Mark de Wever 8ff2d6af69 [libc++] Reduces the number of transitive includes.
This defines a new policy for removal of transitive includes.
The goal of the policy it to make it relatively easy to remove
headers when needed, but avoid breaking developers using and
vendors shipping libc++.

The method used is to guard transitive includes based on the
C++ language version. For the upcoming C++23 we can remove
headers when we want, but for other language versions we try
to keep it to a minimum.

In this code the transitive include of `<chrono>` is removed
since D128577 introduces a header cycle between `<format>`
and `<chrono>`. This cycle is indirectly required by the
Standard. Our cycle dependency tool basically is a grep based
tool, so it needs some hints to ignore cycles. With the input
of our transitive include tests we can create a better tool.
However that's out of the scope of this patch.

Note the flag `_LIBCPP_REMOVE_TRANSITIVE_INCLUDES` remains
unchanged. So users can still opt-out of transitives includes
entirely.

Reviewed By: #libc, ldionne, philnik

Differential Revision: https://reviews.llvm.org/D132284
2022-08-31 19:50:03 +02:00

828 lines
27 KiB
C++

// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_CHARCONV
#define _LIBCPP_CHARCONV
/*
charconv synopsis
namespace std {
// floating-point format for primitive numerical conversion
enum class chars_format {
scientific = unspecified,
fixed = unspecified,
hex = unspecified,
general = fixed | scientific
};
// 23.20.2, primitive numerical output conversion
struct to_chars_result {
char* ptr;
errc ec;
friend bool operator==(const to_chars_result&, const to_chars_result&) = default; // since C++20
};
to_chars_result to_chars(char* first, char* last, see below value,
int base = 10);
to_chars_result to_chars(char* first, char* last, bool value,
int base = 10) = delete;
to_chars_result to_chars(char* first, char* last, float value);
to_chars_result to_chars(char* first, char* last, double value);
to_chars_result to_chars(char* first, char* last, long double value);
to_chars_result to_chars(char* first, char* last, float value,
chars_format fmt);
to_chars_result to_chars(char* first, char* last, double value,
chars_format fmt);
to_chars_result to_chars(char* first, char* last, long double value,
chars_format fmt);
to_chars_result to_chars(char* first, char* last, float value,
chars_format fmt, int precision);
to_chars_result to_chars(char* first, char* last, double value,
chars_format fmt, int precision);
to_chars_result to_chars(char* first, char* last, long double value,
chars_format fmt, int precision);
// 23.20.3, primitive numerical input conversion
struct from_chars_result {
const char* ptr;
errc ec;
friend bool operator==(const from_chars_result&, const from_chars_result&) = default; // since C++20
};
from_chars_result from_chars(const char* first, const char* last,
see below& value, int base = 10);
from_chars_result from_chars(const char* first, const char* last,
float& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last,
double& value,
chars_format fmt = chars_format::general);
from_chars_result from_chars(const char* first, const char* last,
long double& value,
chars_format fmt = chars_format::general);
} // namespace std
*/
#include <__assert> // all public C++ headers provide the assertion handler
#include <__availability>
#include <__bits>
#include <__charconv/chars_format.h>
#include <__charconv/from_chars_result.h>
#include <__charconv/tables.h>
#include <__charconv/to_chars_base_10.h>
#include <__charconv/to_chars_result.h>
#include <__config>
#include <__debug>
#include <__errc>
#include <__type_traits/make_32_64_or_128_bit.h>
#include <__utility/unreachable.h>
#include <cmath> // for log2f
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <type_traits>
#if !defined(_LIBCPP_REMOVE_TRANSITIVE_INCLUDES) && _LIBCPP_STD_VER <= 20
# include <iosfwd>
#endif
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
_LIBCPP_PUSH_MACROS
#include <__undef_macros>
_LIBCPP_BEGIN_NAMESPACE_STD
#ifndef _LIBCPP_CXX03_LANG
to_chars_result to_chars(char*, char*, bool, int = 10) = delete;
from_chars_result from_chars(const char*, const char*, bool, int = 10) = delete;
namespace __itoa
{
template <typename _Tp, typename = void>
struct _LIBCPP_HIDDEN __traits_base;
template <typename _Tp>
struct _LIBCPP_HIDDEN __traits_base<_Tp, __enable_if_t<sizeof(_Tp) <= sizeof(uint32_t)>>
{
using type = uint32_t;
/// The width estimation using a log10 algorithm.
///
/// The algorithm is based on
/// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
/// Instead of using IntegerLogBase2 it uses __libcpp_clz. Since that
/// function requires its input to have at least one bit set the value of
/// zero is set to one. This means the first element of the lookup table is
/// zero.
static _LIBCPP_HIDE_FROM_ABI int __width(_Tp __v)
{
auto __t = (32 - std::__libcpp_clz(static_cast<type>(__v | 1))) * 1233 >> 12;
return __t - (__v < __table<>::__pow10_32[__t]) + 1;
}
static _LIBCPP_HIDE_FROM_ABI char* __convert(char* __p, _Tp __v)
{
return __itoa::__base_10_u32(__p, __v);
}
static _LIBCPP_HIDE_FROM_ABI decltype(__table<>::__pow10_32)& __pow() { return __table<>::__pow10_32; }
};
template <typename _Tp>
struct _LIBCPP_HIDDEN
__traits_base<_Tp, __enable_if_t<sizeof(_Tp) == sizeof(uint64_t)>> {
using type = uint64_t;
/// The width estimation using a log10 algorithm.
///
/// The algorithm is based on
/// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
/// Instead of using IntegerLogBase2 it uses __libcpp_clz. Since that
/// function requires its input to have at least one bit set the value of
/// zero is set to one. This means the first element of the lookup table is
/// zero.
static _LIBCPP_HIDE_FROM_ABI int __width(_Tp __v) {
auto __t = (64 - std::__libcpp_clz(static_cast<type>(__v | 1))) * 1233 >> 12;
return __t - (__v < __table<>::__pow10_64[__t]) + 1;
}
static _LIBCPP_HIDE_FROM_ABI char* __convert(char* __p, _Tp __v) { return __itoa::__base_10_u64(__p, __v); }
static _LIBCPP_HIDE_FROM_ABI decltype(__table<>::__pow10_64)& __pow() { return __table<>::__pow10_64; }
};
# ifndef _LIBCPP_HAS_NO_INT128
template <typename _Tp>
struct _LIBCPP_HIDDEN
__traits_base<_Tp, __enable_if_t<sizeof(_Tp) == sizeof(__uint128_t)> > {
using type = __uint128_t;
/// The width estimation using a log10 algorithm.
///
/// The algorithm is based on
/// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
/// Instead of using IntegerLogBase2 it uses __libcpp_clz. Since that
/// function requires its input to have at least one bit set the value of
/// zero is set to one. This means the first element of the lookup table is
/// zero.
static _LIBCPP_HIDE_FROM_ABI int __width(_Tp __v) {
_LIBCPP_ASSERT(__v > numeric_limits<uint64_t>::max(), "The optimizations for this algorithm fail when this isn't true.");
// There's always a bit set in the upper 64-bits.
auto __t = (128 - std::__libcpp_clz(static_cast<uint64_t>(__v >> 64))) * 1233 >> 12;
_LIBCPP_ASSERT(__t >= __table<>::__pow10_128_offset, "Index out of bounds");
// __t is adjusted since the lookup table misses the lower entries.
return __t - (__v < __table<>::__pow10_128[__t - __table<>::__pow10_128_offset]) + 1;
}
static _LIBCPP_HIDE_FROM_ABI char* __convert(char* __p, _Tp __v) { return __itoa::__base_10_u128(__p, __v); }
// TODO FMT This pow function should get an index.
// By moving this to its own header it can be reused by the pow function in to_chars_base_10.
static _LIBCPP_HIDE_FROM_ABI decltype(__table<>::__pow10_128)& __pow() { return __table<>::__pow10_128; }
};
#endif
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI bool
__mul_overflowed(unsigned char __a, _Tp __b, unsigned char& __r)
{
auto __c = __a * __b;
__r = __c;
return __c > numeric_limits<unsigned char>::max();
}
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI bool
__mul_overflowed(unsigned short __a, _Tp __b, unsigned short& __r)
{
auto __c = __a * __b;
__r = __c;
return __c > numeric_limits<unsigned short>::max();
}
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI bool
__mul_overflowed(_Tp __a, _Tp __b, _Tp& __r)
{
static_assert(is_unsigned<_Tp>::value, "");
#if !defined(_LIBCPP_COMPILER_MSVC)
return __builtin_mul_overflow(__a, __b, &__r);
#else
bool __did = __b && (numeric_limits<_Tp>::max() / __b) < __a;
__r = __a * __b;
return __did;
#endif
}
template <typename _Tp, typename _Up>
inline _LIBCPP_HIDE_FROM_ABI bool
__mul_overflowed(_Tp __a, _Up __b, _Tp& __r)
{
return __mul_overflowed(__a, static_cast<_Tp>(__b), __r);
}
template <typename _Tp>
struct _LIBCPP_HIDDEN __traits : __traits_base<_Tp>
{
static constexpr int digits = numeric_limits<_Tp>::digits10 + 1;
using __traits_base<_Tp>::__pow;
using typename __traits_base<_Tp>::type;
// precondition: at least one non-zero character available
static _LIBCPP_HIDE_FROM_ABI char const*
__read(char const* __p, char const* __ep, type& __a, type& __b)
{
type __cprod[digits];
int __j = digits - 1;
int __i = digits;
do
{
if (!('0' <= *__p && *__p <= '9'))
break;
__cprod[--__i] = *__p++ - '0';
} while (__p != __ep && __i != 0);
__a = __inner_product(__cprod + __i + 1, __cprod + __j, __pow() + 1,
__cprod[__i]);
if (__mul_overflowed(__cprod[__j], __pow()[__j - __i], __b))
--__p;
return __p;
}
template <typename _It1, typename _It2, class _Up>
static _LIBCPP_HIDE_FROM_ABI _Up
__inner_product(_It1 __first1, _It1 __last1, _It2 __first2, _Up __init)
{
for (; __first1 < __last1; ++__first1, ++__first2)
__init = __init + *__first1 * *__first2;
return __init;
}
};
} // namespace __itoa
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI _Tp
__complement(_Tp __x)
{
static_assert(is_unsigned<_Tp>::value, "cast to unsigned first");
return _Tp(~__x + 1);
}
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI to_chars_result
__to_chars_itoa(char* __first, char* __last, _Tp __value, true_type)
{
auto __x = __to_unsigned_like(__value);
if (__value < 0 && __first != __last)
{
*__first++ = '-';
__x = __complement(__x);
}
return __to_chars_itoa(__first, __last, __x, false_type());
}
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI to_chars_result
__to_chars_itoa(char* __first, char* __last, _Tp __value, false_type)
{
using __tx = __itoa::__traits<_Tp>;
auto __diff = __last - __first;
if (__tx::digits <= __diff || __tx::__width(__value) <= __diff)
return {__tx::__convert(__first, __value), errc(0)};
else
return {__last, errc::value_too_large};
}
# ifndef _LIBCPP_HAS_NO_INT128
template <>
inline _LIBCPP_HIDE_FROM_ABI to_chars_result
__to_chars_itoa(char* __first, char* __last, __uint128_t __value, false_type)
{
// When the value fits in 64-bits use the 64-bit code path. This reduces
// the number of expensive calculations on 128-bit values.
//
// NOTE the 128-bit code path requires this optimization.
if(__value <= numeric_limits<uint64_t>::max())
return __to_chars_itoa(__first, __last, static_cast<uint64_t>(__value), false_type());
using __tx = __itoa::__traits<__uint128_t>;
auto __diff = __last - __first;
if (__tx::digits <= __diff || __tx::__width(__value) <= __diff)
return {__tx::__convert(__first, __value), errc(0)};
else
return {__last, errc::value_too_large};
}
#endif
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI to_chars_result
__to_chars_integral(char* __first, char* __last, _Tp __value, int __base,
true_type)
{
auto __x = __to_unsigned_like(__value);
if (__value < 0 && __first != __last)
{
*__first++ = '-';
__x = __complement(__x);
}
return __to_chars_integral(__first, __last, __x, __base, false_type());
}
namespace __itoa {
template <unsigned _Base>
struct _LIBCPP_HIDDEN __integral;
template <>
struct _LIBCPP_HIDDEN __integral<2> {
template <typename _Tp>
_LIBCPP_HIDE_FROM_ABI static constexpr int __width(_Tp __value) noexcept {
// If value == 0 still need one digit. If the value != this has no
// effect since the code scans for the most significant bit set. (Note
// that __libcpp_clz doesn't work for 0.)
return numeric_limits<_Tp>::digits - std::__libcpp_clz(__value | 1);
}
template <typename _Tp>
_LIBCPP_HIDE_FROM_ABI static to_chars_result __to_chars(char* __first, char* __last, _Tp __value) {
ptrdiff_t __cap = __last - __first;
int __n = __width(__value);
if (__n > __cap)
return {__last, errc::value_too_large};
__last = __first + __n;
char* __p = __last;
const unsigned __divisor = 16;
while (__value > __divisor) {
unsigned __c = __value % __divisor;
__value /= __divisor;
__p -= 4;
std::memcpy(__p, &__table<>::__base_2_lut[4 * __c], 4);
}
do {
unsigned __c = __value % 2;
__value /= 2;
*--__p = "01"[__c];
} while (__value != 0);
return {__last, errc(0)};
}
};
template <>
struct _LIBCPP_HIDDEN __integral<8> {
template <typename _Tp>
_LIBCPP_HIDE_FROM_ABI static constexpr int __width(_Tp __value) noexcept {
// If value == 0 still need one digit. If the value != this has no
// effect since the code scans for the most significat bit set. (Note
// that __libcpp_clz doesn't work for 0.)
return ((numeric_limits<_Tp>::digits - std::__libcpp_clz(__value | 1)) + 2) / 3;
}
template <typename _Tp>
_LIBCPP_HIDE_FROM_ABI static to_chars_result __to_chars(char* __first, char* __last, _Tp __value) {
ptrdiff_t __cap = __last - __first;
int __n = __width(__value);
if (__n > __cap)
return {__last, errc::value_too_large};
__last = __first + __n;
char* __p = __last;
unsigned __divisor = 64;
while (__value > __divisor) {
unsigned __c = __value % __divisor;
__value /= __divisor;
__p -= 2;
std::memcpy(__p, &__table<>::__base_8_lut[2 * __c], 2);
}
do {
unsigned __c = __value % 8;
__value /= 8;
*--__p = "01234567"[__c];
} while (__value != 0);
return {__last, errc(0)};
}
};
template <>
struct _LIBCPP_HIDDEN __integral<16> {
template <typename _Tp>
_LIBCPP_HIDE_FROM_ABI static constexpr int __width(_Tp __value) noexcept {
// If value == 0 still need one digit. If the value != this has no
// effect since the code scans for the most significat bit set. (Note
// that __libcpp_clz doesn't work for 0.)
return (numeric_limits<_Tp>::digits - std::__libcpp_clz(__value | 1) + 3) / 4;
}
template <typename _Tp>
_LIBCPP_HIDE_FROM_ABI static to_chars_result __to_chars(char* __first, char* __last, _Tp __value) {
ptrdiff_t __cap = __last - __first;
int __n = __width(__value);
if (__n > __cap)
return {__last, errc::value_too_large};
__last = __first + __n;
char* __p = __last;
unsigned __divisor = 256;
while (__value > __divisor) {
unsigned __c = __value % __divisor;
__value /= __divisor;
__p -= 2;
std::memcpy(__p, &__table<>::__base_16_lut[2 * __c], 2);
}
if (__first != __last)
do {
unsigned __c = __value % 16;
__value /= 16;
*--__p = "0123456789abcdef"[__c];
} while (__value != 0);
return {__last, errc(0)};
}
};
} // namespace __itoa
template <unsigned _Base, typename _Tp,
typename enable_if<(sizeof(_Tp) >= sizeof(unsigned)), int>::type = 0>
_LIBCPP_HIDE_FROM_ABI int
__to_chars_integral_width(_Tp __value) {
return __itoa::__integral<_Base>::__width(__value);
}
template <unsigned _Base, typename _Tp,
typename enable_if<(sizeof(_Tp) < sizeof(unsigned)), int>::type = 0>
_LIBCPP_HIDE_FROM_ABI int
__to_chars_integral_width(_Tp __value) {
return std::__to_chars_integral_width<_Base>(static_cast<unsigned>(__value));
}
template <unsigned _Base, typename _Tp,
typename enable_if<(sizeof(_Tp) >= sizeof(unsigned)), int>::type = 0>
_LIBCPP_HIDE_FROM_ABI to_chars_result
__to_chars_integral(char* __first, char* __last, _Tp __value) {
return __itoa::__integral<_Base>::__to_chars(__first, __last, __value);
}
template <unsigned _Base, typename _Tp,
typename enable_if<(sizeof(_Tp) < sizeof(unsigned)), int>::type = 0>
_LIBCPP_HIDE_FROM_ABI to_chars_result
__to_chars_integral(char* __first, char* __last, _Tp __value) {
return std::__to_chars_integral<_Base>(__first, __last, static_cast<unsigned>(__value));
}
template <typename _Tp>
_LIBCPP_HIDE_FROM_ABI int
__to_chars_integral_width(_Tp __value, unsigned __base) {
_LIBCPP_ASSERT(__value >= 0, "The function requires a non-negative value.");
unsigned __base_2 = __base * __base;
unsigned __base_3 = __base_2 * __base;
unsigned __base_4 = __base_2 * __base_2;
int __r = 0;
while (true) {
if (__value < __base)
return __r + 1;
if (__value < __base_2)
return __r + 2;
if (__value < __base_3)
return __r + 3;
if (__value < __base_4)
return __r + 4;
__value /= __base_4;
__r += 4;
}
__libcpp_unreachable();
}
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI to_chars_result
__to_chars_integral(char* __first, char* __last, _Tp __value, int __base,
false_type)
{
if (__base == 10) [[likely]]
return __to_chars_itoa(__first, __last, __value, false_type());
switch (__base) {
case 2:
return __to_chars_integral<2>(__first, __last, __value);
case 8:
return __to_chars_integral<8>(__first, __last, __value);
case 16:
return __to_chars_integral<16>(__first, __last, __value);
}
ptrdiff_t __cap = __last - __first;
int __n = __to_chars_integral_width(__value, __base);
if (__n > __cap)
return {__last, errc::value_too_large};
__last = __first + __n;
char* __p = __last;
do {
unsigned __c = __value % __base;
__value /= __base;
*--__p = "0123456789abcdefghijklmnopqrstuvwxyz"[__c];
} while (__value != 0);
return {__last, errc(0)};
}
template <typename _Tp, typename enable_if<is_integral<_Tp>::value, int>::type = 0>
inline _LIBCPP_HIDE_FROM_ABI to_chars_result
to_chars(char* __first, char* __last, _Tp __value)
{
using _Type = __make_32_64_or_128_bit_t<_Tp>;
static_assert(!is_same<_Type, void>::value, "unsupported integral type used in to_chars");
return std::__to_chars_itoa(__first, __last, static_cast<_Type>(__value), is_signed<_Tp>());
}
template <typename _Tp, typename enable_if<is_integral<_Tp>::value, int>::type = 0>
inline _LIBCPP_HIDE_FROM_ABI to_chars_result
to_chars(char* __first, char* __last, _Tp __value, int __base)
{
_LIBCPP_ASSERT(2 <= __base && __base <= 36, "base not in [2, 36]");
using _Type = __make_32_64_or_128_bit_t<_Tp>;
return std::__to_chars_integral(__first, __last, static_cast<_Type>(__value), __base, is_signed<_Tp>());
}
template <typename _It, typename _Tp, typename _Fn, typename... _Ts>
inline _LIBCPP_HIDE_FROM_ABI from_chars_result
__sign_combinator(_It __first, _It __last, _Tp& __value, _Fn __f, _Ts... __args)
{
using __tl = numeric_limits<_Tp>;
decltype(__to_unsigned_like(__value)) __x;
bool __neg = (__first != __last && *__first == '-');
auto __r = __f(__neg ? __first + 1 : __first, __last, __x, __args...);
switch (__r.ec)
{
case errc::invalid_argument:
return {__first, __r.ec};
case errc::result_out_of_range:
return __r;
default:
break;
}
if (__neg)
{
if (__x <= __complement(__to_unsigned_like(__tl::min())))
{
__x = __complement(__x);
std::memcpy(&__value, &__x, sizeof(__x));
return __r;
}
}
else
{
if (__x <= __to_unsigned_like(__tl::max()))
{
__value = __x;
return __r;
}
}
return {__r.ptr, errc::result_out_of_range};
}
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI bool
__in_pattern(_Tp __c)
{
return '0' <= __c && __c <= '9';
}
struct _LIBCPP_HIDDEN __in_pattern_result
{
bool __ok;
int __val;
explicit _LIBCPP_HIDE_FROM_ABI operator bool() const { return __ok; }
};
template <typename _Tp>
inline _LIBCPP_HIDE_FROM_ABI __in_pattern_result
__in_pattern(_Tp __c, int __base)
{
if (__base <= 10)
return {'0' <= __c && __c < '0' + __base, __c - '0'};
else if (__in_pattern(__c))
return {true, __c - '0'};
else if ('a' <= __c && __c < 'a' + __base - 10)
return {true, __c - 'a' + 10};
else
return {'A' <= __c && __c < 'A' + __base - 10, __c - 'A' + 10};
}
template <typename _It, typename _Tp, typename _Fn, typename... _Ts>
inline _LIBCPP_HIDE_FROM_ABI from_chars_result
__subject_seq_combinator(_It __first, _It __last, _Tp& __value, _Fn __f,
_Ts... __args)
{
auto __find_non_zero = [](_It __firstit, _It __lastit) {
for (; __firstit != __lastit; ++__firstit)
if (*__firstit != '0')
break;
return __firstit;
};
auto __p = __find_non_zero(__first, __last);
if (__p == __last || !__in_pattern(*__p, __args...))
{
if (__p == __first)
return {__first, errc::invalid_argument};
else
{
__value = 0;
return {__p, {}};
}
}
auto __r = __f(__p, __last, __value, __args...);
if (__r.ec == errc::result_out_of_range)
{
for (; __r.ptr != __last; ++__r.ptr)
{
if (!__in_pattern(*__r.ptr, __args...))
break;
}
}
return __r;
}
template <typename _Tp, typename enable_if<is_unsigned<_Tp>::value, int>::type = 0>
inline _LIBCPP_HIDE_FROM_ABI from_chars_result
__from_chars_atoi(const char* __first, const char* __last, _Tp& __value)
{
using __tx = __itoa::__traits<_Tp>;
using __output_type = typename __tx::type;
return __subject_seq_combinator(
__first, __last, __value,
[](const char* __f, const char* __l,
_Tp& __val) -> from_chars_result {
__output_type __a, __b;
auto __p = __tx::__read(__f, __l, __a, __b);
if (__p == __l || !__in_pattern(*__p))
{
__output_type __m = numeric_limits<_Tp>::max();
if (__m >= __a && __m - __a >= __b)
{
__val = __a + __b;
return {__p, {}};
}
}
return {__p, errc::result_out_of_range};
});
}
template <typename _Tp, typename enable_if<is_signed<_Tp>::value, int>::type = 0>
inline _LIBCPP_HIDE_FROM_ABI from_chars_result
__from_chars_atoi(const char* __first, const char* __last, _Tp& __value)
{
using __t = decltype(__to_unsigned_like(__value));
return __sign_combinator(__first, __last, __value, __from_chars_atoi<__t>);
}
template <typename _Tp, typename enable_if<is_unsigned<_Tp>::value, int>::type = 0>
inline _LIBCPP_HIDE_FROM_ABI from_chars_result
__from_chars_integral(const char* __first, const char* __last, _Tp& __value,
int __base)
{
if (__base == 10)
return __from_chars_atoi(__first, __last, __value);
return __subject_seq_combinator(
__first, __last, __value,
[](const char* __p, const char* __lastp, _Tp& __val,
int __b) -> from_chars_result {
using __tl = numeric_limits<_Tp>;
auto __digits = __tl::digits / log2f(float(__b));
_Tp __x = __in_pattern(*__p++, __b).__val, __y = 0;
for (int __i = 1; __p != __lastp; ++__i, ++__p)
{
if (auto __c = __in_pattern(*__p, __b))
{
if (__i < __digits - 1)
__x = __x * __b + __c.__val;
else
{
if (!__itoa::__mul_overflowed(__x, __b, __x))
++__p;
__y = __c.__val;
break;
}
}
else
break;
}
if (__p == __lastp || !__in_pattern(*__p, __b))
{
if (__tl::max() - __x >= __y)
{
__val = __x + __y;
return {__p, {}};
}
}
return {__p, errc::result_out_of_range};
},
__base);
}
template <typename _Tp, typename enable_if<is_signed<_Tp>::value, int>::type = 0>
inline _LIBCPP_HIDE_FROM_ABI from_chars_result
__from_chars_integral(const char* __first, const char* __last, _Tp& __value,
int __base)
{
using __t = decltype(__to_unsigned_like(__value));
return __sign_combinator(__first, __last, __value,
__from_chars_integral<__t>, __base);
}
template <typename _Tp, typename enable_if<is_integral<_Tp>::value, int>::type = 0>
inline _LIBCPP_HIDE_FROM_ABI from_chars_result
from_chars(const char* __first, const char* __last, _Tp& __value)
{
return __from_chars_atoi(__first, __last, __value);
}
template <typename _Tp, typename enable_if<is_integral<_Tp>::value, int>::type = 0>
inline _LIBCPP_HIDE_FROM_ABI from_chars_result
from_chars(const char* __first, const char* __last, _Tp& __value, int __base)
{
_LIBCPP_ASSERT(2 <= __base && __base <= 36, "base not in [2, 36]");
return __from_chars_integral(__first, __last, __value, __base);
}
// Floating-point implementation starts here.
// Unlike the other parts of charconv this is only available in C++17 and newer.
#if _LIBCPP_STD_VER > 14
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, float __value);
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, double __value);
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, long double __value);
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, float __value, chars_format __fmt);
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, double __value, chars_format __fmt);
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, long double __value, chars_format __fmt);
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, float __value, chars_format __fmt, int __precision);
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, double __value, chars_format __fmt, int __precision);
_LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS
to_chars_result to_chars(char* __first, char* __last, long double __value, chars_format __fmt, int __precision);
# endif // _LIBCPP_STD_VER > 14
#endif // _LIBCPP_CXX03_LANG
_LIBCPP_END_NAMESPACE_STD
_LIBCPP_POP_MACROS
#endif // _LIBCPP_CHARCONV