mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-28 00:46:06 +00:00

- **Precommit tests for synchronous uwtable CFI fixup**
- **[CFIFixup] Fixup CFI for split functions with synchronous uwtables**
Commit
6e54fccede
disables CFI fixup for
functions with synchronous tables, breaking CFI for split functions.
Instead, we can disable *block-level* CFI fixup for functions with
synchronous tables.
Unwind tables can be:
- N/A (not present)
- Asynchronous
- Synchronous
Functions without unwind tables don't need CFI fixup (since they don't
care about CFI).
Functions with asynchronous unwind tables must be accurate for each
basic block, so full CFI fixup is necessary.
Functions with synchronous unwind tables only need to be accurate for
each function (specifically, the portion of a function in a given
section). Disabling CFI fixup entirely for functions with synchronous
uwtables may break CFI for a function split between two sections. The
portion in the first section may have valid CFI, while the portion in
the second section is missing a call frame.
Ex:
```
(.text.hot)
Foo (BB1):
<Call frame information>
...
BB2:
...
(.text.split)
BB3:
...
BB4:
<epilogue>
```
Even if `Foo` has a synchronous unwind table, we still need to insert
call frame information into `BB3` so that unwinding the call stack from
`BB3` or `BB4` works properly.
346 lines
14 KiB
C++
346 lines
14 KiB
C++
//===------ CFIFixup.cpp - Insert CFI remember/restore instructions -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
// This pass inserts the necessary instructions to adjust for the inconsistency
|
|
// of the call-frame information caused by final machine basic block layout.
|
|
// The pass relies in constraints LLVM imposes on the placement of
|
|
// save/restore points (cf. ShrinkWrap) and has certain preconditions about
|
|
// placement of CFI instructions:
|
|
// * For any two CFI instructions of the function prologue one dominates
|
|
// and is post-dominated by the other.
|
|
// * The function possibly contains multiple epilogue blocks, where each
|
|
// epilogue block is complete and self-contained, i.e. CSR restore
|
|
// instructions (and the corresponding CFI instructions)
|
|
// are not split across two or more blocks.
|
|
// * CFI instructions are not contained in any loops.
|
|
|
|
// Thus, during execution, at the beginning and at the end of each basic block,
|
|
// following the prologue, the function can be in one of two states:
|
|
// - "has a call frame", if the function has executed the prologue, and
|
|
// has not executed any epilogue
|
|
// - "does not have a call frame", if the function has not executed the
|
|
// prologue, or has executed an epilogue
|
|
// which can be computed by a single RPO traversal.
|
|
|
|
// The location of the prologue is determined by finding the first block in the
|
|
// reverse traversal which contains CFI instructions.
|
|
|
|
// In order to accommodate backends which do not generate unwind info in
|
|
// epilogues we compute an additional property "strong no call frame on entry",
|
|
// which is set for the entry point of the function and for every block
|
|
// reachable from the entry along a path that does not execute the prologue. If
|
|
// this property holds, it takes precedence over the "has a call frame"
|
|
// property.
|
|
|
|
// From the point of view of the unwind tables, the "has/does not have call
|
|
// frame" state at beginning of each block is determined by the state at the end
|
|
// of the previous block, in layout order. Where these states differ, we insert
|
|
// compensating CFI instructions, which come in two flavours:
|
|
|
|
// - CFI instructions, which reset the unwind table state to the initial one.
|
|
// This is done by a target specific hook and is expected to be trivial
|
|
// to implement, for example it could be:
|
|
// .cfi_def_cfa <sp>, 0
|
|
// .cfi_same_value <rN>
|
|
// .cfi_same_value <rN-1>
|
|
// ...
|
|
// where <rN> are the callee-saved registers.
|
|
// - CFI instructions, which reset the unwind table state to the one
|
|
// created by the function prologue. These are
|
|
// .cfi_restore_state
|
|
// .cfi_remember_state
|
|
// In this case we also insert a `.cfi_remember_state` after the last CFI
|
|
// instruction in the function prologue.
|
|
//
|
|
// Known limitations:
|
|
// * the pass cannot handle an epilogue preceding the prologue in the basic
|
|
// block layout
|
|
// * the pass does not handle functions where SP is used as a frame pointer and
|
|
// SP adjustments up and down are done in different basic blocks (TODO)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/CFIFixup.h"
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
#include <iterator>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "cfi-fixup"
|
|
|
|
char CFIFixup::ID = 0;
|
|
|
|
INITIALIZE_PASS(CFIFixup, "cfi-fixup",
|
|
"Insert CFI remember/restore state instructions", false, false)
|
|
FunctionPass *llvm::createCFIFixup() { return new CFIFixup(); }
|
|
|
|
static bool isPrologueCFIInstruction(const MachineInstr &MI) {
|
|
return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
|
|
MI.getFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
static bool containsEpilogue(const MachineBasicBlock &MBB) {
|
|
return llvm::any_of(llvm::reverse(MBB), [](const auto &MI) {
|
|
return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
|
|
MI.getFlag(MachineInstr::FrameDestroy);
|
|
});
|
|
}
|
|
|
|
static MachineBasicBlock *
|
|
findPrologueEnd(MachineFunction &MF, MachineBasicBlock::iterator &PrologueEnd) {
|
|
// Even though we should theoretically traverse the blocks in post-order, we
|
|
// can't encode correctly cases where prologue blocks are not laid out in
|
|
// topological order. Then, assuming topological order, we can just traverse
|
|
// the function in reverse.
|
|
for (MachineBasicBlock &MBB : reverse(MF)) {
|
|
for (MachineInstr &MI : reverse(MBB.instrs())) {
|
|
if (!isPrologueCFIInstruction(MI))
|
|
continue;
|
|
PrologueEnd = std::next(MI.getIterator());
|
|
return &MBB;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Represents a basic block's relationship to the call frame. This metadata
|
|
// reflects what the state *should* be, which may differ from the actual state
|
|
// after final machine basic block layout.
|
|
struct BlockFlags {
|
|
bool Reachable : 1;
|
|
bool StrongNoFrameOnEntry : 1;
|
|
bool HasFrameOnEntry : 1;
|
|
bool HasFrameOnExit : 1;
|
|
BlockFlags()
|
|
: Reachable(false), StrongNoFrameOnEntry(false), HasFrameOnEntry(false),
|
|
HasFrameOnExit(false) {}
|
|
};
|
|
|
|
// Most functions will have <= 32 basic blocks.
|
|
using BlockFlagsVector = SmallVector<BlockFlags, 32>;
|
|
|
|
// Computes the frame information for each block in the function. Frame info
|
|
// for a block is inferred from its predecessors.
|
|
static BlockFlagsVector
|
|
computeBlockInfo(const MachineFunction &MF,
|
|
const MachineBasicBlock *PrologueBlock) {
|
|
BlockFlagsVector BlockInfo(MF.getNumBlockIDs());
|
|
BlockInfo[0].Reachable = true;
|
|
BlockInfo[0].StrongNoFrameOnEntry = true;
|
|
|
|
// Compute the presence/absence of frame at each basic block.
|
|
ReversePostOrderTraversal<const MachineBasicBlock *> RPOT(&*MF.begin());
|
|
for (const MachineBasicBlock *MBB : RPOT) {
|
|
BlockFlags &Info = BlockInfo[MBB->getNumber()];
|
|
|
|
// Set to true if the current block contains the prologue or the epilogue,
|
|
// respectively.
|
|
bool HasPrologue = MBB == PrologueBlock;
|
|
bool HasEpilogue = false;
|
|
|
|
if (Info.HasFrameOnEntry || HasPrologue)
|
|
HasEpilogue = containsEpilogue(*MBB);
|
|
|
|
// If the function has a call frame at the entry of the current block or the
|
|
// current block contains the prologue, then the function has a call frame
|
|
// at the exit of the block, unless the block contains the epilogue.
|
|
Info.HasFrameOnExit = (Info.HasFrameOnEntry || HasPrologue) && !HasEpilogue;
|
|
|
|
// Set the successors' state on entry.
|
|
for (MachineBasicBlock *Succ : MBB->successors()) {
|
|
BlockFlags &SuccInfo = BlockInfo[Succ->getNumber()];
|
|
SuccInfo.Reachable = true;
|
|
SuccInfo.StrongNoFrameOnEntry |=
|
|
Info.StrongNoFrameOnEntry && !HasPrologue;
|
|
SuccInfo.HasFrameOnEntry = Info.HasFrameOnExit;
|
|
}
|
|
}
|
|
|
|
return BlockInfo;
|
|
}
|
|
|
|
// Represents the point within a basic block where we can insert an instruction.
|
|
// Note that we need the MachineBasicBlock* as well as the iterator since the
|
|
// iterator can point to the end of the block. Instructions are inserted
|
|
// *before* the iterator.
|
|
struct InsertionPoint {
|
|
MachineBasicBlock *MBB = nullptr;
|
|
MachineBasicBlock::iterator Iterator;
|
|
};
|
|
|
|
// Inserts a `.cfi_remember_state` instruction before PrologueEnd and a
|
|
// `.cfi_restore_state` instruction before DstInsertPt. Returns an iterator
|
|
// to the first instruction after the inserted `.cfi_restore_state` instruction.
|
|
static InsertionPoint
|
|
insertRememberRestorePair(const InsertionPoint &RememberInsertPt,
|
|
const InsertionPoint &RestoreInsertPt) {
|
|
MachineFunction &MF = *RememberInsertPt.MBB->getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
|
|
// Insert the `.cfi_remember_state` instruction.
|
|
unsigned CFIIndex =
|
|
MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
|
|
BuildMI(*RememberInsertPt.MBB, RememberInsertPt.Iterator, DebugLoc(),
|
|
TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// Insert the `.cfi_restore_state` instruction.
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
|
|
|
|
return {RestoreInsertPt.MBB,
|
|
std::next(BuildMI(*RestoreInsertPt.MBB, RestoreInsertPt.Iterator,
|
|
DebugLoc(), TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
->getIterator())};
|
|
}
|
|
|
|
// Copies all CFI instructions before PrologueEnd and inserts them before
|
|
// DstInsertPt. Returns the iterator to the first instruction after the
|
|
// inserted instructions.
|
|
static InsertionPoint cloneCfiPrologue(const InsertionPoint &PrologueEnd,
|
|
const InsertionPoint &DstInsertPt) {
|
|
MachineFunction &MF = *DstInsertPt.MBB->getParent();
|
|
|
|
auto cloneCfiInstructions = [&](MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End) {
|
|
auto ToClone = map_range(
|
|
make_filter_range(make_range(Begin, End), isPrologueCFIInstruction),
|
|
[&](const MachineInstr &MI) { return MF.CloneMachineInstr(&MI); });
|
|
DstInsertPt.MBB->insert(DstInsertPt.Iterator, ToClone.begin(),
|
|
ToClone.end());
|
|
};
|
|
|
|
// Clone all CFI instructions from previous blocks.
|
|
for (auto &MBB : make_range(MF.begin(), PrologueEnd.MBB->getIterator()))
|
|
cloneCfiInstructions(MBB.begin(), MBB.end());
|
|
// Clone all CFI instructions from the final prologue block.
|
|
cloneCfiInstructions(PrologueEnd.MBB->begin(), PrologueEnd.Iterator);
|
|
return DstInsertPt;
|
|
}
|
|
|
|
// Fixes up the CFI instructions in a basic block to be consistent with the
|
|
// intended frame state, adding or removing CFI instructions as necessary.
|
|
// Returns true if a change was made and false otherwise.
|
|
static bool
|
|
fixupBlock(MachineBasicBlock &CurrBB, const BlockFlagsVector &BlockInfo,
|
|
SmallDenseMap<MBBSectionID, InsertionPoint> &InsertionPts,
|
|
const InsertionPoint &Prologue) {
|
|
const MachineFunction &MF = *CurrBB.getParent();
|
|
const TargetFrameLowering &TFL = *MF.getSubtarget().getFrameLowering();
|
|
const BlockFlags &Info = BlockInfo[CurrBB.getNumber()];
|
|
|
|
if (!Info.Reachable)
|
|
return false;
|
|
|
|
// If we don't need to perform full CFI fix up, we only need to fix up the
|
|
// first basic block in the section.
|
|
if (!TFL.enableFullCFIFixup(MF) && !CurrBB.isBeginSection())
|
|
return false;
|
|
|
|
// If the previous block and the current block are in the same section,
|
|
// the frame info will propagate from the previous block to the current one.
|
|
const BlockFlags &PrevInfo =
|
|
BlockInfo[std::prev(CurrBB.getIterator())->getNumber()];
|
|
bool HasFrame = PrevInfo.HasFrameOnExit && !CurrBB.isBeginSection();
|
|
bool NeedsFrame = Info.HasFrameOnEntry && !Info.StrongNoFrameOnEntry;
|
|
|
|
#ifndef NDEBUG
|
|
if (!Info.StrongNoFrameOnEntry) {
|
|
for (auto *Pred : CurrBB.predecessors()) {
|
|
const BlockFlags &PredInfo = BlockInfo[Pred->getNumber()];
|
|
assert((!PredInfo.Reachable ||
|
|
Info.HasFrameOnEntry == PredInfo.HasFrameOnExit) &&
|
|
"Inconsistent call frame state");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (HasFrame == NeedsFrame)
|
|
return false;
|
|
|
|
if (!NeedsFrame) {
|
|
// Reset to the state upon function entry.
|
|
TFL.resetCFIToInitialState(CurrBB);
|
|
return true;
|
|
}
|
|
|
|
// Reset to the "after prologue" state.
|
|
InsertionPoint &InsertPt = InsertionPts[CurrBB.getSectionID()];
|
|
if (InsertPt.MBB == nullptr) {
|
|
// CurBB is the first block in its section, so there is no "after
|
|
// prologue" state. Clone the CFI instructions from the prologue block
|
|
// to create it.
|
|
InsertPt = cloneCfiPrologue(Prologue, {&CurrBB, CurrBB.begin()});
|
|
} else {
|
|
// There's an earlier block known to have a stack frame. Insert a
|
|
// `.cfi_remember_state` instruction into that block and a
|
|
// `.cfi_restore_state` instruction at the beginning of the current
|
|
// block.
|
|
InsertPt = insertRememberRestorePair(InsertPt, {&CurrBB, CurrBB.begin()});
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CFIFixup::runOnMachineFunction(MachineFunction &MF) {
|
|
if (!MF.getSubtarget().getFrameLowering()->enableCFIFixup(MF))
|
|
return false;
|
|
|
|
if (MF.getNumBlockIDs() < 2)
|
|
return false;
|
|
|
|
// Find the prologue and the point where we can issue the first
|
|
// `.cfi_remember_state`.
|
|
MachineBasicBlock::iterator PrologueEnd;
|
|
MachineBasicBlock *PrologueBlock = findPrologueEnd(MF, PrologueEnd);
|
|
if (PrologueBlock == nullptr)
|
|
return false;
|
|
|
|
BlockFlagsVector BlockInfo = computeBlockInfo(MF, PrologueBlock);
|
|
|
|
// Walk the blocks of the function in "physical" order.
|
|
// Every block inherits the frame state (as recorded in the unwind tables)
|
|
// of the previous block. If the intended frame state is different, insert
|
|
// compensating CFI instructions.
|
|
bool Change = false;
|
|
// `InsertPt[sectionID]` always points to the point in a preceding block where
|
|
// we have to insert a `.cfi_remember_state`, in the case that the current
|
|
// block needs a `.cfi_restore_state`.
|
|
SmallDenseMap<MBBSectionID, InsertionPoint> InsertionPts;
|
|
InsertionPts[PrologueBlock->getSectionID()] = {PrologueBlock, PrologueEnd};
|
|
|
|
assert(PrologueEnd != PrologueBlock->begin() &&
|
|
"Inconsistent notion of \"prologue block\"");
|
|
|
|
// No point starting before the prologue block.
|
|
// TODO: the unwind tables will still be incorrect if an epilogue physically
|
|
// preceeds the prologue.
|
|
for (MachineBasicBlock &MBB :
|
|
make_range(std::next(PrologueBlock->getIterator()), MF.end())) {
|
|
Change |=
|
|
fixupBlock(MBB, BlockInfo, InsertionPts, {PrologueBlock, PrologueEnd});
|
|
}
|
|
|
|
return Change;
|
|
}
|