mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 10:06:05 +00:00

Don't require the "VALUES=" argument to the extension intrinsic procedure ETIME to have exactly two elements. Other compilers that support ETIME do not, and it's easy to adapt the behavior to whatever the dynamic size turns out to be.
526 lines
18 KiB
C++
526 lines
18 KiB
C++
//===-- runtime/time-intrinsic.cpp ----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Implements time-related intrinsic subroutines.
|
|
|
|
#include "flang/Runtime/time-intrinsic.h"
|
|
#include "terminator.h"
|
|
#include "tools.h"
|
|
#include "flang/Runtime/cpp-type.h"
|
|
#include "flang/Runtime/descriptor.h"
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#ifdef _WIN32
|
|
#include "flang/Common/windows-include.h"
|
|
#else
|
|
#include <sys/time.h> // gettimeofday
|
|
#include <sys/times.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
// CPU_TIME (Fortran 2018 16.9.57)
|
|
// SYSTEM_CLOCK (Fortran 2018 16.9.168)
|
|
//
|
|
// We can use std::clock() from the <ctime> header as a fallback implementation
|
|
// that should be available everywhere. This may not provide the best resolution
|
|
// and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
|
|
// is defined as 10^6 regardless of the actual precision of std::clock().
|
|
// Therefore, we will usually prefer platform-specific alternatives when they
|
|
// are available.
|
|
//
|
|
// We can use SFINAE to choose a platform-specific alternative. To do so, we
|
|
// introduce a helper function template, whose overload set will contain only
|
|
// implementations relying on interfaces which are actually available. Each
|
|
// overload will have a dummy parameter whose type indicates whether or not it
|
|
// should be preferred. Any other parameters required for SFINAE should have
|
|
// default values provided.
|
|
namespace {
|
|
// Types for the dummy parameter indicating the priority of a given overload.
|
|
// We will invoke our helper with an integer literal argument, so the overload
|
|
// with the highest priority should have the type int.
|
|
using fallback_implementation = double;
|
|
using preferred_implementation = int;
|
|
|
|
// This is the fallback implementation, which should work everywhere.
|
|
template <typename Unused = void> double GetCpuTime(fallback_implementation) {
|
|
std::clock_t timestamp{std::clock()};
|
|
if (timestamp != static_cast<std::clock_t>(-1)) {
|
|
return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
|
|
}
|
|
// Return some negative value to represent failure.
|
|
return -1.0;
|
|
}
|
|
|
|
#if defined __MINGW32__
|
|
// clock_gettime is implemented in the pthread library for MinGW.
|
|
// Using it here would mean that all programs that link libFortranRuntime are
|
|
// required to also link to pthread. Instead, don't use the function.
|
|
#undef CLOCKID_CPU_TIME
|
|
#undef CLOCKID_ELAPSED_TIME
|
|
#else
|
|
// Determine what clock to use for CPU time.
|
|
#if defined CLOCK_PROCESS_CPUTIME_ID
|
|
#define CLOCKID_CPU_TIME CLOCK_PROCESS_CPUTIME_ID
|
|
#elif defined CLOCK_THREAD_CPUTIME_ID
|
|
#define CLOCKID_CPU_TIME CLOCK_THREAD_CPUTIME_ID
|
|
#else
|
|
#undef CLOCKID_CPU_TIME
|
|
#endif
|
|
|
|
// Determine what clock to use for elapsed time.
|
|
#if defined CLOCK_MONOTONIC
|
|
#define CLOCKID_ELAPSED_TIME CLOCK_MONOTONIC
|
|
#elif defined CLOCK_REALTIME
|
|
#define CLOCKID_ELAPSED_TIME CLOCK_REALTIME
|
|
#else
|
|
#undef CLOCKID_ELAPSED_TIME
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CLOCKID_CPU_TIME
|
|
// POSIX implementation using clock_gettime. This is only enabled where
|
|
// clock_gettime is available.
|
|
template <typename T = int, typename U = struct timespec>
|
|
double GetCpuTime(preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
struct timespec tspec;
|
|
if (clock_gettime(CLOCKID_CPU_TIME, &tspec) == 0) {
|
|
return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
|
|
}
|
|
// Return some negative value to represent failure.
|
|
return -1.0;
|
|
}
|
|
#endif // CLOCKID_CPU_TIME
|
|
|
|
using count_t = std::int64_t;
|
|
using unsigned_count_t = std::uint64_t;
|
|
|
|
// POSIX implementation using clock_gettime where available. The clock_gettime
|
|
// result is in nanoseconds, which is converted as necessary to
|
|
// - deciseconds for kind 1
|
|
// - milliseconds for kinds 2, 4
|
|
// - nanoseconds for kinds 8, 16
|
|
constexpr unsigned_count_t DS_PER_SEC{10u};
|
|
constexpr unsigned_count_t MS_PER_SEC{1'000u};
|
|
constexpr unsigned_count_t NS_PER_SEC{1'000'000'000u};
|
|
|
|
// Computes HUGE(INT(0,kind)) as an unsigned integer value.
|
|
static constexpr inline unsigned_count_t GetHUGE(int kind) {
|
|
if (kind > 8) {
|
|
kind = 8;
|
|
}
|
|
return (unsigned_count_t{1} << ((8 * kind) - 1)) - 1;
|
|
}
|
|
|
|
// Function converts a std::timespec_t into the desired count to
|
|
// be returned by the timing functions in accordance with the requested
|
|
// kind at the call site.
|
|
count_t ConvertTimeSpecToCount(int kind, const struct timespec &tspec) {
|
|
const unsigned_count_t huge{GetHUGE(kind)};
|
|
unsigned_count_t sec{static_cast<unsigned_count_t>(tspec.tv_sec)};
|
|
unsigned_count_t nsec{static_cast<unsigned_count_t>(tspec.tv_nsec)};
|
|
if (kind >= 8) {
|
|
return (sec * NS_PER_SEC + nsec) % (huge + 1);
|
|
} else if (kind >= 2) {
|
|
return (sec * MS_PER_SEC + (nsec / (NS_PER_SEC / MS_PER_SEC))) % (huge + 1);
|
|
} else { // kind == 1
|
|
return (sec * DS_PER_SEC + (nsec / (NS_PER_SEC / DS_PER_SEC))) % (huge + 1);
|
|
}
|
|
}
|
|
|
|
#ifndef _AIX
|
|
// This is the fallback implementation, which should work everywhere.
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCount(int kind, fallback_implementation) {
|
|
struct timespec tspec;
|
|
|
|
if (timespec_get(&tspec, TIME_UTC) < 0) {
|
|
// Return -HUGE(COUNT) to represent failure.
|
|
return -static_cast<count_t>(GetHUGE(kind));
|
|
}
|
|
|
|
// Compute the timestamp as seconds plus nanoseconds in accordance
|
|
// with the requested kind at the call site.
|
|
return ConvertTimeSpecToCount(kind, tspec);
|
|
}
|
|
#endif
|
|
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCountRate(int kind, fallback_implementation) {
|
|
return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
|
|
}
|
|
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCountMax(int kind, fallback_implementation) {
|
|
unsigned_count_t maxCount{GetHUGE(kind)};
|
|
return maxCount;
|
|
}
|
|
|
|
#ifdef CLOCKID_ELAPSED_TIME
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCount(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
struct timespec tspec;
|
|
const unsigned_count_t huge{GetHUGE(kind)};
|
|
if (clock_gettime(CLOCKID_ELAPSED_TIME, &tspec) != 0) {
|
|
return -huge; // failure
|
|
}
|
|
|
|
// Compute the timestamp as seconds plus nanoseconds in accordance
|
|
// with the requested kind at the call site.
|
|
return ConvertTimeSpecToCount(kind, tspec);
|
|
}
|
|
#endif // CLOCKID_ELAPSED_TIME
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCountRate(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
|
|
}
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCountMax(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
return GetHUGE(kind);
|
|
}
|
|
|
|
// DATE_AND_TIME (Fortran 2018 16.9.59)
|
|
|
|
// Helper to set an integer value to -HUGE
|
|
template <int KIND> struct StoreNegativeHugeAt {
|
|
void operator()(
|
|
const Fortran::runtime::Descriptor &result, std::size_t at) const {
|
|
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>(at) =
|
|
-std::numeric_limits<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>::max();
|
|
}
|
|
};
|
|
|
|
// Default implementation when date and time information is not available (set
|
|
// strings to blanks and values to -HUGE as defined by the standard).
|
|
static void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
|
|
char *date, std::size_t dateChars, char *time, std::size_t timeChars,
|
|
char *zone, std::size_t zoneChars,
|
|
const Fortran::runtime::Descriptor *values) {
|
|
if (date) {
|
|
std::memset(date, static_cast<int>(' '), dateChars);
|
|
}
|
|
if (time) {
|
|
std::memset(time, static_cast<int>(' '), timeChars);
|
|
}
|
|
if (zone) {
|
|
std::memset(zone, static_cast<int>(' '), zoneChars);
|
|
}
|
|
if (values) {
|
|
auto typeCode{values->type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(terminator,
|
|
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
|
|
typeCode &&
|
|
typeCode->first == Fortran::common::TypeCategory::Integer);
|
|
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
|
|
// KIND 1 here.
|
|
int kind{typeCode->second};
|
|
RUNTIME_CHECK(terminator, kind != 1);
|
|
for (std::size_t i = 0; i < 8; ++i) {
|
|
Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
|
|
kind, terminator, *values, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
#ifdef _AIX
|
|
// Compute the time difference from GMT/UTC to get around the behavior of
|
|
// strfname on AIX that requires setting an environment variable for numeric
|
|
// value for ZONE.
|
|
// The ZONE and the VALUES(4) arguments of the DATE_AND_TIME intrinsic has
|
|
// the resolution to the minute.
|
|
static int computeUTCDiff(const tm &localTime, bool *err) {
|
|
tm utcTime;
|
|
const time_t timer{mktime(const_cast<tm *>(&localTime))};
|
|
if (timer < 0) {
|
|
*err = true;
|
|
return 0;
|
|
}
|
|
|
|
// Get the GMT/UTC time
|
|
if (gmtime_r(&timer, &utcTime) == nullptr) {
|
|
*err = true;
|
|
return 0;
|
|
}
|
|
|
|
// Adjust for day difference
|
|
auto dayDiff{localTime.tm_mday - utcTime.tm_mday};
|
|
auto localHr{localTime.tm_hour};
|
|
if (dayDiff > 0) {
|
|
if (dayDiff == 1) {
|
|
localHr += 24;
|
|
} else {
|
|
utcTime.tm_hour += 24;
|
|
}
|
|
} else if (dayDiff < 0) {
|
|
if (dayDiff == -1) {
|
|
utcTime.tm_hour += 24;
|
|
} else {
|
|
localHr += 24;
|
|
}
|
|
}
|
|
return (localHr * 60 + localTime.tm_min) -
|
|
(utcTime.tm_hour * 60 + utcTime.tm_min);
|
|
}
|
|
#endif
|
|
|
|
static std::size_t getUTCOffsetToBuffer(
|
|
char *buffer, const std::size_t &buffSize, tm *localTime) {
|
|
#ifdef _AIX
|
|
// format: +HHMM or -HHMM
|
|
bool err{false};
|
|
auto utcOffset{computeUTCDiff(*localTime, &err)};
|
|
auto hour{utcOffset / 60};
|
|
auto hrMin{hour * 100 + (utcOffset - hour * 60)};
|
|
auto n{sprintf(buffer, "%+05d", hrMin)};
|
|
return err ? 0 : n + 1;
|
|
#else
|
|
return std::strftime(buffer, buffSize, "%z", localTime);
|
|
#endif
|
|
}
|
|
|
|
// SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
|
|
// field.
|
|
template <int KIND, typename TM = struct tm>
|
|
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
|
|
GetGmtOffset(const TM &tm, preferred_implementation,
|
|
decltype(tm.tm_gmtoff) *Enabled = nullptr) {
|
|
// Returns the GMT offset in minutes.
|
|
return tm.tm_gmtoff / 60;
|
|
}
|
|
template <int KIND, typename TM = struct tm>
|
|
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
|
|
GetGmtOffset(const TM &tm, fallback_implementation) {
|
|
// tm.tm_gmtoff is not available, there may be platform dependent alternatives
|
|
// (such as using timezone from <time.h> when available), but so far just
|
|
// return -HUGE to report that this information is not available.
|
|
const auto negHuge{-std::numeric_limits<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>::max()};
|
|
#ifdef _AIX
|
|
bool err{false};
|
|
auto diff{computeUTCDiff(tm, &err)};
|
|
if (err) {
|
|
return negHuge;
|
|
} else {
|
|
return diff;
|
|
}
|
|
#else
|
|
return negHuge;
|
|
#endif
|
|
}
|
|
template <typename TM = struct tm> struct GmtOffsetHelper {
|
|
template <int KIND> struct StoreGmtOffset {
|
|
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
|
|
TM &tm) const {
|
|
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>(at) =
|
|
GetGmtOffset<KIND>(tm, 0);
|
|
}
|
|
};
|
|
};
|
|
|
|
// Dispatch to posix implementation where gettimeofday and localtime_r are
|
|
// available.
|
|
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
|
|
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
|
|
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
|
|
|
|
timeval t;
|
|
if (gettimeofday(&t, nullptr) != 0) {
|
|
DateAndTimeUnavailable(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
return;
|
|
}
|
|
time_t timer{t.tv_sec};
|
|
tm localTime;
|
|
localtime_r(&timer, &localTime);
|
|
std::intmax_t ms{t.tv_usec / 1000};
|
|
|
|
static constexpr std::size_t buffSize{16};
|
|
char buffer[buffSize];
|
|
auto copyBufferAndPad{
|
|
[&](char *dest, std::size_t destChars, std::size_t len) {
|
|
auto copyLen{std::min(len, destChars)};
|
|
std::memcpy(dest, buffer, copyLen);
|
|
for (auto i{copyLen}; i < destChars; ++i) {
|
|
dest[i] = ' ';
|
|
}
|
|
}};
|
|
if (date) {
|
|
auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
|
|
copyBufferAndPad(date, dateChars, len);
|
|
}
|
|
if (time) {
|
|
auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
|
|
localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
|
|
copyBufferAndPad(time, timeChars, len);
|
|
}
|
|
if (zone) {
|
|
// Note: this may leave the buffer empty on many platforms. Classic flang
|
|
// has a much more complex way of doing this (see __io_timezone in classic
|
|
// flang).
|
|
auto len{getUTCOffsetToBuffer(buffer, buffSize, &localTime)};
|
|
copyBufferAndPad(zone, zoneChars, len);
|
|
}
|
|
if (values) {
|
|
auto typeCode{values->type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(terminator,
|
|
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
|
|
typeCode &&
|
|
typeCode->first == Fortran::common::TypeCategory::Integer);
|
|
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
|
|
// KIND 1 here.
|
|
int kind{typeCode->second};
|
|
RUNTIME_CHECK(terminator, kind != 1);
|
|
auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
|
|
Fortran::runtime::ApplyIntegerKind<Fortran::runtime::StoreIntegerAt,
|
|
void>(kind, terminator, *values, atIndex, value);
|
|
};
|
|
storeIntegerAt(0, localTime.tm_year + 1900);
|
|
storeIntegerAt(1, localTime.tm_mon + 1);
|
|
storeIntegerAt(2, localTime.tm_mday);
|
|
Fortran::runtime::ApplyIntegerKind<
|
|
GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
|
|
kind, terminator, *values, 3, localTime);
|
|
storeIntegerAt(4, localTime.tm_hour);
|
|
storeIntegerAt(5, localTime.tm_min);
|
|
storeIntegerAt(6, localTime.tm_sec);
|
|
storeIntegerAt(7, ms);
|
|
}
|
|
}
|
|
|
|
#else
|
|
// Fallback implementation where gettimeofday or localtime_r are not both
|
|
// available (e.g. windows).
|
|
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
|
|
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
|
|
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
|
|
// TODO: An actual implementation for non Posix system should be added.
|
|
// So far, implement as if the date and time is not available on those
|
|
// platforms.
|
|
DateAndTimeUnavailable(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
}
|
|
#endif
|
|
} // namespace
|
|
|
|
namespace Fortran::runtime {
|
|
extern "C" {
|
|
|
|
double RTNAME(CpuTime)() { return GetCpuTime(0); }
|
|
|
|
std::int64_t RTNAME(SystemClockCount)(int kind) {
|
|
return GetSystemClockCount(kind, 0);
|
|
}
|
|
|
|
std::int64_t RTNAME(SystemClockCountRate)(int kind) {
|
|
return GetSystemClockCountRate(kind, 0);
|
|
}
|
|
|
|
std::int64_t RTNAME(SystemClockCountMax)(int kind) {
|
|
return GetSystemClockCountMax(kind, 0);
|
|
}
|
|
|
|
void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
|
|
std::size_t timeChars, char *zone, std::size_t zoneChars,
|
|
const char *source, int line, const Descriptor *values) {
|
|
Fortran::runtime::Terminator terminator{source, line};
|
|
return GetDateAndTime(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
}
|
|
|
|
void RTNAME(Etime)(const Descriptor *values, const Descriptor *time,
|
|
const char *sourceFile, int line) {
|
|
Fortran::runtime::Terminator terminator{sourceFile, line};
|
|
|
|
double usrTime = -1.0, sysTime = -1.0, realTime = -1.0;
|
|
|
|
#ifdef _WIN32
|
|
FILETIME creationTime;
|
|
FILETIME exitTime;
|
|
FILETIME kernelTime;
|
|
FILETIME userTime;
|
|
|
|
if (GetProcessTimes(GetCurrentProcess(), &creationTime, &exitTime,
|
|
&kernelTime, &userTime) == 0) {
|
|
ULARGE_INTEGER userSystemTime;
|
|
ULARGE_INTEGER kernelSystemTime;
|
|
|
|
memcpy(&userSystemTime, &userTime, sizeof(FILETIME));
|
|
memcpy(&kernelSystemTime, &kernelTime, sizeof(FILETIME));
|
|
|
|
usrTime = ((double)(userSystemTime.QuadPart)) / 10000000.0;
|
|
sysTime = ((double)(kernelSystemTime.QuadPart)) / 10000000.0;
|
|
realTime = usrTime + sysTime;
|
|
}
|
|
#else
|
|
struct tms tms;
|
|
if (times(&tms) != (clock_t)-1) {
|
|
usrTime = ((double)(tms.tms_utime)) / sysconf(_SC_CLK_TCK);
|
|
sysTime = ((double)(tms.tms_stime)) / sysconf(_SC_CLK_TCK);
|
|
realTime = usrTime + sysTime;
|
|
}
|
|
#endif
|
|
|
|
if (values) {
|
|
auto typeCode{values->type().GetCategoryAndKind()};
|
|
// ETIME values argument must have decimal range == 2.
|
|
RUNTIME_CHECK(terminator,
|
|
values->rank() == 1 && typeCode &&
|
|
typeCode->first == Fortran::common::TypeCategory::Real);
|
|
// Only accept KIND=4 here.
|
|
int kind{typeCode->second};
|
|
RUNTIME_CHECK(terminator, kind == 4);
|
|
auto extent{values->GetDimension(0).Extent()};
|
|
if (extent >= 1) {
|
|
ApplyFloatingPointKind<StoreFloatingPointAt, void>(
|
|
kind, terminator, *values, /* atIndex = */ 0, usrTime);
|
|
}
|
|
if (extent >= 2) {
|
|
ApplyFloatingPointKind<StoreFloatingPointAt, void>(
|
|
kind, terminator, *values, /* atIndex = */ 1, sysTime);
|
|
}
|
|
}
|
|
|
|
if (time) {
|
|
auto typeCode{time->type().GetCategoryAndKind()};
|
|
// ETIME time argument must have decimal range == 0.
|
|
RUNTIME_CHECK(terminator,
|
|
time->rank() == 0 && typeCode &&
|
|
typeCode->first == Fortran::common::TypeCategory::Real);
|
|
// Only accept KIND=4 here.
|
|
int kind{typeCode->second};
|
|
RUNTIME_CHECK(terminator, kind == 4);
|
|
|
|
ApplyFloatingPointKind<StoreFloatingPointAt, void>(
|
|
kind, terminator, *time, /* atIndex = */ 0, realTime);
|
|
}
|
|
}
|
|
|
|
} // extern "C"
|
|
} // namespace Fortran::runtime
|