mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 05:56:05 +00:00

This change allows to expose through an interface attributes wrapping content as external resources, and the usage inside the ModuleToObject show how we will be able to provide runtime libraries without relying on the filesystem.
1834 lines
70 KiB
C++
1834 lines
70 KiB
C++
//===- BuiltinAttributes.cpp - MLIR Builtin Attribute Classes -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "AttributeDetail.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/DialectResourceBlobManager.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/SymbolTable.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "builtinattributes"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Tablegen Attribute Definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/IR/BuiltinAttributes.cpp.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BuiltinDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BuiltinDialect::registerAttributes() {
|
|
addAttributes<
|
|
#define GET_ATTRDEF_LIST
|
|
#include "mlir/IR/BuiltinAttributes.cpp.inc"
|
|
>();
|
|
addAttributes<DistinctAttr>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DictionaryAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Helper function that does either an in place sort or sorts from source array
|
|
/// into destination. If inPlace then storage is both the source and the
|
|
/// destination, else value is the source and storage destination. Returns
|
|
/// whether source was sorted.
|
|
template <bool inPlace>
|
|
static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
|
|
SmallVectorImpl<NamedAttribute> &storage) {
|
|
// Specialize for the common case.
|
|
switch (value.size()) {
|
|
case 0:
|
|
// Zero already sorted.
|
|
if (!inPlace)
|
|
storage.clear();
|
|
break;
|
|
case 1:
|
|
// One already sorted but may need to be copied.
|
|
if (!inPlace)
|
|
storage.assign({value[0]});
|
|
break;
|
|
case 2: {
|
|
bool isSorted = value[0] < value[1];
|
|
if (inPlace) {
|
|
if (!isSorted)
|
|
std::swap(storage[0], storage[1]);
|
|
} else if (isSorted) {
|
|
storage.assign({value[0], value[1]});
|
|
} else {
|
|
storage.assign({value[1], value[0]});
|
|
}
|
|
return !isSorted;
|
|
}
|
|
default:
|
|
if (!inPlace)
|
|
storage.assign(value.begin(), value.end());
|
|
// Check to see they are sorted already.
|
|
bool isSorted = llvm::is_sorted(value);
|
|
// If not, do a general sort.
|
|
if (!isSorted)
|
|
llvm::array_pod_sort(storage.begin(), storage.end());
|
|
return !isSorted;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns an entry with a duplicate name from the given sorted array of named
|
|
/// attributes. Returns std::nullopt if all elements have unique names.
|
|
static std::optional<NamedAttribute>
|
|
findDuplicateElement(ArrayRef<NamedAttribute> value) {
|
|
const std::optional<NamedAttribute> none{std::nullopt};
|
|
if (value.size() < 2)
|
|
return none;
|
|
|
|
if (value.size() == 2)
|
|
return value[0].getName() == value[1].getName() ? value[0] : none;
|
|
|
|
const auto *it = std::adjacent_find(value.begin(), value.end(),
|
|
[](NamedAttribute l, NamedAttribute r) {
|
|
return l.getName() == r.getName();
|
|
});
|
|
return it != value.end() ? *it : none;
|
|
}
|
|
|
|
bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
|
|
SmallVectorImpl<NamedAttribute> &storage) {
|
|
bool isSorted = dictionaryAttrSort</*inPlace=*/false>(value, storage);
|
|
assert(!findDuplicateElement(storage) &&
|
|
"DictionaryAttr element names must be unique");
|
|
return isSorted;
|
|
}
|
|
|
|
bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
|
|
bool isSorted = dictionaryAttrSort</*inPlace=*/true>(array, array);
|
|
assert(!findDuplicateElement(array) &&
|
|
"DictionaryAttr element names must be unique");
|
|
return isSorted;
|
|
}
|
|
|
|
std::optional<NamedAttribute>
|
|
DictionaryAttr::findDuplicate(SmallVectorImpl<NamedAttribute> &array,
|
|
bool isSorted) {
|
|
if (!isSorted)
|
|
dictionaryAttrSort</*inPlace=*/true>(array, array);
|
|
return findDuplicateElement(array);
|
|
}
|
|
|
|
DictionaryAttr DictionaryAttr::get(MLIRContext *context,
|
|
ArrayRef<NamedAttribute> value) {
|
|
if (value.empty())
|
|
return DictionaryAttr::getEmpty(context);
|
|
|
|
// We need to sort the element list to canonicalize it.
|
|
SmallVector<NamedAttribute, 8> storage;
|
|
if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
|
|
value = storage;
|
|
assert(!findDuplicateElement(value) &&
|
|
"DictionaryAttr element names must be unique");
|
|
return Base::get(context, value);
|
|
}
|
|
/// Construct a dictionary with an array of values that is known to already be
|
|
/// sorted by name and uniqued.
|
|
DictionaryAttr DictionaryAttr::getWithSorted(MLIRContext *context,
|
|
ArrayRef<NamedAttribute> value) {
|
|
if (value.empty())
|
|
return DictionaryAttr::getEmpty(context);
|
|
// Ensure that the attribute elements are unique and sorted.
|
|
assert(llvm::is_sorted(
|
|
value, [](NamedAttribute l, NamedAttribute r) { return l < r; }) &&
|
|
"expected attribute values to be sorted");
|
|
assert(!findDuplicateElement(value) &&
|
|
"DictionaryAttr element names must be unique");
|
|
return Base::get(context, value);
|
|
}
|
|
|
|
/// Return the specified attribute if present, null otherwise.
|
|
Attribute DictionaryAttr::get(StringRef name) const {
|
|
auto it = impl::findAttrSorted(begin(), end(), name);
|
|
return it.second ? it.first->getValue() : Attribute();
|
|
}
|
|
Attribute DictionaryAttr::get(StringAttr name) const {
|
|
auto it = impl::findAttrSorted(begin(), end(), name);
|
|
return it.second ? it.first->getValue() : Attribute();
|
|
}
|
|
|
|
/// Return the specified named attribute if present, std::nullopt otherwise.
|
|
std::optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
|
|
auto it = impl::findAttrSorted(begin(), end(), name);
|
|
return it.second ? *it.first : std::optional<NamedAttribute>();
|
|
}
|
|
std::optional<NamedAttribute> DictionaryAttr::getNamed(StringAttr name) const {
|
|
auto it = impl::findAttrSorted(begin(), end(), name);
|
|
return it.second ? *it.first : std::optional<NamedAttribute>();
|
|
}
|
|
|
|
/// Return whether the specified attribute is present.
|
|
bool DictionaryAttr::contains(StringRef name) const {
|
|
return impl::findAttrSorted(begin(), end(), name).second;
|
|
}
|
|
bool DictionaryAttr::contains(StringAttr name) const {
|
|
return impl::findAttrSorted(begin(), end(), name).second;
|
|
}
|
|
|
|
DictionaryAttr::iterator DictionaryAttr::begin() const {
|
|
return getValue().begin();
|
|
}
|
|
DictionaryAttr::iterator DictionaryAttr::end() const {
|
|
return getValue().end();
|
|
}
|
|
size_t DictionaryAttr::size() const { return getValue().size(); }
|
|
|
|
DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) {
|
|
return Base::get(context, ArrayRef<NamedAttribute>());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StridedLayoutAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Prints a strided layout attribute.
|
|
void StridedLayoutAttr::print(llvm::raw_ostream &os) const {
|
|
auto printIntOrQuestion = [&](int64_t value) {
|
|
if (ShapedType::isDynamic(value))
|
|
os << "?";
|
|
else
|
|
os << value;
|
|
};
|
|
|
|
os << "strided<[";
|
|
llvm::interleaveComma(getStrides(), os, printIntOrQuestion);
|
|
os << "]";
|
|
|
|
if (getOffset() != 0) {
|
|
os << ", offset: ";
|
|
printIntOrQuestion(getOffset());
|
|
}
|
|
os << ">";
|
|
}
|
|
|
|
/// Returns true if this layout is static, i.e. the strides and offset all have
|
|
/// a known value > 0.
|
|
bool StridedLayoutAttr::hasStaticLayout() const {
|
|
return !ShapedType::isDynamic(getOffset()) &&
|
|
!ShapedType::isDynamicShape(getStrides());
|
|
}
|
|
|
|
/// Returns the strided layout as an affine map.
|
|
AffineMap StridedLayoutAttr::getAffineMap() const {
|
|
return makeStridedLinearLayoutMap(getStrides(), getOffset(), getContext());
|
|
}
|
|
|
|
/// Checks that the type-agnostic strided layout invariants are satisfied.
|
|
LogicalResult
|
|
StridedLayoutAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
int64_t offset, ArrayRef<int64_t> strides) {
|
|
return success();
|
|
}
|
|
|
|
/// Checks that the type-specific strided layout invariants are satisfied.
|
|
LogicalResult StridedLayoutAttr::verifyLayout(
|
|
ArrayRef<int64_t> shape,
|
|
function_ref<InFlightDiagnostic()> emitError) const {
|
|
if (shape.size() != getStrides().size())
|
|
return emitError() << "expected the number of strides to match the rank";
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StringAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StringAttr StringAttr::getEmptyStringAttrUnchecked(MLIRContext *context) {
|
|
return Base::get(context, "", NoneType::get(context));
|
|
}
|
|
|
|
/// Twine support for StringAttr.
|
|
StringAttr StringAttr::get(MLIRContext *context, const Twine &twine) {
|
|
// Fast-path empty twine.
|
|
if (twine.isTriviallyEmpty())
|
|
return get(context);
|
|
SmallVector<char, 32> tempStr;
|
|
return Base::get(context, twine.toStringRef(tempStr), NoneType::get(context));
|
|
}
|
|
|
|
/// Twine support for StringAttr.
|
|
StringAttr StringAttr::get(const Twine &twine, Type type) {
|
|
SmallVector<char, 32> tempStr;
|
|
return Base::get(type.getContext(), twine.toStringRef(tempStr), type);
|
|
}
|
|
|
|
StringRef StringAttr::getValue() const { return getImpl()->value; }
|
|
|
|
Type StringAttr::getType() const { return getImpl()->type; }
|
|
|
|
Dialect *StringAttr::getReferencedDialect() const {
|
|
return getImpl()->referencedDialect;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FloatAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
double FloatAttr::getValueAsDouble() const {
|
|
return getValueAsDouble(getValue());
|
|
}
|
|
double FloatAttr::getValueAsDouble(APFloat value) {
|
|
if (&value.getSemantics() != &APFloat::IEEEdouble()) {
|
|
bool losesInfo = false;
|
|
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
|
|
&losesInfo);
|
|
}
|
|
return value.convertToDouble();
|
|
}
|
|
|
|
LogicalResult FloatAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
Type type, APFloat value) {
|
|
// Verify that the type is correct.
|
|
if (!llvm::isa<FloatType>(type))
|
|
return emitError() << "expected floating point type";
|
|
|
|
// Verify that the type semantics match that of the value.
|
|
if (&llvm::cast<FloatType>(type).getFloatSemantics() !=
|
|
&value.getSemantics()) {
|
|
return emitError()
|
|
<< "FloatAttr type doesn't match the type implied by its value";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolRefAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value,
|
|
ArrayRef<FlatSymbolRefAttr> nestedRefs) {
|
|
return get(StringAttr::get(ctx, value), nestedRefs);
|
|
}
|
|
|
|
FlatSymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value) {
|
|
return llvm::cast<FlatSymbolRefAttr>(get(ctx, value, {}));
|
|
}
|
|
|
|
FlatSymbolRefAttr SymbolRefAttr::get(StringAttr value) {
|
|
return llvm::cast<FlatSymbolRefAttr>(get(value, {}));
|
|
}
|
|
|
|
FlatSymbolRefAttr SymbolRefAttr::get(Operation *symbol) {
|
|
auto symName =
|
|
symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
|
|
assert(symName && "value does not have a valid symbol name");
|
|
return SymbolRefAttr::get(symName);
|
|
}
|
|
|
|
StringAttr SymbolRefAttr::getLeafReference() const {
|
|
ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
|
|
return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getAttr();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntegerAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int64_t IntegerAttr::getInt() const {
|
|
assert((getType().isIndex() || getType().isSignlessInteger()) &&
|
|
"must be signless integer");
|
|
return getValue().getSExtValue();
|
|
}
|
|
|
|
int64_t IntegerAttr::getSInt() const {
|
|
assert(getType().isSignedInteger() && "must be signed integer");
|
|
return getValue().getSExtValue();
|
|
}
|
|
|
|
uint64_t IntegerAttr::getUInt() const {
|
|
assert(getType().isUnsignedInteger() && "must be unsigned integer");
|
|
return getValue().getZExtValue();
|
|
}
|
|
|
|
/// Return the value as an APSInt which carries the signed from the type of
|
|
/// the attribute. This traps on signless integers types!
|
|
APSInt IntegerAttr::getAPSInt() const {
|
|
assert(!getType().isSignlessInteger() &&
|
|
"Signless integers don't carry a sign for APSInt");
|
|
return APSInt(getValue(), getType().isUnsignedInteger());
|
|
}
|
|
|
|
LogicalResult IntegerAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
Type type, APInt value) {
|
|
if (IntegerType integerType = llvm::dyn_cast<IntegerType>(type)) {
|
|
if (integerType.getWidth() != value.getBitWidth())
|
|
return emitError() << "integer type bit width (" << integerType.getWidth()
|
|
<< ") doesn't match value bit width ("
|
|
<< value.getBitWidth() << ")";
|
|
return success();
|
|
}
|
|
if (llvm::isa<IndexType>(type)) {
|
|
if (value.getBitWidth() != IndexType::kInternalStorageBitWidth)
|
|
return emitError()
|
|
<< "value bit width (" << value.getBitWidth()
|
|
<< ") doesn't match index type internal storage bit width ("
|
|
<< IndexType::kInternalStorageBitWidth << ")";
|
|
return success();
|
|
}
|
|
return emitError() << "expected integer or index type";
|
|
}
|
|
|
|
BoolAttr IntegerAttr::getBoolAttrUnchecked(IntegerType type, bool value) {
|
|
auto attr = Base::get(type.getContext(), type, APInt(/*numBits=*/1, value));
|
|
return llvm::cast<BoolAttr>(attr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BoolAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool BoolAttr::getValue() const {
|
|
auto *storage = reinterpret_cast<IntegerAttrStorage *>(impl);
|
|
return storage->value.getBoolValue();
|
|
}
|
|
|
|
bool BoolAttr::classof(Attribute attr) {
|
|
IntegerAttr intAttr = llvm::dyn_cast<IntegerAttr>(attr);
|
|
return intAttr && intAttr.getType().isSignlessInteger(1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpaqueAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult OpaqueAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
StringAttr dialect, StringRef attrData,
|
|
Type type) {
|
|
if (!Dialect::isValidNamespace(dialect.strref()))
|
|
return emitError() << "invalid dialect namespace '" << dialect << "'";
|
|
|
|
// Check that the dialect is actually registered.
|
|
MLIRContext *context = dialect.getContext();
|
|
if (!context->allowsUnregisteredDialects() &&
|
|
!context->getLoadedDialect(dialect.strref())) {
|
|
return emitError()
|
|
<< "#" << dialect << "<\"" << attrData << "\"> : " << type
|
|
<< " attribute created with unregistered dialect. If this is "
|
|
"intended, please call allowUnregisteredDialects() on the "
|
|
"MLIRContext, or use -allow-unregistered-dialect with "
|
|
"the MLIR opt tool used";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementsAttr Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const char DenseIntOrFPElementsAttrStorage::kSplatTrue = ~0;
|
|
const char DenseIntOrFPElementsAttrStorage::kSplatFalse = 0;
|
|
|
|
/// Get the bitwidth of a dense element type within the buffer.
|
|
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
|
|
static size_t getDenseElementStorageWidth(size_t origWidth) {
|
|
return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
|
|
}
|
|
static size_t getDenseElementStorageWidth(Type elementType) {
|
|
return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
|
|
}
|
|
|
|
/// Set a bit to a specific value.
|
|
static void setBit(char *rawData, size_t bitPos, bool value) {
|
|
if (value)
|
|
rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
|
|
else
|
|
rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
|
|
}
|
|
|
|
/// Return the value of the specified bit.
|
|
static bool getBit(const char *rawData, size_t bitPos) {
|
|
return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
|
|
}
|
|
|
|
/// Copy actual `numBytes` data from `value` (APInt) to char array(`result`) for
|
|
/// BE format.
|
|
static void copyAPIntToArrayForBEmachine(APInt value, size_t numBytes,
|
|
char *result) {
|
|
assert(llvm::endianness::native == llvm::endianness::big);
|
|
assert(value.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
|
|
|
|
// Copy the words filled with data.
|
|
// For example, when `value` has 2 words, the first word is filled with data.
|
|
// `value` (10 bytes, BE):|abcdefgh|------ij| ==> `result` (BE):|abcdefgh|--|
|
|
size_t numFilledWords = (value.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
|
|
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
|
|
numFilledWords, result);
|
|
// Convert last word of APInt to LE format and store it in char
|
|
// array(`valueLE`).
|
|
// ex. last word of `value` (BE): |------ij| ==> `valueLE` (LE): |ji------|
|
|
size_t lastWordPos = numFilledWords;
|
|
SmallVector<char, 8> valueLE(APInt::APINT_WORD_SIZE);
|
|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
reinterpret_cast<const char *>(value.getRawData()) + lastWordPos,
|
|
valueLE.begin(), APInt::APINT_BITS_PER_WORD, 1);
|
|
// Extract actual APInt data from `valueLE`, convert endianness to BE format,
|
|
// and store it in `result`.
|
|
// ex. `valueLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|ij|
|
|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
valueLE.begin(), result + lastWordPos,
|
|
(numBytes - lastWordPos) * CHAR_BIT, 1);
|
|
}
|
|
|
|
/// Copy `numBytes` data from `inArray`(char array) to `result`(APINT) for BE
|
|
/// format.
|
|
static void copyArrayToAPIntForBEmachine(const char *inArray, size_t numBytes,
|
|
APInt &result) {
|
|
assert(llvm::endianness::native == llvm::endianness::big);
|
|
assert(result.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
|
|
|
|
// Copy the data that fills the word of `result` from `inArray`.
|
|
// For example, when `result` has 2 words, the first word will be filled with
|
|
// data. So, the first 8 bytes are copied from `inArray` here.
|
|
// `inArray` (10 bytes, BE): |abcdefgh|ij|
|
|
// ==> `result` (2 words, BE): |abcdefgh|--------|
|
|
size_t numFilledWords = (result.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
|
|
std::copy_n(
|
|
inArray, numFilledWords,
|
|
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())));
|
|
|
|
// Convert array data which will be last word of `result` to LE format, and
|
|
// store it in char array(`inArrayLE`).
|
|
// ex. `inArray` (last two bytes, BE): |ij| ==> `inArrayLE` (LE): |ji------|
|
|
size_t lastWordPos = numFilledWords;
|
|
SmallVector<char, 8> inArrayLE(APInt::APINT_WORD_SIZE);
|
|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
inArray + lastWordPos, inArrayLE.begin(),
|
|
(numBytes - lastWordPos) * CHAR_BIT, 1);
|
|
|
|
// Convert `inArrayLE` to BE format, and store it in last word of `result`.
|
|
// ex. `inArrayLE` (LE): |ji------| ==> `result` (BE): |abcdefgh|------ij|
|
|
DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
inArrayLE.begin(),
|
|
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())) +
|
|
lastWordPos,
|
|
APInt::APINT_BITS_PER_WORD, 1);
|
|
}
|
|
|
|
/// Writes value to the bit position `bitPos` in array `rawData`.
|
|
static void writeBits(char *rawData, size_t bitPos, APInt value) {
|
|
size_t bitWidth = value.getBitWidth();
|
|
|
|
// If the bitwidth is 1 we just toggle the specific bit.
|
|
if (bitWidth == 1)
|
|
return setBit(rawData, bitPos, value.isOne());
|
|
|
|
// Otherwise, the bit position is guaranteed to be byte aligned.
|
|
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
|
|
if (llvm::endianness::native == llvm::endianness::big) {
|
|
// Copy from `value` to `rawData + (bitPos / CHAR_BIT)`.
|
|
// Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
|
|
// work correctly in BE format.
|
|
// ex. `value` (2 words including 10 bytes)
|
|
// ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------|
|
|
copyAPIntToArrayForBEmachine(value, llvm::divideCeil(bitWidth, CHAR_BIT),
|
|
rawData + (bitPos / CHAR_BIT));
|
|
} else {
|
|
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
|
|
llvm::divideCeil(bitWidth, CHAR_BIT),
|
|
rawData + (bitPos / CHAR_BIT));
|
|
}
|
|
}
|
|
|
|
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
|
|
/// `rawData`.
|
|
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
|
|
// Handle a boolean bit position.
|
|
if (bitWidth == 1)
|
|
return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
|
|
|
|
// Otherwise, the bit position must be 8-bit aligned.
|
|
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
|
|
APInt result(bitWidth, 0);
|
|
if (llvm::endianness::native == llvm::endianness::big) {
|
|
// Copy from `rawData + (bitPos / CHAR_BIT)` to `result`.
|
|
// Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
|
|
// work correctly in BE format.
|
|
// ex. `result` (2 words including 10 bytes)
|
|
// ==> BE: |abcdefgh|------ij|, LE: |hgfedcba|ji------| This function
|
|
copyArrayToAPIntForBEmachine(rawData + (bitPos / CHAR_BIT),
|
|
llvm::divideCeil(bitWidth, CHAR_BIT), result);
|
|
} else {
|
|
std::copy_n(rawData + (bitPos / CHAR_BIT),
|
|
llvm::divideCeil(bitWidth, CHAR_BIT),
|
|
const_cast<char *>(
|
|
reinterpret_cast<const char *>(result.getRawData())));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Returns true if 'values' corresponds to a splat, i.e. one element, or has
|
|
/// the same element count as 'type'.
|
|
template <typename Values>
|
|
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
|
|
return (values.size() == 1) ||
|
|
(type.getNumElements() == static_cast<int64_t>(values.size()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementsAttr Iterators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeElementIterator
|
|
|
|
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
|
|
DenseElementsAttr attr, size_t index)
|
|
: llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
|
|
Attribute, Attribute, Attribute>(
|
|
attr.getAsOpaquePointer(), index) {}
|
|
|
|
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
|
|
auto owner = llvm::cast<DenseElementsAttr>(getFromOpaquePointer(base));
|
|
Type eltTy = owner.getElementType();
|
|
if (llvm::dyn_cast<IntegerType>(eltTy))
|
|
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
|
|
if (llvm::isa<IndexType>(eltTy))
|
|
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
|
|
if (auto floatEltTy = llvm::dyn_cast<FloatType>(eltTy)) {
|
|
IntElementIterator intIt(owner, index);
|
|
FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
|
|
return FloatAttr::get(eltTy, *floatIt);
|
|
}
|
|
if (auto complexTy = llvm::dyn_cast<ComplexType>(eltTy)) {
|
|
auto complexEltTy = complexTy.getElementType();
|
|
ComplexIntElementIterator complexIntIt(owner, index);
|
|
if (llvm::isa<IntegerType>(complexEltTy)) {
|
|
auto value = *complexIntIt;
|
|
auto real = IntegerAttr::get(complexEltTy, value.real());
|
|
auto imag = IntegerAttr::get(complexEltTy, value.imag());
|
|
return ArrayAttr::get(complexTy.getContext(),
|
|
ArrayRef<Attribute>{real, imag});
|
|
}
|
|
|
|
ComplexFloatElementIterator complexFloatIt(
|
|
llvm::cast<FloatType>(complexEltTy).getFloatSemantics(), complexIntIt);
|
|
auto value = *complexFloatIt;
|
|
auto real = FloatAttr::get(complexEltTy, value.real());
|
|
auto imag = FloatAttr::get(complexEltTy, value.imag());
|
|
return ArrayAttr::get(complexTy.getContext(),
|
|
ArrayRef<Attribute>{real, imag});
|
|
}
|
|
if (llvm::isa<DenseStringElementsAttr>(owner)) {
|
|
ArrayRef<StringRef> vals = owner.getRawStringData();
|
|
return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
|
|
}
|
|
llvm_unreachable("unexpected element type");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BoolElementIterator
|
|
|
|
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex) {}
|
|
|
|
bool DenseElementsAttr::BoolElementIterator::operator*() const {
|
|
return getBit(getData(), getDataIndex());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntElementIterator
|
|
|
|
DenseElementsAttr::IntElementIterator::IntElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex),
|
|
bitWidth(getDenseElementBitWidth(attr.getElementType())) {}
|
|
|
|
APInt DenseElementsAttr::IntElementIterator::operator*() const {
|
|
return readBits(getData(),
|
|
getDataIndex() * getDenseElementStorageWidth(bitWidth),
|
|
bitWidth);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ComplexIntElementIterator
|
|
|
|
DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
|
|
std::complex<APInt>, std::complex<APInt>,
|
|
std::complex<APInt>>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex) {
|
|
auto complexType = llvm::cast<ComplexType>(attr.getElementType());
|
|
bitWidth = getDenseElementBitWidth(complexType.getElementType());
|
|
}
|
|
|
|
std::complex<APInt>
|
|
DenseElementsAttr::ComplexIntElementIterator::operator*() const {
|
|
size_t storageWidth = getDenseElementStorageWidth(bitWidth);
|
|
size_t offset = getDataIndex() * storageWidth * 2;
|
|
return {readBits(getData(), offset, bitWidth),
|
|
readBits(getData(), offset + storageWidth, bitWidth)};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseArrayAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult
|
|
DenseArrayAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
Type elementType, int64_t size, ArrayRef<char> rawData) {
|
|
if (!elementType.isIntOrIndexOrFloat())
|
|
return emitError() << "expected integer or floating point element type";
|
|
int64_t dataSize = rawData.size();
|
|
int64_t elementSize =
|
|
llvm::divideCeil(elementType.getIntOrFloatBitWidth(), CHAR_BIT);
|
|
if (size * elementSize != dataSize) {
|
|
return emitError() << "expected data size (" << size << " elements, "
|
|
<< elementSize
|
|
<< " bytes each) does not match: " << dataSize
|
|
<< " bytes";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Instantiations of this class provide utilities for interacting with native
|
|
/// data types in the context of DenseArrayAttr.
|
|
template <size_t width,
|
|
IntegerType::SignednessSemantics signedness = IntegerType::Signless>
|
|
struct DenseArrayAttrIntUtil {
|
|
static bool checkElementType(Type eltType) {
|
|
auto type = llvm::dyn_cast<IntegerType>(eltType);
|
|
if (!type || type.getWidth() != width)
|
|
return false;
|
|
return type.getSignedness() == signedness;
|
|
}
|
|
|
|
static Type getElementType(MLIRContext *ctx) {
|
|
return IntegerType::get(ctx, width, signedness);
|
|
}
|
|
|
|
template <typename T>
|
|
static void printElement(raw_ostream &os, T value) {
|
|
os << value;
|
|
}
|
|
|
|
template <typename T>
|
|
static ParseResult parseElement(AsmParser &parser, T &value) {
|
|
return parser.parseInteger(value);
|
|
}
|
|
};
|
|
template <typename T>
|
|
struct DenseArrayAttrUtil;
|
|
|
|
/// Specialization for boolean elements to print 'true' and 'false' literals for
|
|
/// elements.
|
|
template <>
|
|
struct DenseArrayAttrUtil<bool> : public DenseArrayAttrIntUtil<1> {
|
|
static void printElement(raw_ostream &os, bool value) {
|
|
os << (value ? "true" : "false");
|
|
}
|
|
};
|
|
|
|
/// Specialization for 8-bit integers to ensure values are printed as integers
|
|
/// and not characters.
|
|
template <>
|
|
struct DenseArrayAttrUtil<int8_t> : public DenseArrayAttrIntUtil<8> {
|
|
static void printElement(raw_ostream &os, int8_t value) {
|
|
os << static_cast<int>(value);
|
|
}
|
|
};
|
|
template <>
|
|
struct DenseArrayAttrUtil<int16_t> : public DenseArrayAttrIntUtil<16> {};
|
|
template <>
|
|
struct DenseArrayAttrUtil<int32_t> : public DenseArrayAttrIntUtil<32> {};
|
|
template <>
|
|
struct DenseArrayAttrUtil<int64_t> : public DenseArrayAttrIntUtil<64> {};
|
|
|
|
/// Specialization for 32-bit floats.
|
|
template <>
|
|
struct DenseArrayAttrUtil<float> {
|
|
static bool checkElementType(Type eltType) { return eltType.isF32(); }
|
|
static Type getElementType(MLIRContext *ctx) { return Float32Type::get(ctx); }
|
|
static void printElement(raw_ostream &os, float value) { os << value; }
|
|
|
|
/// Parse a double and cast it to a float.
|
|
static ParseResult parseElement(AsmParser &parser, float &value) {
|
|
double doubleVal;
|
|
if (parser.parseFloat(doubleVal))
|
|
return failure();
|
|
value = doubleVal;
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Specialization for 64-bit floats.
|
|
template <>
|
|
struct DenseArrayAttrUtil<double> {
|
|
static bool checkElementType(Type eltType) { return eltType.isF64(); }
|
|
static Type getElementType(MLIRContext *ctx) { return Float64Type::get(ctx); }
|
|
static void printElement(raw_ostream &os, float value) { os << value; }
|
|
static ParseResult parseElement(AsmParser &parser, double &value) {
|
|
return parser.parseFloat(value);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
void DenseArrayAttrImpl<T>::print(AsmPrinter &printer) const {
|
|
print(printer.getStream());
|
|
}
|
|
|
|
template <typename T>
|
|
void DenseArrayAttrImpl<T>::printWithoutBraces(raw_ostream &os) const {
|
|
llvm::interleaveComma(asArrayRef(), os, [&](T value) {
|
|
DenseArrayAttrUtil<T>::printElement(os, value);
|
|
});
|
|
}
|
|
|
|
template <typename T>
|
|
void DenseArrayAttrImpl<T>::print(raw_ostream &os) const {
|
|
os << "[";
|
|
printWithoutBraces(os);
|
|
os << "]";
|
|
}
|
|
|
|
/// Parse a DenseArrayAttr without the braces: `1, 2, 3`
|
|
template <typename T>
|
|
Attribute DenseArrayAttrImpl<T>::parseWithoutBraces(AsmParser &parser,
|
|
Type odsType) {
|
|
SmallVector<T> data;
|
|
if (failed(parser.parseCommaSeparatedList([&]() {
|
|
T value;
|
|
if (DenseArrayAttrUtil<T>::parseElement(parser, value))
|
|
return failure();
|
|
data.push_back(value);
|
|
return success();
|
|
})))
|
|
return {};
|
|
return get(parser.getContext(), data);
|
|
}
|
|
|
|
/// Parse a DenseArrayAttr: `[ 1, 2, 3 ]`
|
|
template <typename T>
|
|
Attribute DenseArrayAttrImpl<T>::parse(AsmParser &parser, Type odsType) {
|
|
if (parser.parseLSquare())
|
|
return {};
|
|
// Handle empty list case.
|
|
if (succeeded(parser.parseOptionalRSquare()))
|
|
return get(parser.getContext(), {});
|
|
Attribute result = parseWithoutBraces(parser, odsType);
|
|
if (parser.parseRSquare())
|
|
return {};
|
|
return result;
|
|
}
|
|
|
|
/// Conversion from DenseArrayAttr<T> to ArrayRef<T>.
|
|
template <typename T>
|
|
DenseArrayAttrImpl<T>::operator ArrayRef<T>() const {
|
|
ArrayRef<char> raw = getRawData();
|
|
assert((raw.size() % sizeof(T)) == 0);
|
|
return ArrayRef<T>(reinterpret_cast<const T *>(raw.data()),
|
|
raw.size() / sizeof(T));
|
|
}
|
|
|
|
/// Builds a DenseArrayAttr<T> from an ArrayRef<T>.
|
|
template <typename T>
|
|
DenseArrayAttrImpl<T> DenseArrayAttrImpl<T>::get(MLIRContext *context,
|
|
ArrayRef<T> content) {
|
|
Type elementType = DenseArrayAttrUtil<T>::getElementType(context);
|
|
auto rawArray = ArrayRef<char>(reinterpret_cast<const char *>(content.data()),
|
|
content.size() * sizeof(T));
|
|
return llvm::cast<DenseArrayAttrImpl<T>>(
|
|
Base::get(context, elementType, content.size(), rawArray));
|
|
}
|
|
|
|
template <typename T>
|
|
bool DenseArrayAttrImpl<T>::classof(Attribute attr) {
|
|
if (auto denseArray = llvm::dyn_cast<DenseArrayAttr>(attr))
|
|
return DenseArrayAttrUtil<T>::checkElementType(denseArray.getElementType());
|
|
return false;
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace detail {
|
|
// Explicit instantiation for all the supported DenseArrayAttr.
|
|
template class DenseArrayAttrImpl<bool>;
|
|
template class DenseArrayAttrImpl<int8_t>;
|
|
template class DenseArrayAttrImpl<int16_t>;
|
|
template class DenseArrayAttrImpl<int32_t>;
|
|
template class DenseArrayAttrImpl<int64_t>;
|
|
template class DenseArrayAttrImpl<float>;
|
|
template class DenseArrayAttrImpl<double>;
|
|
} // namespace detail
|
|
} // namespace mlir
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Method for support type inquiry through isa, cast and dyn_cast.
|
|
bool DenseElementsAttr::classof(Attribute attr) {
|
|
return llvm::isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr>(attr);
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<Attribute> values) {
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
|
|
Type eltType = type.getElementType();
|
|
|
|
// Take care complex type case first.
|
|
if (auto complexType = llvm::dyn_cast<ComplexType>(eltType)) {
|
|
if (complexType.getElementType().isIntOrIndex()) {
|
|
SmallVector<std::complex<APInt>> complexValues;
|
|
complexValues.reserve(values.size());
|
|
for (Attribute attr : values) {
|
|
assert(llvm::isa<ArrayAttr>(attr) && "expected ArrayAttr for complex");
|
|
auto arrayAttr = llvm::cast<ArrayAttr>(attr);
|
|
assert(arrayAttr.size() == 2 && "expected 2 element for complex");
|
|
auto attr0 = arrayAttr[0];
|
|
auto attr1 = arrayAttr[1];
|
|
complexValues.push_back(
|
|
std::complex<APInt>(llvm::cast<IntegerAttr>(attr0).getValue(),
|
|
llvm::cast<IntegerAttr>(attr1).getValue()));
|
|
}
|
|
return DenseElementsAttr::get(type, complexValues);
|
|
}
|
|
// Must be float.
|
|
SmallVector<std::complex<APFloat>> complexValues;
|
|
complexValues.reserve(values.size());
|
|
for (Attribute attr : values) {
|
|
assert(llvm::isa<ArrayAttr>(attr) && "expected ArrayAttr for complex");
|
|
auto arrayAttr = llvm::cast<ArrayAttr>(attr);
|
|
assert(arrayAttr.size() == 2 && "expected 2 element for complex");
|
|
auto attr0 = arrayAttr[0];
|
|
auto attr1 = arrayAttr[1];
|
|
complexValues.push_back(
|
|
std::complex<APFloat>(llvm::cast<FloatAttr>(attr0).getValue(),
|
|
llvm::cast<FloatAttr>(attr1).getValue()));
|
|
}
|
|
return DenseElementsAttr::get(type, complexValues);
|
|
}
|
|
|
|
// If the element type is not based on int/float/index, assume it is a string
|
|
// type.
|
|
if (!eltType.isIntOrIndexOrFloat()) {
|
|
SmallVector<StringRef, 8> stringValues;
|
|
stringValues.reserve(values.size());
|
|
for (Attribute attr : values) {
|
|
assert(llvm::isa<StringAttr>(attr) &&
|
|
"expected string value for non integer/index/float element");
|
|
stringValues.push_back(llvm::cast<StringAttr>(attr).getValue());
|
|
}
|
|
return get(type, stringValues);
|
|
}
|
|
|
|
// Otherwise, get the raw storage width to use for the allocation.
|
|
size_t bitWidth = getDenseElementBitWidth(eltType);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
|
|
|
|
// Compress the attribute values into a character buffer.
|
|
SmallVector<char, 8> data(
|
|
llvm::divideCeil(storageBitWidth * values.size(), CHAR_BIT));
|
|
APInt intVal;
|
|
for (unsigned i = 0, e = values.size(); i < e; ++i) {
|
|
if (auto floatAttr = llvm::dyn_cast<FloatAttr>(values[i])) {
|
|
assert(floatAttr.getType() == eltType &&
|
|
"expected float attribute type to equal element type");
|
|
intVal = floatAttr.getValue().bitcastToAPInt();
|
|
} else {
|
|
auto intAttr = llvm::cast<IntegerAttr>(values[i]);
|
|
assert(intAttr.getType() == eltType &&
|
|
"expected integer attribute type to equal element type");
|
|
intVal = intAttr.getValue();
|
|
}
|
|
|
|
assert(intVal.getBitWidth() == bitWidth &&
|
|
"expected value to have same bitwidth as element type");
|
|
writeBits(data.data(), i * storageBitWidth, intVal);
|
|
}
|
|
|
|
// Handle the special encoding of splat of bool.
|
|
if (values.size() == 1 && eltType.isInteger(1))
|
|
data[0] = data[0] ? -1 : 0;
|
|
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data);
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<bool> values) {
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
assert(type.getElementType().isInteger(1));
|
|
|
|
std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
|
|
|
|
if (!values.empty()) {
|
|
bool isSplat = true;
|
|
bool firstValue = values[0];
|
|
for (int i = 0, e = values.size(); i != e; ++i) {
|
|
isSplat &= values[i] == firstValue;
|
|
setBit(buff.data(), i, values[i]);
|
|
}
|
|
|
|
// Splat of bool is encoded as a byte with all-ones in it.
|
|
if (isSplat) {
|
|
buff.resize(1);
|
|
buff[0] = values[0] ? -1 : 0;
|
|
}
|
|
}
|
|
|
|
return DenseIntOrFPElementsAttr::getRaw(type, buff);
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<StringRef> values) {
|
|
assert(!type.getElementType().isIntOrFloat());
|
|
return DenseStringElementsAttr::get(type, values);
|
|
}
|
|
|
|
/// Constructs a dense integer elements attribute from an array of APInt
|
|
/// values. Each APInt value is expected to have the same bitwidth as the
|
|
/// element type of 'type'.
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<APInt> values) {
|
|
assert(type.getElementType().isIntOrIndex());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values);
|
|
}
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<std::complex<APInt>> values) {
|
|
ComplexType complex = llvm::cast<ComplexType>(type.getElementType());
|
|
assert(llvm::isa<IntegerType>(complex.getElementType()));
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
|
|
ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
|
|
values.size() * 2);
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals);
|
|
}
|
|
|
|
// Constructs a dense float elements attribute from an array of APFloat
|
|
// values. Each APFloat value is expected to have the same bitwidth as the
|
|
// element type of 'type'.
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<APFloat> values) {
|
|
assert(llvm::isa<FloatType>(type.getElementType()));
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values);
|
|
}
|
|
DenseElementsAttr
|
|
DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<std::complex<APFloat>> values) {
|
|
ComplexType complex = llvm::cast<ComplexType>(type.getElementType());
|
|
assert(llvm::isa<FloatType>(complex.getElementType()));
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
|
|
values.size() * 2);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals);
|
|
}
|
|
|
|
/// Construct a dense elements attribute from a raw buffer representing the
|
|
/// data for this attribute. Users should generally not use this methods as
|
|
/// the expected buffer format may not be a form the user expects.
|
|
DenseElementsAttr
|
|
DenseElementsAttr::getFromRawBuffer(ShapedType type, ArrayRef<char> rawBuffer) {
|
|
return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer);
|
|
}
|
|
|
|
/// Returns true if the given buffer is a valid raw buffer for the given type.
|
|
bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
|
|
ArrayRef<char> rawBuffer,
|
|
bool &detectedSplat) {
|
|
size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
|
|
size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
|
|
int64_t numElements = type.getNumElements();
|
|
|
|
// The initializer is always a splat if the result type has a single element.
|
|
detectedSplat = numElements == 1;
|
|
|
|
// Storage width of 1 is special as it is packed by the bit.
|
|
if (storageWidth == 1) {
|
|
// Check for a splat, or a buffer equal to the number of elements which
|
|
// consists of either all 0's or all 1's.
|
|
if (rawBuffer.size() == 1) {
|
|
auto rawByte = static_cast<uint8_t>(rawBuffer[0]);
|
|
if (rawByte == 0 || rawByte == 0xff) {
|
|
detectedSplat = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// This is a valid non-splat buffer if it has the right size.
|
|
return rawBufferWidth == llvm::alignTo<8>(numElements);
|
|
}
|
|
|
|
// All other types are 8-bit aligned, so we can just check the buffer width
|
|
// to know if only a single initializer element was passed in.
|
|
if (rawBufferWidth == storageWidth) {
|
|
detectedSplat = true;
|
|
return true;
|
|
}
|
|
|
|
// The raw buffer is valid if it has the right size.
|
|
return rawBufferWidth == storageWidth * numElements;
|
|
}
|
|
|
|
/// Check the information for a C++ data type, check if this type is valid for
|
|
/// the current attribute. This method is used to verify specific type
|
|
/// invariants that the templatized 'getValues' method cannot.
|
|
static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
|
|
bool isSigned) {
|
|
// Make sure that the data element size is the same as the type element width.
|
|
auto denseEltBitWidth = getDenseElementBitWidth(type);
|
|
auto dataSize = static_cast<size_t>(dataEltSize * CHAR_BIT);
|
|
if (denseEltBitWidth != dataSize) {
|
|
LLVM_DEBUG(llvm::dbgs() << "expected dense element bit width "
|
|
<< denseEltBitWidth << " to match data size "
|
|
<< dataSize << " for type " << type << "\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the element type is either float or integer or index.
|
|
if (!isInt) {
|
|
bool valid = llvm::isa<FloatType>(type);
|
|
if (!valid)
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "expected float type when isInt is false, but found "
|
|
<< type << "\n");
|
|
return valid;
|
|
}
|
|
if (type.isIndex())
|
|
return true;
|
|
|
|
auto intType = llvm::dyn_cast<IntegerType>(type);
|
|
if (!intType) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "expected integer type when isInt is true, but found " << type
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
|
|
// Make sure signedness semantics is consistent.
|
|
if (intType.isSignless())
|
|
return true;
|
|
|
|
bool valid = intType.isSigned() == isSigned;
|
|
if (!valid)
|
|
LLVM_DEBUG(llvm::dbgs() << "expected signedness " << isSigned
|
|
<< " to match type " << type << "\n");
|
|
return valid;
|
|
}
|
|
|
|
/// Defaults down the subclass implementation.
|
|
DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt, bool isSigned) {
|
|
return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
|
|
isSigned);
|
|
}
|
|
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt,
|
|
bool isSigned) {
|
|
return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
|
|
isInt, isSigned);
|
|
}
|
|
|
|
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
|
|
bool isSigned) const {
|
|
return ::isValidIntOrFloat(getElementType(), dataEltSize, isInt, isSigned);
|
|
}
|
|
bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
|
|
bool isSigned) const {
|
|
return ::isValidIntOrFloat(
|
|
llvm::cast<ComplexType>(getElementType()).getElementType(),
|
|
dataEltSize / 2, isInt, isSigned);
|
|
}
|
|
|
|
/// Returns true if this attribute corresponds to a splat, i.e. if all element
|
|
/// values are the same.
|
|
bool DenseElementsAttr::isSplat() const {
|
|
return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
|
|
}
|
|
|
|
/// Return if the given complex type has an integer element type.
|
|
static bool isComplexOfIntType(Type type) {
|
|
return llvm::isa<IntegerType>(llvm::cast<ComplexType>(type).getElementType());
|
|
}
|
|
|
|
auto DenseElementsAttr::tryGetComplexIntValues() const
|
|
-> FailureOr<iterator_range_impl<ComplexIntElementIterator>> {
|
|
if (!isComplexOfIntType(getElementType()))
|
|
return failure();
|
|
return iterator_range_impl<ComplexIntElementIterator>(
|
|
getType(), ComplexIntElementIterator(*this, 0),
|
|
ComplexIntElementIterator(*this, getNumElements()));
|
|
}
|
|
|
|
auto DenseElementsAttr::tryGetFloatValues() const
|
|
-> FailureOr<iterator_range_impl<FloatElementIterator>> {
|
|
auto eltTy = llvm::dyn_cast<FloatType>(getElementType());
|
|
if (!eltTy)
|
|
return failure();
|
|
const auto &elementSemantics = eltTy.getFloatSemantics();
|
|
return iterator_range_impl<FloatElementIterator>(
|
|
getType(), FloatElementIterator(elementSemantics, raw_int_begin()),
|
|
FloatElementIterator(elementSemantics, raw_int_end()));
|
|
}
|
|
|
|
auto DenseElementsAttr::tryGetComplexFloatValues() const
|
|
-> FailureOr<iterator_range_impl<ComplexFloatElementIterator>> {
|
|
auto complexTy = llvm::dyn_cast<ComplexType>(getElementType());
|
|
if (!complexTy)
|
|
return failure();
|
|
auto eltTy = llvm::dyn_cast<FloatType>(complexTy.getElementType());
|
|
if (!eltTy)
|
|
return failure();
|
|
const auto &semantics = eltTy.getFloatSemantics();
|
|
return iterator_range_impl<ComplexFloatElementIterator>(
|
|
getType(), {semantics, {*this, 0}},
|
|
{semantics, {*this, static_cast<size_t>(getNumElements())}});
|
|
}
|
|
|
|
/// Return the raw storage data held by this attribute.
|
|
ArrayRef<char> DenseElementsAttr::getRawData() const {
|
|
return static_cast<DenseIntOrFPElementsAttrStorage *>(impl)->data;
|
|
}
|
|
|
|
ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
|
|
return static_cast<DenseStringElementsAttrStorage *>(impl)->data;
|
|
}
|
|
|
|
/// Return a new DenseElementsAttr that has the same data as the current
|
|
/// attribute, but has been reshaped to 'newType'. The new type must have the
|
|
/// same total number of elements as well as element type.
|
|
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
|
|
ShapedType curType = getType();
|
|
if (curType == newType)
|
|
return *this;
|
|
|
|
assert(newType.getElementType() == curType.getElementType() &&
|
|
"expected the same element type");
|
|
assert(newType.getNumElements() == curType.getNumElements() &&
|
|
"expected the same number of elements");
|
|
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData());
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::resizeSplat(ShapedType newType) {
|
|
assert(isSplat() && "expected a splat type");
|
|
|
|
ShapedType curType = getType();
|
|
if (curType == newType)
|
|
return *this;
|
|
|
|
assert(newType.getElementType() == curType.getElementType() &&
|
|
"expected the same element type");
|
|
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData());
|
|
}
|
|
|
|
/// Return a new DenseElementsAttr that has the same data as the current
|
|
/// attribute, but has bitcast elements such that it is now 'newType'. The new
|
|
/// type must have the same shape and element types of the same bitwidth as the
|
|
/// current type.
|
|
DenseElementsAttr DenseElementsAttr::bitcast(Type newElType) {
|
|
ShapedType curType = getType();
|
|
Type curElType = curType.getElementType();
|
|
if (curElType == newElType)
|
|
return *this;
|
|
|
|
assert(getDenseElementBitWidth(newElType) ==
|
|
getDenseElementBitWidth(curElType) &&
|
|
"expected element types with the same bitwidth");
|
|
return DenseIntOrFPElementsAttr::getRaw(curType.clone(newElType),
|
|
getRawData());
|
|
}
|
|
|
|
DenseElementsAttr
|
|
DenseElementsAttr::mapValues(Type newElementType,
|
|
function_ref<APInt(const APInt &)> mapping) const {
|
|
return llvm::cast<DenseIntElementsAttr>(*this).mapValues(newElementType,
|
|
mapping);
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
|
|
return llvm::cast<DenseFPElementsAttr>(*this).mapValues(newElementType,
|
|
mapping);
|
|
}
|
|
|
|
ShapedType DenseElementsAttr::getType() const {
|
|
return static_cast<const DenseElementsAttributeStorage *>(impl)->type;
|
|
}
|
|
|
|
Type DenseElementsAttr::getElementType() const {
|
|
return getType().getElementType();
|
|
}
|
|
|
|
int64_t DenseElementsAttr::getNumElements() const {
|
|
return getType().getNumElements();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseIntOrFPElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Utility method to write a range of APInt values to a buffer.
|
|
template <typename APRangeT>
|
|
static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
|
|
APRangeT &&values) {
|
|
size_t numValues = llvm::size(values);
|
|
data.resize(llvm::divideCeil(storageWidth * numValues, CHAR_BIT));
|
|
size_t offset = 0;
|
|
for (auto it = values.begin(), e = values.end(); it != e;
|
|
++it, offset += storageWidth) {
|
|
assert((*it).getBitWidth() <= storageWidth);
|
|
writeBits(data.data(), offset, *it);
|
|
}
|
|
|
|
// Handle the special encoding of splat of a boolean.
|
|
if (numValues == 1 && (*values.begin()).getBitWidth() == 1)
|
|
data[0] = data[0] ? -1 : 0;
|
|
}
|
|
|
|
/// Constructs a dense elements attribute from an array of raw APFloat values.
|
|
/// Each APFloat value is expected to have the same bitwidth as the element
|
|
/// type of 'type'. 'type' must be a vector or tensor with static shape.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
size_t storageWidth,
|
|
ArrayRef<APFloat> values) {
|
|
std::vector<char> data;
|
|
auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
|
|
writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data);
|
|
}
|
|
|
|
/// Constructs a dense elements attribute from an array of raw APInt values.
|
|
/// Each APInt value is expected to have the same bitwidth as the element type
|
|
/// of 'type'.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
size_t storageWidth,
|
|
ArrayRef<APInt> values) {
|
|
std::vector<char> data;
|
|
writeAPIntsToBuffer(storageWidth, data, values);
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data);
|
|
}
|
|
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
ArrayRef<char> data) {
|
|
assert(type.hasStaticShape() && "type must have static shape");
|
|
bool isSplat = false;
|
|
bool isValid = isValidRawBuffer(type, data, isSplat);
|
|
assert(isValid);
|
|
(void)isValid;
|
|
return Base::get(type.getContext(), type, data, isSplat);
|
|
}
|
|
|
|
/// Overload of the raw 'get' method that asserts that the given type is of
|
|
/// complex type. This method is used to verify type invariants that the
|
|
/// templatized 'get' method cannot.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt,
|
|
bool isSigned) {
|
|
assert(::isValidIntOrFloat(
|
|
llvm::cast<ComplexType>(type.getElementType()).getElementType(),
|
|
dataEltSize / 2, isInt, isSigned) &&
|
|
"Try re-running with -debug-only=builtinattributes");
|
|
|
|
int64_t numElements = data.size() / dataEltSize;
|
|
(void)numElements;
|
|
assert(numElements == 1 || numElements == type.getNumElements());
|
|
return getRaw(type, data);
|
|
}
|
|
|
|
/// Overload of the 'getRaw' method that asserts that the given type is of
|
|
/// integer type. This method is used to verify type invariants that the
|
|
/// templatized 'get' method cannot.
|
|
DenseElementsAttr
|
|
DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
|
|
int64_t dataEltSize, bool isInt,
|
|
bool isSigned) {
|
|
assert(::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt,
|
|
isSigned) &&
|
|
"Try re-running with -debug-only=builtinattributes");
|
|
|
|
int64_t numElements = data.size() / dataEltSize;
|
|
assert(numElements == 1 || numElements == type.getNumElements());
|
|
(void)numElements;
|
|
return getRaw(type, data);
|
|
}
|
|
|
|
void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
|
|
const char *inRawData, char *outRawData, size_t elementBitWidth,
|
|
size_t numElements) {
|
|
using llvm::support::ulittle16_t;
|
|
using llvm::support::ulittle32_t;
|
|
using llvm::support::ulittle64_t;
|
|
|
|
assert(llvm::endianness::native == llvm::endianness::big);
|
|
// NOLINT to avoid warning message about replacing by static_assert()
|
|
|
|
// Following std::copy_n always converts endianness on BE machine.
|
|
switch (elementBitWidth) {
|
|
case 16: {
|
|
const ulittle16_t *inRawDataPos =
|
|
reinterpret_cast<const ulittle16_t *>(inRawData);
|
|
uint16_t *outDataPos = reinterpret_cast<uint16_t *>(outRawData);
|
|
std::copy_n(inRawDataPos, numElements, outDataPos);
|
|
break;
|
|
}
|
|
case 32: {
|
|
const ulittle32_t *inRawDataPos =
|
|
reinterpret_cast<const ulittle32_t *>(inRawData);
|
|
uint32_t *outDataPos = reinterpret_cast<uint32_t *>(outRawData);
|
|
std::copy_n(inRawDataPos, numElements, outDataPos);
|
|
break;
|
|
}
|
|
case 64: {
|
|
const ulittle64_t *inRawDataPos =
|
|
reinterpret_cast<const ulittle64_t *>(inRawData);
|
|
uint64_t *outDataPos = reinterpret_cast<uint64_t *>(outRawData);
|
|
std::copy_n(inRawDataPos, numElements, outDataPos);
|
|
break;
|
|
}
|
|
default: {
|
|
size_t nBytes = elementBitWidth / CHAR_BIT;
|
|
for (size_t i = 0; i < nBytes; i++)
|
|
std::copy_n(inRawData + (nBytes - 1 - i), 1, outRawData + i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine(
|
|
ArrayRef<char> inRawData, MutableArrayRef<char> outRawData,
|
|
ShapedType type) {
|
|
size_t numElements = type.getNumElements();
|
|
Type elementType = type.getElementType();
|
|
if (ComplexType complexTy = llvm::dyn_cast<ComplexType>(elementType)) {
|
|
elementType = complexTy.getElementType();
|
|
numElements = numElements * 2;
|
|
}
|
|
size_t elementBitWidth = getDenseElementStorageWidth(elementType);
|
|
assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT &&
|
|
inRawData.size() <= outRawData.size());
|
|
if (elementBitWidth <= CHAR_BIT)
|
|
std::memcpy(outRawData.begin(), inRawData.begin(), inRawData.size());
|
|
else
|
|
convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(),
|
|
elementBitWidth, numElements);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseFPElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename Fn, typename Attr>
|
|
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
|
|
Type newElementType,
|
|
llvm::SmallVectorImpl<char> &data) {
|
|
size_t bitWidth = getDenseElementBitWidth(newElementType);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
|
|
|
|
ShapedType newArrayType = inType.cloneWith(inType.getShape(), newElementType);
|
|
|
|
size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
|
|
data.resize(llvm::divideCeil(storageBitWidth * numRawElements, CHAR_BIT));
|
|
|
|
// Functor used to process a single element value of the attribute.
|
|
auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
|
|
auto newInt = mapping(value);
|
|
assert(newInt.getBitWidth() == bitWidth);
|
|
writeBits(data.data(), index * storageBitWidth, newInt);
|
|
};
|
|
|
|
// Check for the splat case.
|
|
if (attr.isSplat()) {
|
|
if (bitWidth == 1) {
|
|
// Handle the special encoding of splat of bool.
|
|
data[0] = mapping(*attr.begin()).isZero() ? 0 : -1;
|
|
} else {
|
|
processElt(*attr.begin(), /*index=*/0);
|
|
}
|
|
return newArrayType;
|
|
}
|
|
|
|
// Otherwise, process all of the element values.
|
|
uint64_t elementIdx = 0;
|
|
for (auto value : attr)
|
|
processElt(value, elementIdx++);
|
|
return newArrayType;
|
|
}
|
|
|
|
DenseElementsAttr DenseFPElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
|
|
llvm::SmallVector<char, 8> elementData;
|
|
auto newArrayType =
|
|
mappingHelper(mapping, *this, getType(), newElementType, elementData);
|
|
|
|
return getRaw(newArrayType, elementData);
|
|
}
|
|
|
|
/// Method for supporting type inquiry through isa, cast and dyn_cast.
|
|
bool DenseFPElementsAttr::classof(Attribute attr) {
|
|
if (auto denseAttr = llvm::dyn_cast<DenseElementsAttr>(attr))
|
|
return llvm::isa<FloatType>(denseAttr.getType().getElementType());
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseIntElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DenseElementsAttr DenseIntElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
|
|
llvm::SmallVector<char, 8> elementData;
|
|
auto newArrayType =
|
|
mappingHelper(mapping, *this, getType(), newElementType, elementData);
|
|
return getRaw(newArrayType, elementData);
|
|
}
|
|
|
|
/// Method for supporting type inquiry through isa, cast and dyn_cast.
|
|
bool DenseIntElementsAttr::classof(Attribute attr) {
|
|
if (auto denseAttr = llvm::dyn_cast<DenseElementsAttr>(attr))
|
|
return denseAttr.getType().getElementType().isIntOrIndex();
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseResourceElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DenseResourceElementsAttr
|
|
DenseResourceElementsAttr::get(ShapedType type,
|
|
DenseResourceElementsHandle handle) {
|
|
return Base::get(type.getContext(), type, handle);
|
|
}
|
|
|
|
DenseResourceElementsAttr DenseResourceElementsAttr::get(ShapedType type,
|
|
StringRef blobName,
|
|
AsmResourceBlob blob) {
|
|
// Extract the builtin dialect resource manager from context and construct a
|
|
// handle by inserting a new resource using the provided blob.
|
|
auto &manager =
|
|
DenseResourceElementsHandle::getManagerInterface(type.getContext());
|
|
return get(type, manager.insert(blobName, std::move(blob)));
|
|
}
|
|
|
|
ArrayRef<char> DenseResourceElementsAttr::getData() {
|
|
if (AsmResourceBlob *blob = this->getRawHandle().getBlob())
|
|
return blob->getDataAs<char>();
|
|
return {};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseResourceElementsAttrBase
|
|
|
|
namespace {
|
|
/// Instantiations of this class provide utilities for interacting with native
|
|
/// data types in the context of DenseResourceElementsAttr.
|
|
template <typename T>
|
|
struct DenseResourceAttrUtil;
|
|
template <size_t width, bool isSigned>
|
|
struct DenseResourceElementsAttrIntUtil {
|
|
static bool checkElementType(Type eltType) {
|
|
IntegerType type = llvm::dyn_cast<IntegerType>(eltType);
|
|
if (!type || type.getWidth() != width)
|
|
return false;
|
|
return isSigned ? !type.isUnsigned() : !type.isSigned();
|
|
}
|
|
};
|
|
template <>
|
|
struct DenseResourceAttrUtil<bool> {
|
|
static bool checkElementType(Type eltType) {
|
|
return eltType.isSignlessInteger(1);
|
|
}
|
|
};
|
|
template <>
|
|
struct DenseResourceAttrUtil<int8_t>
|
|
: public DenseResourceElementsAttrIntUtil<8, true> {};
|
|
template <>
|
|
struct DenseResourceAttrUtil<uint8_t>
|
|
: public DenseResourceElementsAttrIntUtil<8, false> {};
|
|
template <>
|
|
struct DenseResourceAttrUtil<int16_t>
|
|
: public DenseResourceElementsAttrIntUtil<16, true> {};
|
|
template <>
|
|
struct DenseResourceAttrUtil<uint16_t>
|
|
: public DenseResourceElementsAttrIntUtil<16, false> {};
|
|
template <>
|
|
struct DenseResourceAttrUtil<int32_t>
|
|
: public DenseResourceElementsAttrIntUtil<32, true> {};
|
|
template <>
|
|
struct DenseResourceAttrUtil<uint32_t>
|
|
: public DenseResourceElementsAttrIntUtil<32, false> {};
|
|
template <>
|
|
struct DenseResourceAttrUtil<int64_t>
|
|
: public DenseResourceElementsAttrIntUtil<64, true> {};
|
|
template <>
|
|
struct DenseResourceAttrUtil<uint64_t>
|
|
: public DenseResourceElementsAttrIntUtil<64, false> {};
|
|
template <>
|
|
struct DenseResourceAttrUtil<float> {
|
|
static bool checkElementType(Type eltType) { return eltType.isF32(); }
|
|
};
|
|
template <>
|
|
struct DenseResourceAttrUtil<double> {
|
|
static bool checkElementType(Type eltType) { return eltType.isF64(); }
|
|
};
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
DenseResourceElementsAttrBase<T>
|
|
DenseResourceElementsAttrBase<T>::get(ShapedType type, StringRef blobName,
|
|
AsmResourceBlob blob) {
|
|
// Check that the blob is in the form we were expecting.
|
|
assert(blob.getDataAlignment() == alignof(T) &&
|
|
"alignment mismatch between expected alignment and blob alignment");
|
|
assert(((blob.getData().size() % sizeof(T)) == 0) &&
|
|
"size mismatch between expected element width and blob size");
|
|
assert(DenseResourceAttrUtil<T>::checkElementType(type.getElementType()) &&
|
|
"invalid shape element type for provided type `T`");
|
|
return llvm::cast<DenseResourceElementsAttrBase<T>>(
|
|
DenseResourceElementsAttr::get(type, blobName, std::move(blob)));
|
|
}
|
|
|
|
template <typename T>
|
|
std::optional<ArrayRef<T>>
|
|
DenseResourceElementsAttrBase<T>::tryGetAsArrayRef() const {
|
|
if (AsmResourceBlob *blob = this->getRawHandle().getBlob())
|
|
return blob->template getDataAs<T>();
|
|
return std::nullopt;
|
|
}
|
|
|
|
template <typename T>
|
|
bool DenseResourceElementsAttrBase<T>::classof(Attribute attr) {
|
|
auto resourceAttr = llvm::dyn_cast<DenseResourceElementsAttr>(attr);
|
|
return resourceAttr && DenseResourceAttrUtil<T>::checkElementType(
|
|
resourceAttr.getElementType());
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace detail {
|
|
// Explicit instantiation for all the supported DenseResourceElementsAttr.
|
|
template class DenseResourceElementsAttrBase<bool>;
|
|
template class DenseResourceElementsAttrBase<int8_t>;
|
|
template class DenseResourceElementsAttrBase<int16_t>;
|
|
template class DenseResourceElementsAttrBase<int32_t>;
|
|
template class DenseResourceElementsAttrBase<int64_t>;
|
|
template class DenseResourceElementsAttrBase<uint8_t>;
|
|
template class DenseResourceElementsAttrBase<uint16_t>;
|
|
template class DenseResourceElementsAttrBase<uint32_t>;
|
|
template class DenseResourceElementsAttrBase<uint64_t>;
|
|
template class DenseResourceElementsAttrBase<float>;
|
|
template class DenseResourceElementsAttrBase<double>;
|
|
} // namespace detail
|
|
} // namespace mlir
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SparseElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Get a zero APFloat for the given sparse attribute.
|
|
APFloat SparseElementsAttr::getZeroAPFloat() const {
|
|
auto eltType = llvm::cast<FloatType>(getElementType());
|
|
return APFloat(eltType.getFloatSemantics());
|
|
}
|
|
|
|
/// Get a zero APInt for the given sparse attribute.
|
|
APInt SparseElementsAttr::getZeroAPInt() const {
|
|
auto eltType = llvm::cast<IntegerType>(getElementType());
|
|
return APInt::getZero(eltType.getWidth());
|
|
}
|
|
|
|
/// Get a zero attribute for the given attribute type.
|
|
Attribute SparseElementsAttr::getZeroAttr() const {
|
|
auto eltType = getElementType();
|
|
|
|
// Handle floating point elements.
|
|
if (llvm::isa<FloatType>(eltType))
|
|
return FloatAttr::get(eltType, 0);
|
|
|
|
// Handle complex elements.
|
|
if (auto complexTy = llvm::dyn_cast<ComplexType>(eltType)) {
|
|
auto eltType = complexTy.getElementType();
|
|
Attribute zero;
|
|
if (llvm::isa<FloatType>(eltType))
|
|
zero = FloatAttr::get(eltType, 0);
|
|
else // must be integer
|
|
zero = IntegerAttr::get(eltType, 0);
|
|
return ArrayAttr::get(complexTy.getContext(),
|
|
ArrayRef<Attribute>{zero, zero});
|
|
}
|
|
|
|
// Handle string type.
|
|
if (llvm::isa<DenseStringElementsAttr>(getValues()))
|
|
return StringAttr::get("", eltType);
|
|
|
|
// Otherwise, this is an integer.
|
|
return IntegerAttr::get(eltType, 0);
|
|
}
|
|
|
|
/// Flatten, and return, all of the sparse indices in this attribute in
|
|
/// row-major order.
|
|
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
|
|
std::vector<ptrdiff_t> flatSparseIndices;
|
|
|
|
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
|
|
// as a 1-D index array.
|
|
auto sparseIndices = getIndices();
|
|
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
|
|
if (sparseIndices.isSplat()) {
|
|
SmallVector<uint64_t, 8> indices(getType().getRank(),
|
|
*sparseIndexValues.begin());
|
|
flatSparseIndices.push_back(getFlattenedIndex(indices));
|
|
return flatSparseIndices;
|
|
}
|
|
|
|
// Otherwise, reinterpret each index as an ArrayRef when flattening.
|
|
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
|
|
size_t rank = getType().getRank();
|
|
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
|
|
flatSparseIndices.push_back(getFlattenedIndex(
|
|
{&*std::next(sparseIndexValues.begin(), i * rank), rank}));
|
|
return flatSparseIndices;
|
|
}
|
|
|
|
LogicalResult
|
|
SparseElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
ShapedType type, DenseIntElementsAttr sparseIndices,
|
|
DenseElementsAttr values) {
|
|
ShapedType valuesType = values.getType();
|
|
if (valuesType.getRank() != 1)
|
|
return emitError() << "expected 1-d tensor for sparse element values";
|
|
|
|
// Verify the indices and values shape.
|
|
ShapedType indicesType = sparseIndices.getType();
|
|
auto emitShapeError = [&]() {
|
|
return emitError() << "expected shape ([" << type.getShape()
|
|
<< "]); inferred shape of indices literal (["
|
|
<< indicesType.getShape()
|
|
<< "]); inferred shape of values literal (["
|
|
<< valuesType.getShape() << "])";
|
|
};
|
|
// Verify indices shape.
|
|
size_t rank = type.getRank(), indicesRank = indicesType.getRank();
|
|
if (indicesRank == 2) {
|
|
if (indicesType.getDimSize(1) != static_cast<int64_t>(rank))
|
|
return emitShapeError();
|
|
} else if (indicesRank != 1 || rank != 1) {
|
|
return emitShapeError();
|
|
}
|
|
// Verify the values shape.
|
|
int64_t numSparseIndices = indicesType.getDimSize(0);
|
|
if (numSparseIndices != valuesType.getDimSize(0))
|
|
return emitShapeError();
|
|
|
|
// Verify that the sparse indices are within the value shape.
|
|
auto emitIndexError = [&](unsigned indexNum, ArrayRef<uint64_t> index) {
|
|
return emitError()
|
|
<< "sparse index #" << indexNum
|
|
<< " is not contained within the value shape, with index=[" << index
|
|
<< "], and type=" << type;
|
|
};
|
|
|
|
// Handle the case where the index values are a splat.
|
|
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
|
|
if (sparseIndices.isSplat()) {
|
|
SmallVector<uint64_t> indices(rank, *sparseIndexValues.begin());
|
|
if (!ElementsAttr::isValidIndex(type, indices))
|
|
return emitIndexError(0, indices);
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, reinterpret each index as an ArrayRef.
|
|
for (size_t i = 0, e = numSparseIndices; i != e; ++i) {
|
|
ArrayRef<uint64_t> index(&*std::next(sparseIndexValues.begin(), i * rank),
|
|
rank);
|
|
if (!ElementsAttr::isValidIndex(type, index))
|
|
return emitIndexError(i, index);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DistinctAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DistinctAttr DistinctAttr::create(Attribute referencedAttr) {
|
|
return Base::get(referencedAttr.getContext(), referencedAttr);
|
|
}
|
|
|
|
Attribute DistinctAttr::getReferencedAttr() const {
|
|
return getImpl()->referencedAttr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides,
|
|
int64_t offset,
|
|
MLIRContext *context) {
|
|
AffineExpr expr;
|
|
unsigned nSymbols = 0;
|
|
|
|
// AffineExpr for offset.
|
|
// Static case.
|
|
if (!ShapedType::isDynamic(offset)) {
|
|
auto cst = getAffineConstantExpr(offset, context);
|
|
expr = cst;
|
|
} else {
|
|
// Dynamic case, new symbol for the offset.
|
|
auto sym = getAffineSymbolExpr(nSymbols++, context);
|
|
expr = sym;
|
|
}
|
|
|
|
// AffineExpr for strides.
|
|
for (const auto &en : llvm::enumerate(strides)) {
|
|
auto dim = en.index();
|
|
auto stride = en.value();
|
|
auto d = getAffineDimExpr(dim, context);
|
|
AffineExpr mult;
|
|
// Static case.
|
|
if (!ShapedType::isDynamic(stride))
|
|
mult = getAffineConstantExpr(stride, context);
|
|
else
|
|
// Dynamic case, new symbol for each new stride.
|
|
mult = getAffineSymbolExpr(nSymbols++, context);
|
|
expr = expr + d * mult;
|
|
}
|
|
|
|
return AffineMap::get(strides.size(), nSymbols, expr);
|
|
}
|