgft = (act == BackendActionTy::Backend_EmitAssembly)
? llvm::CodeGenFileType::CGFT_AssemblyFile
: llvm::CodeGenFileType::CGFT_ObjectFile;
if (tm.addPassesToEmitFile(codeGenPasses, os, nullptr, cgft)) {
unsigned diagID =
diags.getCustomDiagID(clang::DiagnosticsEngine::Error,
"emission of this file type is not supported");
diags.Report(diagID);
return;
}
// Run the passes
codeGenPasses.run(llvmModule);
}
void CodeGenAction::runOptimizationPipeline(llvm::raw_pwrite_stream &os) {
auto opts = getInstance().getInvocation().getCodeGenOpts();
auto &diags = getInstance().getDiagnostics();
llvm::OptimizationLevel level = mapToLevel(opts);
// Create the analysis managers.
llvm::LoopAnalysisManager lam;
llvm::FunctionAnalysisManager fam;
llvm::CGSCCAnalysisManager cgam;
llvm::ModuleAnalysisManager mam;
// Create the pass manager builder.
llvm::PassInstrumentationCallbacks pic;
llvm::PipelineTuningOptions pto;
std::optional<llvm::PGOOptions> pgoOpt;
llvm::StandardInstrumentations si(llvmModule->getContext(),
opts.DebugPassManager);
si.registerCallbacks(pic, &mam);
llvm::PassBuilder pb(tm.get(), pto, pgoOpt, &pic);
// Attempt to load pass plugins and register their callbacks with PB.
for (auto &pluginFile : opts.LLVMPassPlugins) {
auto passPlugin = llvm::PassPlugin::Load(pluginFile);
if (passPlugin) {
passPlugin->registerPassBuilderCallbacks(pb);
} else {
diags.Report(clang::diag::err_fe_unable_to_load_plugin)
<< pluginFile << passPlugin.takeError();
}
}
// Register static plugin extensions.
#define HANDLE_EXTENSION(Ext) \
get##Ext##PluginInfo().RegisterPassBuilderCallbacks(pb);
#include "llvm/Support/Extension.def"
// Register all the basic analyses with the managers.
pb.registerModuleAnalyses(mam);
pb.registerCGSCCAnalyses(cgam);
pb.registerFunctionAnalyses(fam);
pb.registerLoopAnalyses(lam);
pb.crossRegisterProxies(lam, fam, cgam, mam);
// Create the pass manager.
llvm::ModulePassManager mpm;
if (opts.PrepareForFullLTO)
mpm = pb.buildLTOPreLinkDefaultPipeline(level);
else if (opts.PrepareForThinLTO)
mpm = pb.buildThinLTOPreLinkDefaultPipeline(level);
else
mpm = pb.buildPerModuleDefaultPipeline(level);
if (action == BackendActionTy::Backend_EmitBC)
mpm.addPass(llvm::BitcodeWriterPass(os));
// Run the passes.
mpm.run(*llvmModule, mam);
}
void CodeGenAction::embedOffloadObjects() {
CompilerInstance &ci = this->getInstance();
const auto &cgOpts = ci.getInvocation().getCodeGenOpts();
for (llvm::StringRef offloadObject : cgOpts.OffloadObjects) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> objectOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(offloadObject);
if (std::error_code ec = objectOrErr.getError()) {
auto diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "could not open '%0' for embedding");
ci.getDiagnostics().Report(diagID) << offloadObject;
return;
}
llvm::embedBufferInModule(
*llvmModule, **objectOrErr, ".llvm.offloading",
llvm::Align(llvm::object::OffloadBinary::getAlignment()));
}
}
static void reportOptRecordError(llvm::Error e, clang::DiagnosticsEngine &diags,
const CodeGenOptions &codeGenOpts) {
handleAllErrors(
std::move(e),
[&](const llvm::LLVMRemarkSetupFileError &e) {
diags.Report(clang::diag::err_cannot_open_file)
<< codeGenOpts.OptRecordFile << e.message();
},
[&](const llvm::LLVMRemarkSetupPatternError &e) {
diags.Report(clang::diag::err_drv_optimization_remark_pattern)
<< e.message() << codeGenOpts.OptRecordPasses;
},
[&](const llvm::LLVMRemarkSetupFormatError &e) {
diags.Report(clang::diag::err_drv_optimization_remark_format)
<< codeGenOpts.OptRecordFormat;
});
}
void CodeGenAction::executeAction() {
CompilerInstance &ci = this->getInstance();
clang::DiagnosticsEngine &diags = ci.getDiagnostics();
const CodeGenOptions &codeGenOpts = ci.getInvocation().getCodeGenOpts();
Fortran::lower::LoweringOptions &loweringOpts =
ci.getInvocation().getLoweringOpts();
// If the output stream is a file, generate it and define the corresponding
// output stream. If a pre-defined output stream is available, we will use
// that instead.
//
// NOTE: `os` is a smart pointer that will be destroyed at the end of this
// method. However, it won't be written to until `codeGenPasses` is
// destroyed. By defining `os` before `codeGenPasses`, we make sure that the
// output stream won't be destroyed before it is written to. This only
// applies when an output file is used (i.e. there is no pre-defined output
// stream).
// TODO: Revisit once the new PM is ready (i.e. when `codeGenPasses` is
// updated to use it).
std::unique_ptr<llvm::raw_pwrite_stream> os;
if (ci.isOutputStreamNull()) {
os = getOutputStream(ci, getCurrentFileOrBufferName(), action);
if (!os) {
unsigned diagID = diags.getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the output file");
diags.Report(diagID);
return;
}
}
if (action == BackendActionTy::Backend_EmitFIR) {
if (loweringOpts.getLowerToHighLevelFIR()) {
lowerHLFIRToFIR();
}
mlirModule->print(ci.isOutputStreamNull() ? *os : ci.getOutputStream());
return;
}
if (action == BackendActionTy::Backend_EmitHLFIR) {
assert(loweringOpts.getLowerToHighLevelFIR() &&
"Lowering must have been configured to emit HLFIR");
mlirModule->print(ci.isOutputStreamNull() ? *os : ci.getOutputStream());
return;
}
// Generate an LLVM module if it's not already present (it will already be
// present if the input file is an LLVM IR/BC file).
if (!llvmModule)
generateLLVMIR();
// Set the triple based on the targetmachine (this comes compiler invocation
// and the command-line target option if specified, or the default if not
// given on the command-line).
if (!setUpTargetMachine())
return;
const std::string &theTriple = tm->getTargetTriple().str();
if (llvmModule->getTargetTriple() != theTriple) {
diags.Report(clang::diag::warn_fe_override_module) << theTriple;
}
// Always set the triple and data layout, to make sure they match and are set.
// Note that this overwrites any datalayout stored in the LLVM-IR. This avoids
// an assert for incompatible data layout when the code-generation happens.
llvmModule->setTargetTriple(theTriple);
llvmModule->setDataLayout(tm->createDataLayout());
// Embed offload objects specified with -fembed-offload-object
if (!codeGenOpts.OffloadObjects.empty())
embedOffloadObjects();
// write optimization-record
llvm::Expected<std::unique_ptr<llvm::ToolOutputFile>> optRecordFileOrErr =
setupLLVMOptimizationRemarks(
llvmModule->getContext(), codeGenOpts.OptRecordFile,
codeGenOpts.OptRecordPasses, codeGenOpts.OptRecordFormat,
/*DiagnosticsWithHotness=*/false,
/*DiagnosticsHotnessThreshold=*/0);
if (llvm::Error e = optRecordFileOrErr.takeError()) {
reportOptRecordError(std::move(e), diags, codeGenOpts);
return;
}
std::unique_ptr<llvm::ToolOutputFile> optRecordFile =
std::move(*optRecordFileOrErr);
if (optRecordFile) {
optRecordFile->keep();
optRecordFile->os().flush();
}
// Run LLVM's middle-end (i.e. the optimizer).
runOptimizationPipeline(ci.isOutputStreamNull() ? *os : ci.getOutputStream());
if (action == BackendActionTy::Backend_EmitLL) {
llvmModule->print(ci.isOutputStreamNull() ? *os : ci.getOutputStream(),
/*AssemblyAnnotationWriter=*/nullptr);
return;
}
if (action == BackendActionTy::Backend_EmitBC) {
// This action has effectively been completed in runOptimizationPipeline.
return;
}
// Run LLVM's backend and generate either assembly or machine code
if (action == BackendActionTy::Backend_EmitAssembly ||
action == BackendActionTy::Backend_EmitObj) {
generateMachineCodeOrAssemblyImpl(
diags, *tm, action, *llvmModule,
ci.isOutputStreamNull() ? *os : ci.getOutputStream());
return;
}
}
void InitOnlyAction::executeAction() {
CompilerInstance &ci = this->getInstance();
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Warning,
"Use `-init-only` for testing purposes only");
ci.getDiagnostics().Report(diagID);
}
void PluginParseTreeAction::executeAction() {}
void DebugDumpPFTAction::executeAction() {
CompilerInstance &ci = this->getInstance();
if (auto ast = Fortran::lower::createPFT(*ci.getParsing().parseTree(),
ci.getSemantics().context())) {
Fortran::lower::dumpPFT(llvm::outs(), *ast);
return;
}
unsigned diagID = ci.getDiagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Pre FIR Tree is NULL.");
ci.getDiagnostics().Report(diagID);
}
Fortran::parser::Parsing &PluginParseTreeAction::getParsing() {
return getInstance().getParsing();
}
std::unique_ptr<llvm::raw_pwrite_stream>
PluginParseTreeAction::createOutputFile(llvm::StringRef extension = "") {
std::unique_ptr<llvm::raw_pwrite_stream> os{
getInstance().createDefaultOutputFile(
/*Binary=*/false, /*InFile=*/getCurrentFileOrBufferName(),
extension)};
return os;
}