Bob Wilson fc6297f314 Disable this-return optimizations when targeting iOS 5 and earlier.
Clang implements the part of the ARM ABI saying that certain functions
(e.g., constructors and destructors) return "this", but Apple's version of
gcc and llvm-gcc did not. The libstdc++ dylib on iOS 5 was built with
llvm-gcc, which means that clang cannot safely assume that code from the C++
runtime will correctly follow the ABI. It is also possible to run into this
problem when linking with other libraries built with gcc or llvm-gcc. Even
though there is no way to reliably detect that situation, it is most likely
to come up when targeting older versions of iOS. Disabling the optimization
for any code targeting iOS 5 solves the libstdc++ problem and has a reasonably
good chance of fixing the issue for other older libraries as well.
<rdar://problem/16377159>

llvm-svn: 205272
2014-04-01 01:38:16 +00:00
..
2014-03-26 17:35:01 +00:00
2013-07-11 01:32:21 +00:00
2014-03-26 19:26:05 +00:00
2013-06-08 00:27:19 +00:00

IRgen optimization opportunities.

//===---------------------------------------------------------------------===//

The common pattern of
--
short x; // or char, etc
(x == 10)
--
generates an zext/sext of x which can easily be avoided.

//===---------------------------------------------------------------------===//

Bitfields accesses can be shifted to simplify masking and sign
extension. For example, if the bitfield width is 8 and it is
appropriately aligned then is is a lot shorter to just load the char
directly.

//===---------------------------------------------------------------------===//

It may be worth avoiding creation of alloca's for formal arguments
for the common situation where the argument is never written to or has
its address taken. The idea would be to begin generating code by using
the argument directly and if its address is taken or it is stored to
then generate the alloca and patch up the existing code.

In theory, the same optimization could be a win for block local
variables as long as the declaration dominates all statements in the
block.

NOTE: The main case we care about this for is for -O0 -g compile time
performance, and in that scenario we will need to emit the alloca
anyway currently to emit proper debug info. So this is blocked by
being able to emit debug information which refers to an LLVM
temporary, not an alloca.

//===---------------------------------------------------------------------===//

We should try and avoid generating basic blocks which only contain
jumps. At -O0, this penalizes us all the way from IRgen (malloc &
instruction overhead), all the way down through code generation and
assembly time.

On 176.gcc:expr.ll, it looks like over 12% of basic blocks are just
direct branches!

//===---------------------------------------------------------------------===//