mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-09 03:56:07 +00:00

As we've now finished parsing the constructs, we're moving onto implementing 'clause' parsing. While some are complicated and require their own patch, the handful added here are simple to parse (that is, they are a single identifier). This patch adds the infrastructure to parse these and a clause-list in its entirety. This adds some complication to how we are diagnosing parsing errors elsewhere, so a few changes were made to better recover from errors.
604 lines
21 KiB
C++
604 lines
21 KiB
C++
//===--- ParseOpenACC.cpp - OpenACC-specific parsing support --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the parsing logic for OpenACC language features.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Basic/OpenACCKinds.h"
|
|
#include "clang/Parse/ParseDiagnostic.h"
|
|
#include "clang/Parse/Parser.h"
|
|
#include "clang/Parse/RAIIObjectsForParser.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
|
|
using namespace clang;
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
// An enum that contains the extended 'partial' parsed variants. This type
|
|
// should never escape the initial parse functionality, but is useful for
|
|
// simplifying the implementation.
|
|
enum class OpenACCDirectiveKindEx {
|
|
Invalid = static_cast<int>(OpenACCDirectiveKind::Invalid),
|
|
// 'enter data' and 'exit data'
|
|
Enter,
|
|
Exit,
|
|
};
|
|
|
|
// Translate single-token string representations to the OpenACC Directive Kind.
|
|
// This doesn't completely comprehend 'Compound Constructs' (as it just
|
|
// identifies the first token), and doesn't fully handle 'enter data', 'exit
|
|
// data', nor any of the 'atomic' variants, just the first token of each. So
|
|
// this should only be used by `ParseOpenACCDirectiveKind`.
|
|
OpenACCDirectiveKindEx getOpenACCDirectiveKind(Token Tok) {
|
|
if (!Tok.is(tok::identifier))
|
|
return OpenACCDirectiveKindEx::Invalid;
|
|
OpenACCDirectiveKind DirKind =
|
|
llvm::StringSwitch<OpenACCDirectiveKind>(
|
|
Tok.getIdentifierInfo()->getName())
|
|
.Case("parallel", OpenACCDirectiveKind::Parallel)
|
|
.Case("serial", OpenACCDirectiveKind::Serial)
|
|
.Case("kernels", OpenACCDirectiveKind::Kernels)
|
|
.Case("data", OpenACCDirectiveKind::Data)
|
|
.Case("host_data", OpenACCDirectiveKind::HostData)
|
|
.Case("loop", OpenACCDirectiveKind::Loop)
|
|
.Case("cache", OpenACCDirectiveKind::Cache)
|
|
.Case("atomic", OpenACCDirectiveKind::Atomic)
|
|
.Case("routine", OpenACCDirectiveKind::Routine)
|
|
.Case("declare", OpenACCDirectiveKind::Declare)
|
|
.Case("init", OpenACCDirectiveKind::Init)
|
|
.Case("shutdown", OpenACCDirectiveKind::Shutdown)
|
|
.Case("set", OpenACCDirectiveKind::Shutdown)
|
|
.Case("update", OpenACCDirectiveKind::Update)
|
|
.Case("wait", OpenACCDirectiveKind::Wait)
|
|
.Default(OpenACCDirectiveKind::Invalid);
|
|
|
|
if (DirKind != OpenACCDirectiveKind::Invalid)
|
|
return static_cast<OpenACCDirectiveKindEx>(DirKind);
|
|
|
|
return llvm::StringSwitch<OpenACCDirectiveKindEx>(
|
|
Tok.getIdentifierInfo()->getName())
|
|
.Case("enter", OpenACCDirectiveKindEx::Enter)
|
|
.Case("exit", OpenACCDirectiveKindEx::Exit)
|
|
.Default(OpenACCDirectiveKindEx::Invalid);
|
|
}
|
|
|
|
// Translate single-token string representations to the OpenCC Clause Kind.
|
|
OpenACCClauseKind getOpenACCClauseKind(Token Tok) {
|
|
// auto is a keyword in some language modes, so make sure we parse it
|
|
// correctly.
|
|
if (Tok.is(tok::kw_auto))
|
|
return OpenACCClauseKind::Auto;
|
|
|
|
if (!Tok.is(tok::identifier))
|
|
return OpenACCClauseKind::Invalid;
|
|
|
|
return llvm::StringSwitch<OpenACCClauseKind>(
|
|
Tok.getIdentifierInfo()->getName())
|
|
.Case("auto", OpenACCClauseKind::Auto)
|
|
.Case("finalize", OpenACCClauseKind::Finalize)
|
|
.Case("if_present", OpenACCClauseKind::IfPresent)
|
|
.Case("independent", OpenACCClauseKind::Independent)
|
|
.Case("nohost", OpenACCClauseKind::NoHost)
|
|
.Case("seq", OpenACCClauseKind::Seq)
|
|
.Case("vector", OpenACCClauseKind::Vector)
|
|
.Case("worker", OpenACCClauseKind::Worker)
|
|
.Default(OpenACCClauseKind::Invalid);
|
|
}
|
|
|
|
// Since 'atomic' is effectively a compound directive, this will decode the
|
|
// second part of the directive.
|
|
OpenACCAtomicKind getOpenACCAtomicKind(Token Tok) {
|
|
if (!Tok.is(tok::identifier))
|
|
return OpenACCAtomicKind::Invalid;
|
|
return llvm::StringSwitch<OpenACCAtomicKind>(
|
|
Tok.getIdentifierInfo()->getName())
|
|
.Case("read", OpenACCAtomicKind::Read)
|
|
.Case("write", OpenACCAtomicKind::Write)
|
|
.Case("update", OpenACCAtomicKind::Update)
|
|
.Case("capture", OpenACCAtomicKind::Capture)
|
|
.Default(OpenACCAtomicKind::Invalid);
|
|
}
|
|
|
|
enum class OpenACCSpecialTokenKind {
|
|
ReadOnly,
|
|
DevNum,
|
|
Queues,
|
|
};
|
|
|
|
bool isOpenACCSpecialToken(OpenACCSpecialTokenKind Kind, Token Tok) {
|
|
if (!Tok.is(tok::identifier))
|
|
return false;
|
|
|
|
switch (Kind) {
|
|
case OpenACCSpecialTokenKind::ReadOnly:
|
|
return Tok.getIdentifierInfo()->isStr("readonly");
|
|
case OpenACCSpecialTokenKind::DevNum:
|
|
return Tok.getIdentifierInfo()->isStr("devnum");
|
|
case OpenACCSpecialTokenKind::Queues:
|
|
return Tok.getIdentifierInfo()->isStr("queues");
|
|
}
|
|
llvm_unreachable("Unknown 'Kind' Passed");
|
|
}
|
|
|
|
bool isOpenACCDirectiveKind(OpenACCDirectiveKind Kind, Token Tok) {
|
|
if (!Tok.is(tok::identifier))
|
|
return false;
|
|
|
|
switch (Kind) {
|
|
case OpenACCDirectiveKind::Parallel:
|
|
return Tok.getIdentifierInfo()->isStr("parallel");
|
|
case OpenACCDirectiveKind::Serial:
|
|
return Tok.getIdentifierInfo()->isStr("serial");
|
|
case OpenACCDirectiveKind::Kernels:
|
|
return Tok.getIdentifierInfo()->isStr("kernels");
|
|
case OpenACCDirectiveKind::Data:
|
|
return Tok.getIdentifierInfo()->isStr("data");
|
|
case OpenACCDirectiveKind::HostData:
|
|
return Tok.getIdentifierInfo()->isStr("host_data");
|
|
case OpenACCDirectiveKind::Loop:
|
|
return Tok.getIdentifierInfo()->isStr("loop");
|
|
case OpenACCDirectiveKind::Cache:
|
|
return Tok.getIdentifierInfo()->isStr("cache");
|
|
|
|
case OpenACCDirectiveKind::ParallelLoop:
|
|
case OpenACCDirectiveKind::SerialLoop:
|
|
case OpenACCDirectiveKind::KernelsLoop:
|
|
case OpenACCDirectiveKind::EnterData:
|
|
case OpenACCDirectiveKind::ExitData:
|
|
return false;
|
|
|
|
case OpenACCDirectiveKind::Atomic:
|
|
return Tok.getIdentifierInfo()->isStr("atomic");
|
|
case OpenACCDirectiveKind::Routine:
|
|
return Tok.getIdentifierInfo()->isStr("routine");
|
|
case OpenACCDirectiveKind::Declare:
|
|
return Tok.getIdentifierInfo()->isStr("declare");
|
|
case OpenACCDirectiveKind::Init:
|
|
return Tok.getIdentifierInfo()->isStr("init");
|
|
case OpenACCDirectiveKind::Shutdown:
|
|
return Tok.getIdentifierInfo()->isStr("shutdown");
|
|
case OpenACCDirectiveKind::Set:
|
|
return Tok.getIdentifierInfo()->isStr("set");
|
|
case OpenACCDirectiveKind::Update:
|
|
return Tok.getIdentifierInfo()->isStr("update");
|
|
case OpenACCDirectiveKind::Wait:
|
|
return Tok.getIdentifierInfo()->isStr("wait");
|
|
case OpenACCDirectiveKind::Invalid:
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unknown 'Kind' Passed");
|
|
}
|
|
|
|
OpenACCDirectiveKind
|
|
ParseOpenACCEnterExitDataDirective(Parser &P, Token FirstTok,
|
|
OpenACCDirectiveKindEx ExtDirKind) {
|
|
Token SecondTok = P.getCurToken();
|
|
|
|
if (SecondTok.isAnnotation()) {
|
|
P.Diag(FirstTok, diag::err_acc_invalid_directive)
|
|
<< 0 << FirstTok.getIdentifierInfo();
|
|
return OpenACCDirectiveKind::Invalid;
|
|
}
|
|
|
|
// Consume the second name anyway, this way we can continue on without making
|
|
// this oddly look like a clause.
|
|
P.ConsumeAnyToken();
|
|
|
|
if (!isOpenACCDirectiveKind(OpenACCDirectiveKind::Data, SecondTok)) {
|
|
if (!SecondTok.is(tok::identifier))
|
|
P.Diag(SecondTok, diag::err_expected) << tok::identifier;
|
|
else
|
|
P.Diag(FirstTok, diag::err_acc_invalid_directive)
|
|
<< 1 << FirstTok.getIdentifierInfo()->getName()
|
|
<< SecondTok.getIdentifierInfo()->getName();
|
|
return OpenACCDirectiveKind::Invalid;
|
|
}
|
|
|
|
return ExtDirKind == OpenACCDirectiveKindEx::Enter
|
|
? OpenACCDirectiveKind::EnterData
|
|
: OpenACCDirectiveKind::ExitData;
|
|
}
|
|
|
|
OpenACCAtomicKind ParseOpenACCAtomicKind(Parser &P) {
|
|
Token AtomicClauseToken = P.getCurToken();
|
|
|
|
// #pragma acc atomic is equivilent to update:
|
|
if (AtomicClauseToken.isAnnotation())
|
|
return OpenACCAtomicKind::Update;
|
|
|
|
OpenACCAtomicKind AtomicKind = getOpenACCAtomicKind(AtomicClauseToken);
|
|
|
|
// If we don't know what this is, treat it as 'nothing', and treat the rest of
|
|
// this as a clause list, which, despite being invalid, is likely what the
|
|
// user was trying to do.
|
|
if (AtomicKind == OpenACCAtomicKind::Invalid)
|
|
return OpenACCAtomicKind::Update;
|
|
|
|
P.ConsumeToken();
|
|
return AtomicKind;
|
|
}
|
|
|
|
// Parse and consume the tokens for OpenACC Directive/Construct kinds.
|
|
OpenACCDirectiveKind ParseOpenACCDirectiveKind(Parser &P) {
|
|
Token FirstTok = P.getCurToken();
|
|
|
|
// Just #pragma acc can get us immediately to the end, make sure we don't
|
|
// introspect on the spelling before then.
|
|
if (FirstTok.isNot(tok::identifier)) {
|
|
P.Diag(FirstTok, diag::err_acc_missing_directive);
|
|
|
|
if (P.getCurToken().isNot(tok::annot_pragma_openacc_end))
|
|
P.ConsumeAnyToken();
|
|
|
|
return OpenACCDirectiveKind::Invalid;
|
|
}
|
|
|
|
P.ConsumeToken();
|
|
|
|
OpenACCDirectiveKindEx ExDirKind = getOpenACCDirectiveKind(FirstTok);
|
|
|
|
// OpenACCDirectiveKindEx is meant to be an extended list
|
|
// over OpenACCDirectiveKind, so any value below Invalid is one of the
|
|
// OpenACCDirectiveKind values. This switch takes care of all of the extra
|
|
// parsing required for the Extended values. At the end of this block,
|
|
// ExDirKind can be assumed to be a valid OpenACCDirectiveKind, so we can
|
|
// immediately cast it and use it as that.
|
|
if (ExDirKind >= OpenACCDirectiveKindEx::Invalid) {
|
|
switch (ExDirKind) {
|
|
case OpenACCDirectiveKindEx::Invalid: {
|
|
P.Diag(FirstTok, diag::err_acc_invalid_directive)
|
|
<< 0 << FirstTok.getIdentifierInfo();
|
|
return OpenACCDirectiveKind::Invalid;
|
|
}
|
|
case OpenACCDirectiveKindEx::Enter:
|
|
case OpenACCDirectiveKindEx::Exit:
|
|
return ParseOpenACCEnterExitDataDirective(P, FirstTok, ExDirKind);
|
|
}
|
|
}
|
|
|
|
OpenACCDirectiveKind DirKind = static_cast<OpenACCDirectiveKind>(ExDirKind);
|
|
|
|
// Combined Constructs allows parallel loop, serial loop, or kernels loop. Any
|
|
// other attempt at a combined construct will be diagnosed as an invalid
|
|
// clause.
|
|
Token SecondTok = P.getCurToken();
|
|
if (!SecondTok.isAnnotation() &&
|
|
isOpenACCDirectiveKind(OpenACCDirectiveKind::Loop, SecondTok)) {
|
|
switch (DirKind) {
|
|
default:
|
|
// Nothing to do except in the below cases, as they should be diagnosed as
|
|
// a clause.
|
|
break;
|
|
case OpenACCDirectiveKind::Parallel:
|
|
P.ConsumeToken();
|
|
return OpenACCDirectiveKind::ParallelLoop;
|
|
case OpenACCDirectiveKind::Serial:
|
|
P.ConsumeToken();
|
|
return OpenACCDirectiveKind::SerialLoop;
|
|
case OpenACCDirectiveKind::Kernels:
|
|
P.ConsumeToken();
|
|
return OpenACCDirectiveKind::KernelsLoop;
|
|
}
|
|
}
|
|
|
|
return DirKind;
|
|
}
|
|
|
|
// The OpenACC Clause List is a comma or space-delimited list of clauses (see
|
|
// the comment on ParseOpenACCClauseList). The concept of a 'clause' doesn't
|
|
// really have its owner grammar and each individual one has its own definition.
|
|
// However, they all are named with a single-identifier (or auto!) token,
|
|
// followed in some cases by either braces or parens.
|
|
bool ParseOpenACCClause(Parser &P) {
|
|
if (!P.getCurToken().isOneOf(tok::identifier, tok::kw_auto))
|
|
return P.Diag(P.getCurToken(), diag::err_expected) << tok::identifier;
|
|
|
|
OpenACCClauseKind Kind = getOpenACCClauseKind(P.getCurToken());
|
|
|
|
if (Kind == OpenACCClauseKind::Invalid)
|
|
return P.Diag(P.getCurToken(), diag::err_acc_invalid_clause)
|
|
<< P.getCurToken().getIdentifierInfo();
|
|
|
|
// Consume the clause name.
|
|
P.ConsumeToken();
|
|
|
|
// FIXME: For future clauses, we need to handle parens/etc below.
|
|
return false;
|
|
}
|
|
|
|
// Skip until we see the end of pragma token, but don't consume it. This is us
|
|
// just giving up on the rest of the pragma so we can continue executing. We
|
|
// have to do this because 'SkipUntil' considers paren balancing, which isn't
|
|
// what we want.
|
|
void SkipUntilEndOfDirective(Parser &P) {
|
|
while (P.getCurToken().isNot(tok::annot_pragma_openacc_end))
|
|
P.ConsumeAnyToken();
|
|
}
|
|
|
|
// OpenACC 3.3, section 1.7:
|
|
// To simplify the specification and convey appropriate constraint information,
|
|
// a pqr-list is a comma-separated list of pdr items. The one exception is a
|
|
// clause-list, which is a list of one or more clauses optionally separated by
|
|
// commas.
|
|
void ParseOpenACCClauseList(Parser &P) {
|
|
bool FirstClause = true;
|
|
while (P.getCurToken().isNot(tok::annot_pragma_openacc_end)) {
|
|
// Comma is optional in a clause-list.
|
|
if (!FirstClause && P.getCurToken().is(tok::comma))
|
|
P.ConsumeToken();
|
|
FirstClause = false;
|
|
|
|
// Recovering from a bad clause is really difficult, so we just give up on
|
|
// error.
|
|
if (ParseOpenACCClause(P)) {
|
|
SkipUntilEndOfDirective(P);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/// OpenACC 3.3, section 2.16:
|
|
/// In this section and throughout the specification, the term wait-argument
|
|
/// means:
|
|
/// [ devnum : int-expr : ] [ queues : ] async-argument-list
|
|
bool Parser::ParseOpenACCWaitArgument() {
|
|
// [devnum : int-expr : ]
|
|
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::DevNum, Tok) &&
|
|
NextToken().is(tok::colon)) {
|
|
// Consume devnum.
|
|
ConsumeToken();
|
|
// Consume colon.
|
|
ConsumeToken();
|
|
|
|
ExprResult IntExpr =
|
|
getActions().CorrectDelayedTyposInExpr(ParseAssignmentExpression());
|
|
if (IntExpr.isInvalid())
|
|
return true;
|
|
|
|
if (ExpectAndConsume(tok::colon))
|
|
return true;
|
|
}
|
|
|
|
// [ queues : ]
|
|
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Queues, Tok) &&
|
|
NextToken().is(tok::colon)) {
|
|
// Consume queues.
|
|
ConsumeToken();
|
|
// Consume colon.
|
|
ConsumeToken();
|
|
}
|
|
|
|
// OpenACC 3.3, section 2.16:
|
|
// the term 'async-argument' means a nonnegative scalar integer expression, or
|
|
// one of the special values 'acc_async_noval' or 'acc_async_sync', as defined
|
|
// in the C header file and the Fortran opacc module.
|
|
//
|
|
// We are parsing this simply as list of assignment expressions (to avoid
|
|
// comma being troublesome), and will ensure it is an integral type. The
|
|
// 'special' types are defined as macros, so we can't really check those
|
|
// (other than perhaps as values at one point?), but the standard does say it
|
|
// is implementation-defined to use any other negative value.
|
|
//
|
|
//
|
|
bool FirstArg = true;
|
|
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
|
|
if (!FirstArg) {
|
|
if (ExpectAndConsume(tok::comma))
|
|
return true;
|
|
}
|
|
FirstArg = false;
|
|
|
|
ExprResult CurArg =
|
|
getActions().CorrectDelayedTyposInExpr(ParseAssignmentExpression());
|
|
|
|
if (CurArg.isInvalid())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult Parser::ParseOpenACCIDExpression() {
|
|
ExprResult Res;
|
|
if (getLangOpts().CPlusPlus) {
|
|
Res = ParseCXXIdExpression(/*isAddressOfOperand=*/false);
|
|
} else {
|
|
// There isn't anything quite the same as ParseCXXIdExpression for C, so we
|
|
// need to get the identifier, then call into Sema ourselves.
|
|
|
|
if (Tok.isNot(tok::identifier)) {
|
|
Diag(Tok, diag::err_expected) << tok::identifier;
|
|
return ExprError();
|
|
}
|
|
|
|
Token FuncName = getCurToken();
|
|
UnqualifiedId Name;
|
|
CXXScopeSpec ScopeSpec;
|
|
SourceLocation TemplateKWLoc;
|
|
Name.setIdentifier(FuncName.getIdentifierInfo(), ConsumeToken());
|
|
|
|
// Ensure this is a valid identifier. We don't accept causing implicit
|
|
// function declarations per the spec, so always claim to not have trailing
|
|
// L Paren.
|
|
Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
|
|
Name, /*HasTrailingLParen=*/false,
|
|
/*isAddressOfOperand=*/false);
|
|
}
|
|
|
|
return getActions().CorrectDelayedTyposInExpr(Res);
|
|
}
|
|
|
|
/// OpenACC 3.3, section 2.10:
|
|
/// A 'var' in a cache directive must be a single array element or a simple
|
|
/// subarray. In C and C++, a simple subarray is an array name followed by an
|
|
/// extended array range specification in brackets, with a start and length such
|
|
/// as:
|
|
///
|
|
/// arr[lower:length]
|
|
///
|
|
bool Parser::ParseOpenACCCacheVar() {
|
|
ExprResult ArrayName = ParseOpenACCIDExpression();
|
|
if (ArrayName.isInvalid())
|
|
return true;
|
|
|
|
// If the expression is invalid, just continue parsing the brackets, there
|
|
// is likely other useful diagnostics we can emit inside of those.
|
|
|
|
BalancedDelimiterTracker SquareBrackets(*this, tok::l_square,
|
|
tok::annot_pragma_openacc_end);
|
|
|
|
// Square brackets are required, so error here, and try to recover by moving
|
|
// until the next comma, or the close paren/end of pragma.
|
|
if (SquareBrackets.expectAndConsume()) {
|
|
SkipUntil(tok::comma, tok::r_paren, tok::annot_pragma_openacc_end,
|
|
Parser::StopBeforeMatch);
|
|
return true;
|
|
}
|
|
|
|
ExprResult Lower = getActions().CorrectDelayedTyposInExpr(ParseExpression());
|
|
if (Lower.isInvalid())
|
|
return true;
|
|
|
|
// The 'length' expression is optional, as this could be a single array
|
|
// element. If there is no colon, we can treat it as that.
|
|
if (getCurToken().is(tok::colon)) {
|
|
ConsumeToken();
|
|
ExprResult Length =
|
|
getActions().CorrectDelayedTyposInExpr(ParseExpression());
|
|
if (Length.isInvalid())
|
|
return true;
|
|
}
|
|
|
|
// Diagnose the square bracket being in the wrong place and continue.
|
|
return SquareBrackets.consumeClose();
|
|
}
|
|
|
|
/// OpenACC 3.3, section 2.10:
|
|
/// In C and C++, the syntax of the cache directive is:
|
|
///
|
|
/// #pragma acc cache ([readonly:]var-list) new-line
|
|
void Parser::ParseOpenACCCacheVarList() {
|
|
// If this is the end of the line, just return 'false' and count on the close
|
|
// paren diagnostic to catch the issue.
|
|
if (getCurToken().isAnnotation())
|
|
return;
|
|
|
|
// The VarList is an optional `readonly:` followed by a list of a variable
|
|
// specifications. First, see if we have `readonly:`, else we back-out and
|
|
// treat it like the beginning of a reference to a potentially-existing
|
|
// `readonly` variable.
|
|
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::ReadOnly, Tok) &&
|
|
NextToken().is(tok::colon)) {
|
|
// Consume both tokens.
|
|
ConsumeToken();
|
|
ConsumeToken();
|
|
// FIXME: Record that this is a 'readonly' so that we can use that during
|
|
// Sema/AST generation.
|
|
}
|
|
|
|
bool FirstArray = true;
|
|
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
|
|
if (!FirstArray)
|
|
ExpectAndConsume(tok::comma);
|
|
FirstArray = false;
|
|
if (ParseOpenACCCacheVar())
|
|
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end, tok::comma,
|
|
StopBeforeMatch);
|
|
}
|
|
}
|
|
|
|
void Parser::ParseOpenACCDirective() {
|
|
OpenACCDirectiveKind DirKind = ParseOpenACCDirectiveKind(*this);
|
|
|
|
// Once we've parsed the construct/directive name, some have additional
|
|
// specifiers that need to be taken care of. Atomic has an 'atomic-clause'
|
|
// that needs to be parsed.
|
|
if (DirKind == OpenACCDirectiveKind::Atomic)
|
|
ParseOpenACCAtomicKind(*this);
|
|
|
|
// We've successfully parsed the construct/directive name, however a few of
|
|
// the constructs have optional parens that contain further details.
|
|
BalancedDelimiterTracker T(*this, tok::l_paren,
|
|
tok::annot_pragma_openacc_end);
|
|
|
|
if (!T.consumeOpen()) {
|
|
switch (DirKind) {
|
|
default:
|
|
Diag(T.getOpenLocation(), diag::err_acc_invalid_open_paren);
|
|
T.skipToEnd();
|
|
break;
|
|
case OpenACCDirectiveKind::Routine: {
|
|
// Routine has an optional paren-wrapped name of a function in the local
|
|
// scope. We parse the name, emitting any diagnostics
|
|
ExprResult RoutineName = ParseOpenACCIDExpression();
|
|
// If the routine name is invalid, just skip until the closing paren to
|
|
// recover more gracefully.
|
|
if (RoutineName.isInvalid())
|
|
T.skipToEnd();
|
|
else
|
|
T.consumeClose();
|
|
break;
|
|
}
|
|
case OpenACCDirectiveKind::Cache:
|
|
ParseOpenACCCacheVarList();
|
|
// The ParseOpenACCCacheVarList function manages to recover from failures,
|
|
// so we can always consume the close.
|
|
T.consumeClose();
|
|
break;
|
|
case OpenACCDirectiveKind::Wait:
|
|
// OpenACC has an optional paren-wrapped 'wait-argument'.
|
|
if (ParseOpenACCWaitArgument())
|
|
T.skipToEnd();
|
|
else
|
|
T.consumeClose();
|
|
break;
|
|
}
|
|
} else if (DirKind == OpenACCDirectiveKind::Cache) {
|
|
// Cache's paren var-list is required, so error here if it isn't provided.
|
|
// We know that the consumeOpen above left the first non-paren here, so
|
|
// diagnose, then continue as if it was completely omitted.
|
|
Diag(Tok, diag::err_expected) << tok::l_paren;
|
|
}
|
|
|
|
// Parses the list of clauses, if present.
|
|
ParseOpenACCClauseList(*this);
|
|
|
|
Diag(getCurToken(), diag::warn_pragma_acc_unimplemented);
|
|
assert(Tok.is(tok::annot_pragma_openacc_end) &&
|
|
"Didn't parse all OpenACC Clauses");
|
|
ConsumeAnnotationToken();
|
|
}
|
|
|
|
// Parse OpenACC directive on a declaration.
|
|
Parser::DeclGroupPtrTy Parser::ParseOpenACCDirectiveDecl() {
|
|
assert(Tok.is(tok::annot_pragma_openacc) && "expected OpenACC Start Token");
|
|
|
|
ParsingOpenACCDirectiveRAII DirScope(*this);
|
|
ConsumeAnnotationToken();
|
|
|
|
ParseOpenACCDirective();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Parse OpenACC Directive on a Statement.
|
|
StmtResult Parser::ParseOpenACCDirectiveStmt() {
|
|
assert(Tok.is(tok::annot_pragma_openacc) && "expected OpenACC Start Token");
|
|
|
|
ParsingOpenACCDirectiveRAII DirScope(*this);
|
|
ConsumeAnnotationToken();
|
|
|
|
ParseOpenACCDirective();
|
|
|
|
return StmtEmpty();
|
|
}
|