2022-10-13 17:06:22 +02:00
|
|
|
absl-py
|
2023-07-14 08:30:41 -07:00
|
|
|
build
|
2022-02-16 15:04:56 -05:00
|
|
|
cloudpickle
|
2021-09-24 22:08:42 -04:00
|
|
|
colorama>=0.4.4
|
2024-06-11 11:53:10 +01:00
|
|
|
filelock
|
2023-12-11 23:22:16 -08:00
|
|
|
flatbuffers
|
2023-08-01 16:42:26 -07:00
|
|
|
hypothesis
|
2024-03-21 23:35:29 +02:00
|
|
|
mpmath>=1.3
|
2024-09-25 14:55:46 +00:00
|
|
|
pillow>=10.4.0
|
2025-03-14 08:56:27 -07:00
|
|
|
# TODO(kanglan): Remove once psutil from portpicker supports python 3.13t
|
2025-02-03 13:29:16 -08:00
|
|
|
portpicker; python_version<"3.13"
|
2020-06-11 17:10:56 -04:00
|
|
|
pytest-xdist
|
Attach source info to Jaxpr equations. (#3421)
* Attach source info to Jaxpr equations.
Example:
```
In [1]: import jax, jax.numpy as jnp
In [2]: def f(x, y):
...: z = jax.numpy.cos(x)
...: z = z * jax.numpy.tanh(y)
...: return z + 2
...:
In [3]: jax.make_jaxpr(jax.value_and_grad(f))(7., 9.)
Out[3]:
{ lambda ; a b.
let c = cos a [<ipython-input-2-5d59f71cb65d>:2 (f)]
d = tanh b [<ipython-input-2-5d59f71cb65d>:3 (f)]
e = mul c d [<ipython-input-2-5d59f71cb65d>:3 (f)]
f = add e 2.0 [<ipython-input-2-5d59f71cb65d>:4 (f)]
g = mul 1.0 d [<ipython-input-2-5d59f71cb65d>:3 (f)]
h = neg g [<ipython-input-2-5d59f71cb65d>:2 (f)]
i = sin a [<ipython-input-2-5d59f71cb65d>:2 (f)]
j = mul h i [<ipython-input-2-5d59f71cb65d>:2 (f)]
in (f, j) }
In [7]: print(jax.xla_computation(jax.value_and_grad(f))(7., 9.).as_hlo_module().to_string())
HloModule xla_computation_f__4.15
ENTRY %xla_computation_f__4.15 (parameter.1: f32[], parameter.2: f32[]) -> (f32[], f32[]) {
%constant.3 = pred[] constant(false)
%parameter.1 = f32[] parameter(0)
%cosine.4 = f32[] cosine(f32[] %parameter.1), metadata={op_type="cos" op_name="xla_computation(f)/cos" source_file="<ipython-input-2-5d59f71cb65d>" source_line=2}
%parameter.2 = f32[] parameter(1)
%tanh.5 = f32[] tanh(f32[] %parameter.2), metadata={op_type="tanh" op_name="xla_computation(f)/tanh" source_file="<ipython-input-2-5d59f71cb65d>" source_line=3}
%multiply.6 = f32[] multiply(f32[] %cosine.4, f32[] %tanh.5), metadata={op_type="mul" op_name="xla_computation(f)/mul" source_file="<ipython-input-2-5d59f71cb65d>" source_line=3}
%constant.7 = f32[] constant(2), metadata={op_type="add" op_name="xla_computation(f)/add" source_file="<ipython-input-2-5d59f71cb65d>" source_line=4}
%add.8 = f32[] add(f32[] %multiply.6, f32[] %constant.7), metadata={op_type="add" op_name="xla_computation(f)/add" source_file="<ipython-input-2-5d59f71cb65d>" source_line=4}
%constant.9 = f32[] constant(1), metadata={op_type="mul" op_name="xla_computation(f)/mul" source_file="<ipython-input-2-5d59f71cb65d>" source_line=3}
%multiply.10 = f32[] multiply(f32[] %constant.9, f32[] %tanh.5), metadata={op_type="mul" op_name="xla_computation(f)/mul" source_file="<ipython-input-2-5d59f71cb65d>" source_line=3}
%negate.11 = f32[] negate(f32[] %multiply.10), metadata={op_type="neg" op_name="xla_computation(f)/neg" source_file="<ipython-input-2-5d59f71cb65d>" source_line=2}
%sine.12 = f32[] sine(f32[] %parameter.1), metadata={op_type="sin" op_name="xla_computation(f)/sin" source_file="<ipython-input-2-5d59f71cb65d>" source_line=2}
%multiply.13 = f32[] multiply(f32[] %negate.11, f32[] %sine.12), metadata={op_type="mul" op_name="xla_computation(f)/mul" source_file="<ipython-input-2-5d59f71cb65d>" source_line=2}
ROOT %tuple.14 = (f32[], f32[]) tuple(f32[] %add.8, f32[] %multiply.13)
}
```
Co-authored-by: Matthew Johnson <mattjj@google.com>
2020-06-17 19:35:36 -04:00
|
|
|
wheel
|
2022-09-15 19:04:49 -07:00
|
|
|
rich
|
2025-03-10 11:34:16 -07:00
|
|
|
setuptools
|
2024-10-31 10:04:38 -07:00
|
|
|
# matplotlib 3.9.0 pins NumPy 1.23, which is incompatible with the requirement
|
|
|
|
# below.
|
2024-11-01 12:33:58 -07:00
|
|
|
matplotlib~=3.8.4; python_version=="3.10"
|
2024-10-31 10:04:38 -07:00
|
|
|
matplotlib; python_version>="3.11"
|
|
|
|
opt-einsum
|
2025-03-17 08:58:18 -07:00
|
|
|
auditwheel
|