llvm-project/llvm/lib/CodeGen/WindowScheduler.cpp
2025-03-29 16:53:02 -07:00

711 lines
27 KiB
C++

//======----------- WindowScheduler.cpp - window scheduler -------------======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An implementation of the Window Scheduling software pipelining algorithm.
//
// The fundamental concept of the window scheduling algorithm involves folding
// the original MBB at a specific position, followed by list scheduling on the
// folded MIs. The optimal scheduling result is then chosen from various folding
// positions as the final scheduling outcome.
//
// The primary challenge in this algorithm lies in generating the folded MIs and
// establishing their dependencies. We have innovatively employed a new MBB,
// created by copying the original MBB three times, known as TripleMBB. This
// TripleMBB enables the convenient implementation of MI folding and dependency
// establishment. To facilitate the algorithm's implementation, we have also
// devised data structures such as OriMIs, TriMIs, TriToOri, and OriToCycle.
//
// Another challenge in the algorithm is the scheduling of phis. Semantically,
// it is difficult to place the phis in the window and perform list scheduling.
// Therefore, we schedule these phis separately after each list scheduling.
//
// The provided implementation is designed for use before the Register Allocator
// (RA). If the target requires implementation after RA, it is recommended to
// reimplement analyseII(), schedulePhi(), and expand(). Additionally,
// target-specific logic can be added in initialize(), preProcess(), and
// postProcess().
//
// Lastly, it is worth mentioning that getSearchIndexes() is an important
// function. We have experimented with more complex heuristics on downstream
// target and achieved favorable results.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/WindowScheduler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachinePipeliner.h"
#include "llvm/CodeGen/ModuloSchedule.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "pipeliner"
namespace {
STATISTIC(NumTryWindowSchedule,
"Number of loops that we attempt to use window scheduling");
STATISTIC(NumTryWindowSearch,
"Number of times that we run list schedule in the window scheduling");
STATISTIC(NumWindowSchedule,
"Number of loops that we successfully use window scheduling");
STATISTIC(NumFailAnalyseII,
"Window scheduling abort due to the failure of the II analysis");
cl::opt<unsigned>
WindowSearchNum("window-search-num",
cl::desc("The number of searches per loop in the window "
"algorithm. 0 means no search number limit."),
cl::Hidden, cl::init(6));
cl::opt<unsigned> WindowSearchRatio(
"window-search-ratio",
cl::desc("The ratio of searches per loop in the window algorithm. 100 "
"means search all positions in the loop, while 0 means not "
"performing any search."),
cl::Hidden, cl::init(40));
cl::opt<unsigned> WindowIICoeff(
"window-ii-coeff",
cl::desc(
"The coefficient used when initializing II in the window algorithm."),
cl::Hidden, cl::init(5));
cl::opt<unsigned> WindowRegionLimit(
"window-region-limit",
cl::desc(
"The lower limit of the scheduling region in the window algorithm."),
cl::Hidden, cl::init(3));
cl::opt<unsigned> WindowDiffLimit(
"window-diff-limit",
cl::desc("The lower limit of the difference between best II and base II in "
"the window algorithm. If the difference is smaller than "
"this lower limit, window scheduling will not be performed."),
cl::Hidden, cl::init(2));
} // namespace
// WindowIILimit serves as an indicator of abnormal scheduling results and could
// potentially be referenced by the derived target window scheduler.
static cl::opt<unsigned>
WindowIILimit("window-ii-limit",
cl::desc("The upper limit of II in the window algorithm."),
cl::Hidden, cl::init(1000));
WindowScheduler::WindowScheduler(MachineSchedContext *C, MachineLoop &ML)
: Context(C), MF(C->MF), MBB(ML.getHeader()), Loop(ML),
Subtarget(&MF->getSubtarget()), TII(Subtarget->getInstrInfo()),
TRI(Subtarget->getRegisterInfo()), MRI(&MF->getRegInfo()) {
TripleDAG = std::unique_ptr<ScheduleDAGInstrs>(
createMachineScheduler(/*OnlyBuildGraph=*/true));
}
bool WindowScheduler::run() {
if (!initialize()) {
LLVM_DEBUG(dbgs() << "The WindowScheduler failed to initialize!\n");
return false;
}
// The window algorithm is time-consuming, and its compilation time should be
// taken into consideration.
TimeTraceScope Scope("WindowSearch");
++NumTryWindowSchedule;
// Performing the relevant processing before window scheduling.
preProcess();
// The main window scheduling begins.
std::unique_ptr<ScheduleDAGInstrs> SchedDAG(createMachineScheduler());
auto SearchIndexes = getSearchIndexes(WindowSearchNum, WindowSearchRatio);
for (unsigned Idx : SearchIndexes) {
OriToCycle.clear();
++NumTryWindowSearch;
// The scheduling starts with non-phi instruction, so SchedPhiNum needs to
// be added to Idx.
unsigned Offset = Idx + SchedPhiNum;
auto Range = getScheduleRange(Offset, SchedInstrNum);
SchedDAG->startBlock(MBB);
SchedDAG->enterRegion(MBB, Range.begin(), Range.end(), SchedInstrNum);
SchedDAG->schedule();
LLVM_DEBUG(SchedDAG->dump());
unsigned II = analyseII(*SchedDAG, Offset);
if (II == WindowIILimit) {
restoreTripleMBB();
LLVM_DEBUG(dbgs() << "Can't find a valid II. Keep searching...\n");
++NumFailAnalyseII;
continue;
}
schedulePhi(Offset, II);
updateScheduleResult(Offset, II);
restoreTripleMBB();
LLVM_DEBUG(dbgs() << "Current window Offset is " << Offset << " and II is "
<< II << ".\n");
}
// Performing the relevant processing after window scheduling.
postProcess();
// Check whether the scheduling result is valid.
if (!isScheduleValid()) {
LLVM_DEBUG(dbgs() << "Window scheduling is not needed!\n");
return false;
}
LLVM_DEBUG(dbgs() << "\nBest window offset is " << BestOffset
<< " and Best II is " << BestII << ".\n");
// Expand the scheduling result to prologue, kernel, and epilogue.
expand();
++NumWindowSchedule;
return true;
}
ScheduleDAGInstrs *
WindowScheduler::createMachineScheduler(bool OnlyBuildGraph) {
return OnlyBuildGraph
? new ScheduleDAGMI(
Context, std::make_unique<PostGenericScheduler>(Context),
true)
: Context->TM->createMachineScheduler(Context);
}
bool WindowScheduler::initialize() {
if (!Subtarget->enableWindowScheduler()) {
LLVM_DEBUG(dbgs() << "Target disables the window scheduling!\n");
return false;
}
// Initialized the member variables used by window algorithm.
OriMIs.clear();
TriMIs.clear();
TriToOri.clear();
OriToCycle.clear();
SchedResult.clear();
SchedPhiNum = 0;
SchedInstrNum = 0;
BestII = UINT_MAX;
BestOffset = 0;
BaseII = 0;
// List scheduling used in the window algorithm depends on LiveIntervals.
if (!Context->LIS) {
LLVM_DEBUG(dbgs() << "There is no LiveIntervals information!\n");
return false;
}
// Check each MI in MBB.
SmallSet<Register, 8> PrevDefs;
SmallSet<Register, 8> PrevUses;
auto IsLoopCarried = [&](MachineInstr &Phi) {
// Two cases are checked here: (1)The virtual register defined by the
// preceding phi is used by the succeeding phi;(2)The preceding phi uses the
// virtual register defined by the succeeding phi.
if (PrevUses.count(Phi.getOperand(0).getReg()))
return true;
PrevDefs.insert(Phi.getOperand(0).getReg());
for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
if (PrevDefs.count(Phi.getOperand(I).getReg()))
return true;
PrevUses.insert(Phi.getOperand(I).getReg());
}
return false;
};
auto PLI = TII->analyzeLoopForPipelining(MBB);
for (auto &MI : *MBB) {
if (MI.isMetaInstruction() || MI.isTerminator())
continue;
if (MI.isPHI()) {
if (IsLoopCarried(MI)) {
LLVM_DEBUG(dbgs() << "Loop carried phis are not supported yet!\n");
return false;
}
++SchedPhiNum;
++BestOffset;
} else
++SchedInstrNum;
if (TII->isSchedulingBoundary(MI, MBB, *MF)) {
LLVM_DEBUG(
dbgs() << "Boundary MI is not allowed in window scheduling!\n");
return false;
}
if (PLI->shouldIgnoreForPipelining(&MI)) {
LLVM_DEBUG(dbgs() << "Special MI defined by target is not allowed in "
"window scheduling!\n");
return false;
}
for (auto &Def : MI.all_defs())
if (Def.isReg() && Def.getReg().isPhysical()) {
LLVM_DEBUG(dbgs() << "Physical registers are not supported in "
"window scheduling!\n");
return false;
}
}
if (SchedInstrNum <= WindowRegionLimit) {
LLVM_DEBUG(dbgs() << "There are too few MIs in the window region!\n");
return false;
}
return true;
}
void WindowScheduler::preProcess() {
// Prior to window scheduling, it's necessary to backup the original MBB,
// generate a new TripleMBB, and build a TripleDAG based on the TripleMBB.
backupMBB();
generateTripleMBB();
TripleDAG->startBlock(MBB);
TripleDAG->enterRegion(
MBB, MBB->begin(), MBB->getFirstTerminator(),
std::distance(MBB->begin(), MBB->getFirstTerminator()));
TripleDAG->buildSchedGraph(Context->AA);
}
void WindowScheduler::postProcess() {
// After window scheduling, it's necessary to clear the TripleDAG and restore
// to the original MBB.
TripleDAG->exitRegion();
TripleDAG->finishBlock();
restoreMBB();
}
void WindowScheduler::backupMBB() {
for (auto &MI : MBB->instrs())
OriMIs.push_back(&MI);
// Remove MIs and the corresponding live intervals.
for (auto &MI : make_early_inc_range(*MBB)) {
Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
MBB->remove(&MI);
}
}
void WindowScheduler::restoreMBB() {
// Erase MIs and the corresponding live intervals.
for (auto &MI : make_early_inc_range(*MBB)) {
Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
MI.eraseFromParent();
}
// Restore MBB to the state before window scheduling.
llvm::append_range(*MBB, OriMIs);
updateLiveIntervals();
}
void WindowScheduler::generateTripleMBB() {
const unsigned DuplicateNum = 3;
TriMIs.clear();
TriToOri.clear();
assert(OriMIs.size() > 0 && "The Original MIs were not backed up!");
// Step 1: Performing the first copy of MBB instructions, excluding
// terminators. At the same time, we back up the anti-register of phis.
// DefPairs hold the old and new define register pairs.
DenseMap<Register, Register> DefPairs;
for (auto *MI : OriMIs) {
if (MI->isMetaInstruction() || MI->isTerminator())
continue;
if (MI->isPHI())
if (Register AntiReg = getAntiRegister(MI))
DefPairs[MI->getOperand(0).getReg()] = AntiReg;
auto *NewMI = MF->CloneMachineInstr(MI);
MBB->push_back(NewMI);
TriMIs.push_back(NewMI);
TriToOri[NewMI] = MI;
}
// Step 2: Performing the remaining two copies of MBB instructions excluding
// phis, and the last one contains terminators. At the same time, registers
// are updated accordingly.
for (size_t Cnt = 1; Cnt < DuplicateNum; ++Cnt) {
for (auto *MI : OriMIs) {
if (MI->isPHI() || MI->isMetaInstruction() ||
(MI->isTerminator() && Cnt < DuplicateNum - 1))
continue;
auto *NewMI = MF->CloneMachineInstr(MI);
DenseMap<Register, Register> NewDefs;
// New defines are updated.
for (auto MO : NewMI->all_defs())
if (MO.isReg() && MO.getReg().isVirtual()) {
Register NewDef =
MRI->createVirtualRegister(MRI->getRegClass(MO.getReg()));
NewMI->substituteRegister(MO.getReg(), NewDef, 0, *TRI);
NewDefs[MO.getReg()] = NewDef;
}
// New uses are updated.
for (auto DefRegPair : DefPairs)
if (NewMI->readsRegister(DefRegPair.first, TRI)) {
Register NewUse = DefRegPair.second;
// Note the update process for '%1 -> %9' in '%10 = sub i32 %9, %3':
//
// BB.3: DefPairs
// ==================================
// %1 = phi i32 [%2, %BB.1], [%7, %BB.3] (%1,%7)
// ...
// ==================================
// ...
// %4 = sub i32 %1, %3
// ...
// %7 = add i32 %5, %6
// ...
// ----------------------------------
// ...
// %8 = sub i32 %7, %3 (%1,%7),(%4,%8)
// ...
// %9 = add i32 %5, %6 (%1,%7),(%4,%8),(%7,%9)
// ...
// ----------------------------------
// ...
// %10 = sub i32 %9, %3 (%1,%7),(%4,%10),(%7,%9)
// ... ^
// %11 = add i32 %5, %6 (%1,%7),(%4,%10),(%7,%11)
// ...
// ==================================
// < Terminators >
// ==================================
if (auto It = DefPairs.find(NewUse); It != DefPairs.end())
NewUse = It->second;
NewMI->substituteRegister(DefRegPair.first, NewUse, 0, *TRI);
}
// DefPairs is updated at last.
for (auto &NewDef : NewDefs)
DefPairs[NewDef.first] = NewDef.second;
MBB->push_back(NewMI);
TriMIs.push_back(NewMI);
TriToOri[NewMI] = MI;
}
}
// Step 3: The registers used by phis are updated, and they are generated in
// the third copy of MBB.
// In the privious example, the old phi is:
// %1 = phi i32 [%2, %BB.1], [%7, %BB.3]
// The new phi is:
// %1 = phi i32 [%2, %BB.1], [%11, %BB.3]
for (auto &Phi : MBB->phis()) {
for (auto DefRegPair : DefPairs)
if (Phi.readsRegister(DefRegPair.first, TRI))
Phi.substituteRegister(DefRegPair.first, DefRegPair.second, 0, *TRI);
}
updateLiveIntervals();
}
void WindowScheduler::restoreTripleMBB() {
// After list scheduling, the MBB is restored in one traversal.
for (size_t I = 0; I < TriMIs.size(); ++I) {
auto *MI = TriMIs[I];
auto OldPos = MBB->begin();
std::advance(OldPos, I);
auto CurPos = MI->getIterator();
if (CurPos != OldPos) {
MBB->splice(OldPos, MBB, CurPos);
Context->LIS->handleMove(*MI, /*UpdateFlags=*/false);
}
}
}
SmallVector<unsigned> WindowScheduler::getSearchIndexes(unsigned SearchNum,
unsigned SearchRatio) {
// We use SearchRatio to get the index range, and then evenly get the indexes
// according to the SearchNum. This is a simple huristic. Depending on the
// characteristics of the target, more complex algorithms can be used for both
// performance and compilation time.
assert(SearchRatio <= 100 && "SearchRatio should be equal or less than 100!");
unsigned MaxIdx = SchedInstrNum * SearchRatio / 100;
unsigned Step = SearchNum > 0 && SearchNum <= MaxIdx ? MaxIdx / SearchNum : 1;
SmallVector<unsigned> SearchIndexes;
for (unsigned Idx = 0; Idx < MaxIdx; Idx += Step)
SearchIndexes.push_back(Idx);
return SearchIndexes;
}
int WindowScheduler::getEstimatedII(ScheduleDAGInstrs &DAG) {
// Sometimes MaxDepth is 0, so it should be limited to the minimum of 1.
unsigned MaxDepth = 1;
for (auto &SU : DAG.SUnits)
MaxDepth = std::max(SU.getDepth() + SU.Latency, MaxDepth);
return MaxDepth * WindowIICoeff;
}
int WindowScheduler::calculateMaxCycle(ScheduleDAGInstrs &DAG,
unsigned Offset) {
int InitII = getEstimatedII(DAG);
ResourceManager RM(Subtarget, &DAG);
RM.init(InitII);
// ResourceManager and DAG are used to calculate the maximum cycle for the
// scheduled MIs. Since MIs in the Region have already been scheduled, the
// emit cycles can be estimated in order here.
int CurCycle = 0;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &MI : Range) {
auto *SU = DAG.getSUnit(&MI);
int ExpectCycle = CurCycle;
// The predecessors of current MI determine its earliest issue cycle.
for (auto &Pred : SU->Preds) {
if (Pred.isWeak())
continue;
auto *PredMI = Pred.getSUnit()->getInstr();
int PredCycle = getOriCycle(PredMI);
ExpectCycle = std::max(ExpectCycle, PredCycle + (int)Pred.getLatency());
}
// Zero cost instructions do not need to check resource.
if (!TII->isZeroCost(MI.getOpcode())) {
// ResourceManager can be used to detect resource conflicts between the
// current MI and the previously inserted MIs.
while (!RM.canReserveResources(*SU, CurCycle) || CurCycle < ExpectCycle) {
++CurCycle;
if (CurCycle == (int)WindowIILimit)
return CurCycle;
}
RM.reserveResources(*SU, CurCycle);
}
OriToCycle[getOriMI(&MI)] = CurCycle;
LLVM_DEBUG(dbgs() << "\tCycle " << CurCycle << " [S."
<< getOriStage(getOriMI(&MI), Offset) << "]: " << MI);
}
LLVM_DEBUG(dbgs() << "MaxCycle is " << CurCycle << ".\n");
return CurCycle;
}
// By utilizing TripleDAG, we can easily establish dependencies between A and B.
// Based on the MaxCycle and the issue cycle of A and B, we can determine
// whether it is necessary to add a stall cycle. This is because, without
// inserting the stall cycle, the latency constraint between A and B cannot be
// satisfied. The details are as follows:
//
// New MBB:
// ========================================
// < Phis >
// ======================================== (sliding direction)
// MBB copy 1 |
// V
//
// ~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~ ----schedule window-----
// | |
// ===================V==================== |
// MBB copy 2 < MI B > |
// |
// < MI A > V
// ~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~ ------------------------
// :
// ===================V====================
// MBB copy 3 < MI B'>
//
//
//
//
// ========================================
// < Terminators >
// ========================================
int WindowScheduler::calculateStallCycle(unsigned Offset, int MaxCycle) {
int MaxStallCycle = 0;
int CurrentII = MaxCycle + 1;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &MI : Range) {
auto *SU = TripleDAG->getSUnit(&MI);
int DefCycle = getOriCycle(&MI);
for (auto &Succ : SU->Succs) {
if (Succ.isWeak() || Succ.getSUnit() == &TripleDAG->ExitSU)
continue;
// If the expected cycle does not exceed CurrentII, no check is needed.
if (DefCycle + (int)Succ.getLatency() <= CurrentII)
continue;
// If the cycle of the scheduled MI A is less than that of the scheduled
// MI B, the scheduling will fail because the lifetime of the
// corresponding register exceeds II.
auto *SuccMI = Succ.getSUnit()->getInstr();
int UseCycle = getOriCycle(SuccMI);
if (DefCycle < UseCycle)
return WindowIILimit;
// Get the stall cycle introduced by the register between two trips.
int StallCycle = DefCycle + (int)Succ.getLatency() - CurrentII - UseCycle;
MaxStallCycle = std::max(MaxStallCycle, StallCycle);
}
}
LLVM_DEBUG(dbgs() << "MaxStallCycle is " << MaxStallCycle << ".\n");
return MaxStallCycle;
}
unsigned WindowScheduler::analyseII(ScheduleDAGInstrs &DAG, unsigned Offset) {
LLVM_DEBUG(dbgs() << "Start analyzing II:\n");
int MaxCycle = calculateMaxCycle(DAG, Offset);
if (MaxCycle == (int)WindowIILimit)
return MaxCycle;
int StallCycle = calculateStallCycle(Offset, MaxCycle);
if (StallCycle == (int)WindowIILimit)
return StallCycle;
// The value of II is equal to the maximum execution cycle plus 1.
return MaxCycle + StallCycle + 1;
}
void WindowScheduler::schedulePhi(int Offset, unsigned &II) {
LLVM_DEBUG(dbgs() << "Start scheduling Phis:\n");
for (auto &Phi : MBB->phis()) {
int LateCycle = INT_MAX;
auto *SU = TripleDAG->getSUnit(&Phi);
for (auto &Succ : SU->Succs) {
// Phi doesn't have any Anti successors.
if (Succ.getKind() != SDep::Data)
continue;
// Phi is scheduled before the successor of stage 0. The issue cycle of
// phi is the latest cycle in this interval.
auto *SuccMI = Succ.getSUnit()->getInstr();
int Cycle = getOriCycle(SuccMI);
if (getOriStage(getOriMI(SuccMI), Offset) == 0)
LateCycle = std::min(LateCycle, Cycle);
}
// The anti-dependency of phi need to be handled separately in the same way.
if (Register AntiReg = getAntiRegister(&Phi)) {
auto *AntiMI = MRI->getVRegDef(AntiReg);
// AntiReg may be defined outside the kernel MBB.
if (AntiMI->getParent() == MBB) {
auto AntiCycle = getOriCycle(AntiMI);
if (getOriStage(getOriMI(AntiMI), Offset) == 0)
LateCycle = std::min(LateCycle, AntiCycle);
}
}
// If there is no limit to the late cycle, a default value is given.
if (LateCycle == INT_MAX)
LateCycle = (int)(II - 1);
LLVM_DEBUG(dbgs() << "\tCycle range [0, " << LateCycle << "] " << Phi);
// The issue cycle of phi is set to the latest cycle in the interval.
auto *OriPhi = getOriMI(&Phi);
OriToCycle[OriPhi] = LateCycle;
}
}
DenseMap<MachineInstr *, int> WindowScheduler::getIssueOrder(unsigned Offset,
unsigned II) {
// At each issue cycle, phi is placed before MIs in stage 0. So the simplest
// way is to put phi at the beginning of the current cycle.
DenseMap<int, SmallVector<MachineInstr *>> CycleToMIs;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &Phi : MBB->phis())
CycleToMIs[getOriCycle(&Phi)].push_back(getOriMI(&Phi));
for (auto &MI : Range)
CycleToMIs[getOriCycle(&MI)].push_back(getOriMI(&MI));
// Each MI is assigned a separate ordered Id, which is used as a sort marker
// in the following expand process.
DenseMap<MachineInstr *, int> IssueOrder;
int Id = 0;
for (int Cycle = 0; Cycle < (int)II; ++Cycle) {
auto It = CycleToMIs.find(Cycle);
if (It == CycleToMIs.end())
continue;
for (auto *MI : It->second)
IssueOrder[MI] = Id++;
}
return IssueOrder;
}
void WindowScheduler::updateScheduleResult(unsigned Offset, unsigned II) {
// At the first update, Offset is equal to SchedPhiNum. At this time, only
// BestII, BestOffset, and BaseII need to be updated.
if (Offset == SchedPhiNum) {
BestII = II;
BestOffset = SchedPhiNum;
BaseII = II;
return;
}
// The update will only continue if the II is smaller than BestII and the II
// is sufficiently small.
if ((II >= BestII) || (II + WindowDiffLimit > BaseII))
return;
BestII = II;
BestOffset = Offset;
// Record the result of the current list scheduling, noting that each MI is
// stored unordered in SchedResult.
SchedResult.clear();
auto IssueOrder = getIssueOrder(Offset, II);
for (auto &Pair : OriToCycle) {
assert(IssueOrder.count(Pair.first) && "Cannot find original MI!");
SchedResult.push_back(std::make_tuple(Pair.first, Pair.second,
getOriStage(Pair.first, Offset),
IssueOrder[Pair.first]));
}
}
void WindowScheduler::expand() {
// The MIs in the SchedResult are sorted by the issue order ID.
llvm::stable_sort(SchedResult,
[](const std::tuple<MachineInstr *, int, int, int> &A,
const std::tuple<MachineInstr *, int, int, int> &B) {
return std::get<3>(A) < std::get<3>(B);
});
// Use the scheduling infrastructure for expansion, noting that InstrChanges
// is not supported here.
DenseMap<MachineInstr *, int> Cycles, Stages;
std::vector<MachineInstr *> OrderedInsts;
for (auto &Info : SchedResult) {
auto *MI = std::get<0>(Info);
OrderedInsts.push_back(MI);
Cycles[MI] = std::get<1>(Info);
Stages[MI] = std::get<2>(Info);
LLVM_DEBUG(dbgs() << "\tCycle " << Cycles[MI] << " [S." << Stages[MI]
<< "]: " << *MI);
}
ModuloSchedule MS(*MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
std::move(Stages));
ModuloScheduleExpander MSE(*MF, MS, *Context->LIS,
ModuloScheduleExpander::InstrChangesTy());
MSE.expand();
MSE.cleanup();
}
void WindowScheduler::updateLiveIntervals() {
SmallVector<Register, 128> UsedRegs;
for (MachineInstr &MI : *MBB)
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || MO.getReg() == 0)
continue;
Register Reg = MO.getReg();
if (!is_contained(UsedRegs, Reg))
UsedRegs.push_back(Reg);
}
Context->LIS->repairIntervalsInRange(MBB, MBB->begin(), MBB->end(), UsedRegs);
}
iterator_range<MachineBasicBlock::iterator>
WindowScheduler::getScheduleRange(unsigned Offset, unsigned Num) {
auto RegionBegin = MBB->begin();
std::advance(RegionBegin, Offset);
auto RegionEnd = RegionBegin;
std::advance(RegionEnd, Num);
return make_range(RegionBegin, RegionEnd);
}
int WindowScheduler::getOriCycle(MachineInstr *NewMI) {
assert(TriToOri.count(NewMI) && "Cannot find original MI!");
auto *OriMI = TriToOri[NewMI];
assert(OriToCycle.count(OriMI) && "Cannot find schedule cycle!");
return OriToCycle[OriMI];
}
MachineInstr *WindowScheduler::getOriMI(MachineInstr *NewMI) {
assert(TriToOri.count(NewMI) && "Cannot find original MI!");
return TriToOri[NewMI];
}
unsigned WindowScheduler::getOriStage(MachineInstr *OriMI, unsigned Offset) {
assert(llvm::find(OriMIs, OriMI) != OriMIs.end() &&
"Cannot find OriMI in OriMIs!");
// If there is no instruction fold, all MI stages are 0.
if (Offset == SchedPhiNum)
return 0;
// For those MIs with an ID less than the Offset, their stages are set to 0,
// while the rest are set to 1.
unsigned Id = 0;
for (auto *MI : OriMIs) {
if (MI->isMetaInstruction())
continue;
if (MI == OriMI)
break;
++Id;
}
return Id >= (size_t)Offset ? 1 : 0;
}
Register WindowScheduler::getAntiRegister(MachineInstr *Phi) {
assert(Phi->isPHI() && "Expecting PHI!");
Register AntiReg;
for (auto MO : Phi->uses()) {
if (MO.isReg())
AntiReg = MO.getReg();
else if (MO.isMBB() && MO.getMBB() == MBB)
return AntiReg;
}
return 0;
}