mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 16:16:07 +00:00

When an OutputSection is larger than the branch range for a Target we need to place thunks such that they are always in range of their caller, and sufficiently spaced to maximise the number of callers that can use the thunk. We use the simple heuristic of placing the ThunkSection at intervals corresponding to a target specific branch range. If the OutputSection is small we put the thunks at the end of the executable sections. Differential Revision: https://reviews.llvm.org/D34689 llvm-svn: 316751
518 lines
18 KiB
C++
518 lines
18 KiB
C++
//===- ARM.cpp ------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "Thunks.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
class ARM final : public TargetInfo {
|
|
public:
|
|
ARM();
|
|
uint32_t calcEFlags() const override;
|
|
RelExpr getRelExpr(RelType Type, const SymbolBody &S,
|
|
const uint8_t *Loc) const override;
|
|
bool isPicRel(RelType Type) const override;
|
|
RelType getDynRel(RelType Type) const override;
|
|
int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const override;
|
|
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
|
|
void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
|
|
void writePltHeader(uint8_t *Buf) const override;
|
|
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
|
|
int32_t Index, unsigned RelOff) const override;
|
|
void addPltSymbols(InputSectionBase *IS, uint64_t Off) const override;
|
|
void addPltHeaderSymbols(InputSectionBase *ISD) const override;
|
|
bool needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
|
|
const SymbolBody &S) const override;
|
|
bool inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const override;
|
|
void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override;
|
|
};
|
|
} // namespace
|
|
|
|
ARM::ARM() {
|
|
CopyRel = R_ARM_COPY;
|
|
RelativeRel = R_ARM_RELATIVE;
|
|
IRelativeRel = R_ARM_IRELATIVE;
|
|
GotRel = R_ARM_GLOB_DAT;
|
|
PltRel = R_ARM_JUMP_SLOT;
|
|
TlsGotRel = R_ARM_TLS_TPOFF32;
|
|
TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
|
|
TlsOffsetRel = R_ARM_TLS_DTPOFF32;
|
|
GotEntrySize = 4;
|
|
GotPltEntrySize = 4;
|
|
PltEntrySize = 16;
|
|
PltHeaderSize = 20;
|
|
TrapInstr = 0xd4d4d4d4;
|
|
// ARM uses Variant 1 TLS
|
|
TcbSize = 8;
|
|
NeedsThunks = true;
|
|
|
|
// The placing of pre-created ThunkSections is controlled by the
|
|
// ThunkSectionSpacing parameter. The aim is to place the
|
|
// ThunkSection such that all branches from the InputSections prior to the
|
|
// ThunkSection can reach a Thunk placed at the end of the ThunkSection.
|
|
// Graphically:
|
|
// | up to ThunkSectionSpacing .text input sections |
|
|
// | ThunkSection |
|
|
// | up to ThunkSectionSpacing .text input sections |
|
|
// | ThunkSection |
|
|
|
|
// Pre-created ThunkSections are spaced roughly 16MiB apart on ARM. This is to
|
|
// match the most common expected case of a Thumb 2 encoded BL, BLX or B.W
|
|
// ARM B, BL, BLX range +/- 32MiB
|
|
// Thumb B.W, BL, BLX range +/- 16MiB
|
|
// Thumb B<cc>.W range +/- 1MiB
|
|
// If a branch cannot reach a pre-created ThunkSection a new one will be
|
|
// created so we can handle the rare cases of a Thumb 2 conditional branch.
|
|
// We intentionally use a lower size for ThunkSectionSpacing than the maximum
|
|
// branch range so the end of the ThunkSection is more likely to be within
|
|
// range of the branch instruction that is furthest away. The value we shorten
|
|
// ThunkSectionSpacing by is set conservatively to allow us to create 16,384
|
|
// 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
|
|
// one of the Thunks going out of range.
|
|
|
|
// FIXME: lld assumes that the Thumb BL and BLX encoding permits the J1 and
|
|
// J2 bits to be used to extend the branch range. On earlier Architectures
|
|
// such as ARMv4, ARMv5 and ARMv6 (except ARMv6T2) the range is +/- 4MiB. If
|
|
// support for the earlier encodings is added then when they are used the
|
|
// ThunkSectionSpacing will need lowering.
|
|
ThunkSectionSpacing = 0x1000000 - 0x30000;
|
|
}
|
|
|
|
uint32_t ARM::calcEFlags() const {
|
|
// We don't currently use any features incompatible with EF_ARM_EABI_VER5,
|
|
// but we don't have any firm guarantees of conformance. Linux AArch64
|
|
// kernels (as of 2016) require an EABI version to be set.
|
|
return EF_ARM_EABI_VER5;
|
|
}
|
|
|
|
RelExpr ARM::getRelExpr(RelType Type, const SymbolBody &S,
|
|
const uint8_t *Loc) const {
|
|
switch (Type) {
|
|
case R_ARM_THM_JUMP11:
|
|
return R_PC;
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_PREL31:
|
|
case R_ARM_THM_JUMP19:
|
|
case R_ARM_THM_JUMP24:
|
|
case R_ARM_THM_CALL:
|
|
return R_PLT_PC;
|
|
case R_ARM_GOTOFF32:
|
|
// (S + A) - GOT_ORG
|
|
return R_GOTREL;
|
|
case R_ARM_GOT_BREL:
|
|
// GOT(S) + A - GOT_ORG
|
|
return R_GOT_OFF;
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_TLS_IE32:
|
|
// GOT(S) + A - P
|
|
return R_GOT_PC;
|
|
case R_ARM_SBREL32:
|
|
return R_ARM_SBREL;
|
|
case R_ARM_TARGET1:
|
|
return Config->Target1Rel ? R_PC : R_ABS;
|
|
case R_ARM_TARGET2:
|
|
if (Config->Target2 == Target2Policy::Rel)
|
|
return R_PC;
|
|
if (Config->Target2 == Target2Policy::Abs)
|
|
return R_ABS;
|
|
return R_GOT_PC;
|
|
case R_ARM_TLS_GD32:
|
|
return R_TLSGD_PC;
|
|
case R_ARM_TLS_LDM32:
|
|
return R_TLSLD_PC;
|
|
case R_ARM_BASE_PREL:
|
|
// B(S) + A - P
|
|
// FIXME: currently B(S) assumed to be .got, this may not hold for all
|
|
// platforms.
|
|
return R_GOTONLY_PC;
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL:
|
|
case R_ARM_REL32:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
return R_PC;
|
|
case R_ARM_NONE:
|
|
return R_NONE;
|
|
case R_ARM_TLS_LE32:
|
|
return R_TLS;
|
|
default:
|
|
return R_ABS;
|
|
}
|
|
}
|
|
|
|
bool ARM::isPicRel(RelType Type) const {
|
|
return (Type == R_ARM_TARGET1 && !Config->Target1Rel) ||
|
|
(Type == R_ARM_ABS32);
|
|
}
|
|
|
|
RelType ARM::getDynRel(RelType Type) const {
|
|
if (Type == R_ARM_TARGET1 && !Config->Target1Rel)
|
|
return R_ARM_ABS32;
|
|
if (Type == R_ARM_ABS32)
|
|
return Type;
|
|
// Keep it going with a dummy value so that we can find more reloc errors.
|
|
return R_ARM_ABS32;
|
|
}
|
|
|
|
void ARM::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
|
|
write32le(Buf, InX::Plt->getVA());
|
|
}
|
|
|
|
void ARM::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
|
|
// An ARM entry is the address of the ifunc resolver function.
|
|
write32le(Buf, S.getVA());
|
|
}
|
|
|
|
void ARM::writePltHeader(uint8_t *Buf) const {
|
|
const uint8_t PltData[] = {
|
|
0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
|
|
0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
|
|
0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
|
|
0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
|
|
0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
uint64_t GotPlt = InX::GotPlt->getVA();
|
|
uint64_t L1 = InX::Plt->getVA() + 8;
|
|
write32le(Buf + 16, GotPlt - L1 - 8);
|
|
}
|
|
|
|
void ARM::addPltHeaderSymbols(InputSectionBase *ISD) const {
|
|
auto *IS = cast<InputSection>(ISD);
|
|
addSyntheticLocal("$a", STT_NOTYPE, 0, 0, IS);
|
|
addSyntheticLocal("$d", STT_NOTYPE, 16, 0, IS);
|
|
}
|
|
|
|
void ARM::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) const {
|
|
// FIXME: Using simple code sequence with simple relocations.
|
|
// There is a more optimal sequence but it requires support for the group
|
|
// relocations. See ELF for the ARM Architecture Appendix A.3
|
|
const uint8_t PltData[] = {
|
|
0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
|
|
0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
|
|
0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
|
|
0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
uint64_t L1 = PltEntryAddr + 4;
|
|
write32le(Buf + 12, GotPltEntryAddr - L1 - 8);
|
|
}
|
|
|
|
void ARM::addPltSymbols(InputSectionBase *ISD, uint64_t Off) const {
|
|
auto *IS = cast<InputSection>(ISD);
|
|
addSyntheticLocal("$a", STT_NOTYPE, Off, 0, IS);
|
|
addSyntheticLocal("$d", STT_NOTYPE, Off + 12, 0, IS);
|
|
}
|
|
|
|
bool ARM::needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
|
|
const SymbolBody &S) const {
|
|
// If S is an undefined weak symbol in an executable we don't need a Thunk.
|
|
// In a DSO calls to undefined symbols, including weak ones get PLT entries
|
|
// which may need a thunk.
|
|
if (S.isUndefWeak() && !Config->Shared)
|
|
return false;
|
|
// A state change from ARM to Thumb and vice versa must go through an
|
|
// interworking thunk if the relocation type is not R_ARM_CALL or
|
|
// R_ARM_THM_CALL.
|
|
switch (Type) {
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_JUMP24:
|
|
// Source is ARM, all PLT entries are ARM so no interworking required.
|
|
// Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
|
|
if (Expr == R_PC && ((S.getVA() & 1) == 1))
|
|
return true;
|
|
break;
|
|
case R_ARM_THM_JUMP19:
|
|
case R_ARM_THM_JUMP24:
|
|
// Source is Thumb, all PLT entries are ARM so interworking is required.
|
|
// Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
|
|
if (Expr == R_PLT_PC || ((S.getVA() & 1) == 0))
|
|
return true;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ARM::inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const {
|
|
uint64_t Range;
|
|
uint64_t InstrSize;
|
|
|
|
switch (Type) {
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_CALL:
|
|
Range = 0x2000000;
|
|
InstrSize = 4;
|
|
break;
|
|
case R_ARM_THM_JUMP19:
|
|
Range = 0x100000;
|
|
InstrSize = 2;
|
|
break;
|
|
case R_ARM_THM_JUMP24:
|
|
case R_ARM_THM_CALL:
|
|
Range = 0x1000000;
|
|
InstrSize = 2;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
// PC at Src is 2 instructions ahead, immediate of branch is signed
|
|
if (Src > Dst)
|
|
Range -= 2 * InstrSize;
|
|
else
|
|
Range += InstrSize;
|
|
|
|
if ((Dst & 0x1) == 0)
|
|
// Destination is ARM, if ARM caller then Src is already 4-byte aligned.
|
|
// If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
|
|
// destination will be 4 byte aligned.
|
|
Src &= ~0x3;
|
|
else
|
|
// Bit 0 == 1 denotes Thumb state, it is not part of the range
|
|
Dst &= ~0x1;
|
|
|
|
uint64_t Distance = (Src > Dst) ? Src - Dst : Dst - Src;
|
|
return Distance <= Range;
|
|
}
|
|
|
|
void ARM::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const {
|
|
switch (Type) {
|
|
case R_ARM_ABS32:
|
|
case R_ARM_BASE_PREL:
|
|
case R_ARM_GLOB_DAT:
|
|
case R_ARM_GOTOFF32:
|
|
case R_ARM_GOT_BREL:
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_REL32:
|
|
case R_ARM_RELATIVE:
|
|
case R_ARM_SBREL32:
|
|
case R_ARM_TARGET1:
|
|
case R_ARM_TARGET2:
|
|
case R_ARM_TLS_GD32:
|
|
case R_ARM_TLS_IE32:
|
|
case R_ARM_TLS_LDM32:
|
|
case R_ARM_TLS_LDO32:
|
|
case R_ARM_TLS_LE32:
|
|
case R_ARM_TLS_TPOFF32:
|
|
case R_ARM_TLS_DTPOFF32:
|
|
write32le(Loc, Val);
|
|
break;
|
|
case R_ARM_TLS_DTPMOD32:
|
|
write32le(Loc, 1);
|
|
break;
|
|
case R_ARM_PREL31:
|
|
checkInt<31>(Loc, Val, Type);
|
|
write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
|
|
break;
|
|
case R_ARM_CALL:
|
|
// R_ARM_CALL is used for BL and BLX instructions, depending on the
|
|
// value of bit 0 of Val, we must select a BL or BLX instruction
|
|
if (Val & 1) {
|
|
// If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
|
|
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
|
|
checkInt<26>(Loc, Val, Type);
|
|
write32le(Loc, 0xfa000000 | // opcode
|
|
((Val & 2) << 23) | // H
|
|
((Val >> 2) & 0x00ffffff)); // imm24
|
|
break;
|
|
}
|
|
if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
|
|
// BLX (always unconditional) instruction to an ARM Target, select an
|
|
// unconditional BL.
|
|
write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
|
|
// fall through as BL encoding is shared with B
|
|
LLVM_FALLTHROUGH;
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
checkInt<26>(Loc, Val, Type);
|
|
write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
|
|
break;
|
|
case R_ARM_THM_JUMP11:
|
|
checkInt<12>(Loc, Val, Type);
|
|
write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
|
|
break;
|
|
case R_ARM_THM_JUMP19:
|
|
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
|
|
checkInt<21>(Loc, Val, Type);
|
|
write16le(Loc,
|
|
(read16le(Loc) & 0xfbc0) | // opcode cond
|
|
((Val >> 10) & 0x0400) | // S
|
|
((Val >> 12) & 0x003f)); // imm6
|
|
write16le(Loc + 2,
|
|
0x8000 | // opcode
|
|
((Val >> 8) & 0x0800) | // J2
|
|
((Val >> 5) & 0x2000) | // J1
|
|
((Val >> 1) & 0x07ff)); // imm11
|
|
break;
|
|
case R_ARM_THM_CALL:
|
|
// R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
|
|
// value of bit 0 of Val, we must select a BL or BLX instruction
|
|
if ((Val & 1) == 0) {
|
|
// Ensure BLX destination is 4-byte aligned. As BLX instruction may
|
|
// only be two byte aligned. This must be done before overflow check
|
|
Val = alignTo(Val, 4);
|
|
}
|
|
// Bit 12 is 0 for BLX, 1 for BL
|
|
write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
|
|
// Fall through as rest of encoding is the same as B.W
|
|
LLVM_FALLTHROUGH;
|
|
case R_ARM_THM_JUMP24:
|
|
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
|
|
// FIXME: Use of I1 and I2 require v6T2ops
|
|
checkInt<25>(Loc, Val, Type);
|
|
write16le(Loc,
|
|
0xf000 | // opcode
|
|
((Val >> 14) & 0x0400) | // S
|
|
((Val >> 12) & 0x03ff)); // imm10
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0xd000) | // opcode
|
|
(((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
|
|
(((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
|
|
((Val >> 1) & 0x07ff)); // imm11
|
|
break;
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVW_PREL_NC:
|
|
write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
|
|
(Val & 0x0fff));
|
|
break;
|
|
case R_ARM_MOVT_ABS:
|
|
case R_ARM_MOVT_PREL:
|
|
checkInt<32>(Loc, Val, Type);
|
|
write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
|
|
(((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
|
|
break;
|
|
case R_ARM_THM_MOVT_ABS:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
// Encoding T1: A = imm4:i:imm3:imm8
|
|
checkInt<32>(Loc, Val, Type);
|
|
write16le(Loc,
|
|
0xf2c0 | // opcode
|
|
((Val >> 17) & 0x0400) | // i
|
|
((Val >> 28) & 0x000f)); // imm4
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0x8f00) | // opcode
|
|
((Val >> 12) & 0x7000) | // imm3
|
|
((Val >> 16) & 0x00ff)); // imm8
|
|
break;
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
// Encoding T3: A = imm4:i:imm3:imm8
|
|
write16le(Loc,
|
|
0xf240 | // opcode
|
|
((Val >> 1) & 0x0400) | // i
|
|
((Val >> 12) & 0x000f)); // imm4
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0x8f00) | // opcode
|
|
((Val << 4) & 0x7000) | // imm3
|
|
(Val & 0x00ff)); // imm8
|
|
break;
|
|
default:
|
|
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
int64_t ARM::getImplicitAddend(const uint8_t *Buf, RelType Type) const {
|
|
switch (Type) {
|
|
default:
|
|
return 0;
|
|
case R_ARM_ABS32:
|
|
case R_ARM_BASE_PREL:
|
|
case R_ARM_GOTOFF32:
|
|
case R_ARM_GOT_BREL:
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_REL32:
|
|
case R_ARM_TARGET1:
|
|
case R_ARM_TARGET2:
|
|
case R_ARM_TLS_GD32:
|
|
case R_ARM_TLS_LDM32:
|
|
case R_ARM_TLS_LDO32:
|
|
case R_ARM_TLS_IE32:
|
|
case R_ARM_TLS_LE32:
|
|
return SignExtend64<32>(read32le(Buf));
|
|
case R_ARM_PREL31:
|
|
return SignExtend64<31>(read32le(Buf));
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
return SignExtend64<26>(read32le(Buf) << 2);
|
|
case R_ARM_THM_JUMP11:
|
|
return SignExtend64<12>(read16le(Buf) << 1);
|
|
case R_ARM_THM_JUMP19: {
|
|
// Encoding T3: A = S:J2:J1:imm10:imm6:0
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
|
|
((Lo & 0x0800) << 8) | // J2
|
|
((Lo & 0x2000) << 5) | // J1
|
|
((Hi & 0x003f) << 12) | // imm6
|
|
((Lo & 0x07ff) << 1)); // imm11:0
|
|
}
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24: {
|
|
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
|
|
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
|
|
// FIXME: I1 and I2 require v6T2ops
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<24>(((Hi & 0x0400) << 14) | // S
|
|
(~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
|
|
(~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
|
|
((Hi & 0x003ff) << 12) | // imm0
|
|
((Lo & 0x007ff) << 1)); // imm11:0
|
|
}
|
|
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
|
|
// MOVT is in the range -32768 <= A < 32768
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVT_ABS:
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL: {
|
|
uint64_t Val = read32le(Buf) & 0x000f0fff;
|
|
return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
|
|
}
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVT_ABS:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL: {
|
|
// Encoding T3: A = imm4:i:imm3:imm8
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
|
|
((Hi & 0x0400) << 1) | // i
|
|
((Lo & 0x7000) >> 4) | // imm3
|
|
(Lo & 0x00ff)); // imm8
|
|
}
|
|
}
|
|
}
|
|
|
|
TargetInfo *elf::getARMTargetInfo() {
|
|
static ARM Target;
|
|
return &Target;
|
|
}
|