Timm Baeder b5c9cba3f3
[clang][bytecode] Don't memcpy() FixedPoint values (#123599)
llvm::FixedPoint is not trivially copyable.
2025-01-20 15:10:12 +01:00

199 lines
6.5 KiB
C++

//===------- FixedPoint.h - Fixedd point types for the VM -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_INTERP_FIXED_POINT_H
#define LLVM_CLANG_AST_INTERP_FIXED_POINT_H
#include "clang/AST/APValue.h"
#include "clang/AST/ComparisonCategories.h"
#include "llvm/ADT/APFixedPoint.h"
namespace clang {
namespace interp {
using APInt = llvm::APInt;
using APSInt = llvm::APSInt;
/// Wrapper around fixed point types.
class FixedPoint final {
private:
llvm::APFixedPoint V;
public:
FixedPoint(llvm::APFixedPoint &&V) : V(std::move(V)) {}
FixedPoint(llvm::APFixedPoint &V) : V(V) {}
FixedPoint(APInt V, llvm::FixedPointSemantics Sem) : V(V, Sem) {}
// This needs to be default-constructible so llvm::endian::read works.
FixedPoint()
: V(APInt(0, 0ULL, false),
llvm::FixedPointSemantics(0, 0, false, false, false)) {}
static FixedPoint zero(llvm::FixedPointSemantics Sem) {
return FixedPoint(APInt(Sem.getWidth(), 0ULL, Sem.isSigned()), Sem);
}
static FixedPoint from(const APSInt &I, llvm::FixedPointSemantics Sem,
bool *Overflow) {
return FixedPoint(llvm::APFixedPoint::getFromIntValue(I, Sem, Overflow));
}
static FixedPoint from(const llvm::APFloat &I, llvm::FixedPointSemantics Sem,
bool *Overflow) {
return FixedPoint(llvm::APFixedPoint::getFromFloatValue(I, Sem, Overflow));
}
operator bool() const { return V.getBoolValue(); }
void print(llvm::raw_ostream &OS) const { OS << V; }
APValue toAPValue(const ASTContext &) const { return APValue(V); }
APSInt toAPSInt(unsigned BitWidth = 0) const { return V.getValue(); }
unsigned bitWidth() const { return V.getWidth(); }
bool isSigned() const { return V.isSigned(); }
bool isZero() const { return V.getValue().isZero(); }
bool isNegative() const { return V.getValue().isNegative(); }
bool isPositive() const { return V.getValue().isNonNegative(); }
bool isMin() const {
return V == llvm::APFixedPoint::getMin(V.getSemantics());
}
bool isMinusOne() const { return V.isSigned() && V.getValue() == -1; }
FixedPoint truncate(unsigned BitWidth) const { return *this; }
FixedPoint toSemantics(const llvm::FixedPointSemantics &Sem,
bool *Overflow) const {
return FixedPoint(V.convert(Sem, Overflow));
}
llvm::FixedPointSemantics getSemantics() const { return V.getSemantics(); }
llvm::APFloat toFloat(const llvm::fltSemantics *Sem) const {
return V.convertToFloat(*Sem);
}
llvm::APSInt toInt(unsigned BitWidth, bool Signed, bool *Overflow) const {
return V.convertToInt(BitWidth, Signed, Overflow);
}
std::string toDiagnosticString(const ASTContext &Ctx) const {
return V.toString();
}
ComparisonCategoryResult compare(const FixedPoint &Other) const {
int c = V.compare(Other.V);
if (c == 0)
return ComparisonCategoryResult::Equal;
else if (c < 0)
return ComparisonCategoryResult::Less;
return ComparisonCategoryResult::Greater;
}
size_t bytesToSerialize() const {
return sizeof(uint32_t) + (V.getValue().getBitWidth() / CHAR_BIT);
}
void serialize(std::byte *Buff) const {
// Semantics followed by APInt.
uint32_t SemI = V.getSemantics().toOpaqueInt();
std::memcpy(Buff, &SemI, sizeof(SemI));
llvm::APInt API = V.getValue();
llvm::StoreIntToMemory(API, (uint8_t *)(Buff + sizeof(SemI)),
bitWidth() / 8);
}
static FixedPoint deserialize(const std::byte *Buff) {
auto Sem = llvm::FixedPointSemantics::getFromOpaqueInt(
*reinterpret_cast<const uint32_t *>(Buff));
unsigned BitWidth = Sem.getWidth();
APInt I(BitWidth, 0ull, !Sem.isSigned());
llvm::LoadIntFromMemory(
I, reinterpret_cast<const uint8_t *>(Buff + sizeof(uint32_t)),
BitWidth / CHAR_BIT);
return FixedPoint(I, Sem);
}
static bool neg(const FixedPoint &A, FixedPoint *R) {
bool Overflow = false;
*R = FixedPoint(A.V.negate(&Overflow));
return Overflow;
}
static bool add(const FixedPoint A, const FixedPoint B, unsigned Bits,
FixedPoint *R) {
bool Overflow = false;
*R = FixedPoint(A.V.add(B.V, &Overflow));
return Overflow;
}
static bool sub(const FixedPoint A, const FixedPoint B, unsigned Bits,
FixedPoint *R) {
bool Overflow = false;
*R = FixedPoint(A.V.sub(B.V, &Overflow));
return Overflow;
}
static bool mul(const FixedPoint A, const FixedPoint B, unsigned Bits,
FixedPoint *R) {
bool Overflow = false;
*R = FixedPoint(A.V.mul(B.V, &Overflow));
return Overflow;
}
static bool div(const FixedPoint A, const FixedPoint B, unsigned Bits,
FixedPoint *R) {
bool Overflow = false;
*R = FixedPoint(A.V.div(B.V, &Overflow));
return Overflow;
}
static bool shiftLeft(const FixedPoint A, const FixedPoint B, unsigned OpBits,
FixedPoint *R) {
unsigned Amt = B.V.getValue().getLimitedValue(OpBits);
bool Overflow;
*R = FixedPoint(A.V.shl(Amt, &Overflow));
return Overflow;
}
static bool shiftRight(const FixedPoint A, const FixedPoint B,
unsigned OpBits, FixedPoint *R) {
unsigned Amt = B.V.getValue().getLimitedValue(OpBits);
bool Overflow;
*R = FixedPoint(A.V.shr(Amt, &Overflow));
return Overflow;
}
static bool rem(const FixedPoint A, const FixedPoint B, unsigned Bits,
FixedPoint *R) {
llvm_unreachable("Rem doesn't exist for fixed point values");
return true;
}
static bool bitAnd(const FixedPoint A, const FixedPoint B, unsigned Bits,
FixedPoint *R) {
return true;
}
static bool bitOr(const FixedPoint A, const FixedPoint B, unsigned Bits,
FixedPoint *R) {
return true;
}
static bool bitXor(const FixedPoint A, const FixedPoint B, unsigned Bits,
FixedPoint *R) {
return true;
}
static bool increment(const FixedPoint &A, FixedPoint *R) { return true; }
static bool decrement(const FixedPoint &A, FixedPoint *R) { return true; }
};
inline FixedPoint getSwappedBytes(FixedPoint F) { return F; }
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, FixedPoint F) {
F.print(OS);
return OS;
}
} // namespace interp
} // namespace clang
#endif