mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 12:36:07 +00:00

This commit adds functionality needed for implementation of convolutions with linalg.generic op. Since linalg.generic right now expects indexing maps to be just permutations, offset indexing needed in convolutions is not possible. Therefore in this commit we address the issue by adding support for symbols inside indexing maps which enables more advanced indexing. The upcoming commit will solve the problem of computing loop bounds from such maps. Differential Revision: https://reviews.llvm.org/D83158
291 lines
11 KiB
C++
291 lines
11 KiB
C++
//===- Builders.cpp - MLIR Declarative Linalg Builders --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Linalg/EDSC/Builders.h"
|
|
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/SCF/EDSC/Builders.h"
|
|
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::edsc;
|
|
using namespace mlir::edsc::intrinsics;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::scf;
|
|
|
|
Operation *mlir::edsc::makeGenericLinalgOp(
|
|
ArrayRef<IteratorType> iteratorTypes, ArrayRef<StructuredIndexed> inputs,
|
|
ArrayRef<StructuredIndexed> outputs,
|
|
function_ref<void(ValueRange)> regionBuilder, ArrayRef<Value> otherValues,
|
|
ArrayRef<Attribute> otherAttributes) {
|
|
for (unsigned i = 0, e = outputs.size(); i + 1 < e; ++i)
|
|
assert(!(outputs[i].getType().isa<RankedTensorType>() &&
|
|
outputs[i + 1].getType().isa<MemRefType>()) &&
|
|
"output tensors must be passed after output buffers");
|
|
auto &builder = edsc::ScopedContext::getBuilderRef();
|
|
auto *ctx = builder.getContext();
|
|
unsigned nInputs = inputs.size();
|
|
unsigned nOutputs = outputs.size();
|
|
|
|
SmallVector<SmallVector<AffineExpr, 4>, 4> exprsList;
|
|
exprsList.reserve(nInputs + nOutputs);
|
|
for (auto structuredIndexed : inputs)
|
|
exprsList.emplace_back(structuredIndexed.getExprs().begin(),
|
|
structuredIndexed.getExprs().end());
|
|
for (auto structuredIndexed : outputs)
|
|
exprsList.emplace_back(structuredIndexed.getExprs().begin(),
|
|
structuredIndexed.getExprs().end());
|
|
auto maps = AffineMap::inferFromExprList(exprsList);
|
|
|
|
unsigned nViews = nInputs + nOutputs;
|
|
SmallVector<Value, 4> values;
|
|
values.reserve(nViews);
|
|
values.append(inputs.begin(), inputs.end());
|
|
std::copy_if(outputs.begin(), outputs.end(), std::back_inserter(values),
|
|
[](StructuredIndexed s) { return s.hasValue(); });
|
|
SmallVector<Type, 4> types;
|
|
std::copy_if(outputs.begin(), outputs.end(), std::back_inserter(types),
|
|
[](StructuredIndexed s) { return !s.hasValue(); });
|
|
|
|
auto iteratorStrTypes =
|
|
llvm::to_vector<8>(llvm::map_range(iteratorTypes, toString));
|
|
// clang-format off
|
|
auto *op =
|
|
edsc::ScopedContext::getBuilderRef()
|
|
.create<linalg::GenericOp>(
|
|
edsc::ScopedContext::getLocation(),
|
|
types,
|
|
values,
|
|
IntegerAttr::get(IntegerType::get(64, ctx), nInputs),
|
|
IntegerAttr::get(IntegerType::get(64, ctx), nOutputs),
|
|
builder.getAffineMapArrayAttr(maps),
|
|
builder.getStrArrayAttr(iteratorStrTypes),
|
|
StringAttr() /*doc*/,
|
|
StringAttr() /*library_call*/,
|
|
IntegerAttr() /*symbol_source*/
|
|
/* TODO: other attributes in op */
|
|
)
|
|
.getOperation();
|
|
// clang-format on
|
|
|
|
using namespace edsc;
|
|
SmallVector<Type, 4> blockTypes;
|
|
blockTypes.reserve(values.size());
|
|
for (auto it : llvm::enumerate(values))
|
|
blockTypes.push_back((it.index() < nViews)
|
|
? getElementTypeOrSelf(it.value())
|
|
: it.value().getType());
|
|
|
|
assert(op->getNumRegions() == 1);
|
|
assert(op->getRegion(0).empty());
|
|
OpBuilder opBuilder(op);
|
|
ScopedContext scope(opBuilder, op->getLoc());
|
|
buildInNewBlock(op->getRegion(0), blockTypes, regionBuilder);
|
|
assert(llvm::hasSingleElement(op->getRegion(0)));
|
|
return op;
|
|
}
|
|
|
|
void mlir::edsc::ops::mulRegionBuilder(ValueRange args) {
|
|
using edsc::op::operator+;
|
|
using edsc::op::operator*;
|
|
assert(args.size() == 2 && "expected 2 block arguments");
|
|
Value a(args[0]), b(args[1]);
|
|
linalg_yield(a * b);
|
|
}
|
|
|
|
void mlir::edsc::ops::macRegionBuilder(ValueRange args) {
|
|
using edsc::op::operator+;
|
|
using edsc::op::operator*;
|
|
assert(args.size() == 3 && "expected 3 block arguments");
|
|
Value a(args[0]), b(args[1]), c(args[2]);
|
|
linalg_yield(c + a * b);
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise(
|
|
UnaryPointwiseOpBuilder unaryOp, StructuredIndexed I, StructuredIndexed O) {
|
|
SmallVector<IteratorType, 4> iterTypes(O.getExprs().size(),
|
|
IteratorType::Parallel);
|
|
if (O.getType().isa<RankedTensorType>()) {
|
|
auto fun = [&unaryOp](ValueRange args) {
|
|
assert(args.size() == 1 && "expected 1 block arguments");
|
|
Value a(args[0]);
|
|
linalg_yield(unaryOp(a));
|
|
};
|
|
return makeGenericLinalgOp(iterTypes, {I}, {O}, fun);
|
|
}
|
|
auto fun = [&unaryOp](ValueRange args) {
|
|
assert(args.size() == 2 && "expected 2 block arguments");
|
|
Value a(args[0]);
|
|
linalg_yield(unaryOp(a));
|
|
};
|
|
return makeGenericLinalgOp(iterTypes, {I}, {O}, fun);
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise_tanh(StructuredIndexed I,
|
|
StructuredIndexed O) {
|
|
UnaryPointwiseOpBuilder unOp([](Value a) -> Value { return std_tanh(a); });
|
|
return linalg_generic_pointwise(unOp, I, O);
|
|
}
|
|
|
|
/// Binary pointwise operation (with broadcast) entry point.
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise(
|
|
BinaryPointwiseOpBuilder binaryOp, StructuredIndexed I1,
|
|
StructuredIndexed I2, StructuredIndexed O) {
|
|
SmallVector<IteratorType, 4> iterTypes(O.getExprs().size(),
|
|
IteratorType::Parallel);
|
|
if (O.getType().isa<RankedTensorType>()) {
|
|
auto fun = [&binaryOp](ValueRange args) {
|
|
assert(args.size() == 2 && "expected 2 block arguments");
|
|
Value a(args[0]), b(args[1]);
|
|
linalg_yield(binaryOp(a, b));
|
|
};
|
|
return makeGenericLinalgOp(iterTypes, {I1, I2}, {O}, fun);
|
|
}
|
|
auto fun = [&binaryOp](ValueRange args) {
|
|
assert(args.size() == 3 && "expected 3 block arguments");
|
|
Value a(args[0]), b(args[1]);
|
|
linalg_yield(binaryOp(a, b));
|
|
};
|
|
return makeGenericLinalgOp(iterTypes, {I1, I2}, {O}, fun);
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise_add(StructuredIndexed I1,
|
|
StructuredIndexed I2,
|
|
StructuredIndexed O) {
|
|
using edsc::op::operator+;
|
|
BinaryPointwiseOpBuilder binOp(
|
|
[](Value a, Value b) -> Value { return a + b; });
|
|
return linalg_generic_pointwise(binOp, I1, I2, O);
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise_max(StructuredIndexed I1,
|
|
StructuredIndexed I2,
|
|
StructuredIndexed O) {
|
|
BinaryPointwiseOpBuilder binOp([](Value a, Value b) -> Value {
|
|
using edsc::op::sgt;
|
|
return std_select(sgt(a, b), a, b);
|
|
});
|
|
return linalg_generic_pointwise(binOp, I1, I2, O);
|
|
}
|
|
|
|
Operation *
|
|
mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC,
|
|
MatmulRegionBuilder regionBuilder) {
|
|
// clang-format off
|
|
AffineExpr m, n, k;
|
|
bindDims(ScopedContext::getContext(), m, n, k);
|
|
StructuredIndexed A(vA), B(vB), C(vC);
|
|
return makeGenericLinalgOp(
|
|
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
|
|
{A({m, k}), B({k, n})},
|
|
{C({m, n})},
|
|
regionBuilder);
|
|
// clang-format on
|
|
}
|
|
|
|
Operation *
|
|
mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, RankedTensorType tC,
|
|
MatmulRegionBuilder regionBuilder) {
|
|
// clang-format off
|
|
AffineExpr m, n, k;
|
|
bindDims(ScopedContext::getContext(), m, n, k);
|
|
StructuredIndexed A(vA), B(vB), C(tC);
|
|
return makeGenericLinalgOp(
|
|
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
|
|
{A({m, k}), B({k, n})},
|
|
{C({m, n})},
|
|
regionBuilder);
|
|
// clang-format on
|
|
}
|
|
|
|
Operation *
|
|
mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC,
|
|
RankedTensorType tD,
|
|
MatmulRegionBuilder regionBuilder) {
|
|
// clang-format off
|
|
AffineExpr m, n, k;
|
|
bindDims(ScopedContext::getContext(), m, n, k);
|
|
StructuredIndexed A(vA), B(vB), C(vC), D(tD);
|
|
return makeGenericLinalgOp(
|
|
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
|
|
{A({m, k}), B({k, n}), C({m, n})},
|
|
{D({m, n})},
|
|
regionBuilder);
|
|
// clang-format on
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_conv_nhwc(Value vI, Value vW,
|
|
Value vO,
|
|
ArrayRef<int> strides,
|
|
ArrayRef<int> dilations) {
|
|
MLIRContext *ctx = ScopedContext::getContext();
|
|
// TODO: some template magic to make everything rank-polymorphic.
|
|
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
|
|
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
|
|
|
|
// Some short names.
|
|
auto par = IteratorType::Parallel;
|
|
auto red = IteratorType::Reduction;
|
|
auto s = strides;
|
|
auto d = dilations;
|
|
|
|
AffineExpr b, f, h, w, kh, kw, c;
|
|
bindDims(ctx, b, f, h, w, kh, kw, c);
|
|
unsigned numDims = c.cast<AffineDimExpr>().getPosition() + 1;
|
|
StructuredIndexed I(vI), W(vW), O(vO);
|
|
// clang-format off
|
|
return makeGenericLinalgOp(
|
|
{par, par, par, par, red, red, red}, {
|
|
I({b,
|
|
// Roundtrip to flattened form to serve as canonicalization and ensure
|
|
// consistent ordering of subexpressions.
|
|
simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0),
|
|
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
|
|
c}),
|
|
W({kh, kw, c, f})}, {
|
|
O({b, h, w, f})},
|
|
macRegionBuilder);
|
|
// clang-format on
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_dilated_conv_nhwc(
|
|
Value vI, Value vW, Value vO, int depth_multiplier, ArrayRef<int> strides,
|
|
ArrayRef<int> dilations) {
|
|
MLIRContext *ctx = ScopedContext::getContext();
|
|
// TODO: some template magic to make everything rank-polymorphic.
|
|
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
|
|
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
|
|
|
|
// Some short names.
|
|
auto par = IteratorType::Parallel;
|
|
auto red = IteratorType::Reduction;
|
|
auto s = strides;
|
|
auto d = dilations;
|
|
|
|
// clang-format off
|
|
AffineExpr b, dm, c, h, w, kh, kw;
|
|
bindDims(ctx, b, dm, c, h, w, kh, kw);
|
|
unsigned numDims = kw.cast<AffineDimExpr>().getPosition() + 1;
|
|
StructuredIndexed I(vI), W(vW), O(vO);
|
|
return makeGenericLinalgOp(
|
|
{par, par, par, par, par, red, red}, {
|
|
I({b,
|
|
// Roundtrip to flattened form to serve as canonicalization and ensure
|
|
// consistent ordering of subexpressions.
|
|
simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0),
|
|
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
|
|
c}),
|
|
W({kh, kw, c, dm})}, {
|
|
O({b, h, w, simplifyAffineExpr(c * depth_multiplier + dm, numDims, 0)})},
|
|
macRegionBuilder);
|
|
// clang-format on
|
|
}
|