rocm_jax/tests/pjit_test.py

697 lines
27 KiB
Python
Raw Normal View History

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from functools import partial
import logging
2021-07-01 11:59:13 -07:00
import threading
from unittest import SkipTest
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import jax
import jax.numpy as jnp
from jax import test_util as jtu
from jax.errors import JAXTypeError
from jax import lax
# TODO(skye): do we still wanna call this PartitionSpec?
from jax.experimental import PartitionSpec as P
from jax.experimental.maps import xmap, mesh
from jax.experimental.pjit import pjit, pjit_p, with_sharding_constraint, SpecSync
from jax.interpreters import pxla
from jax.interpreters import xla
from jax._src.lib import xla_client
from jax._src.util import prod, curry
from jax.config import config
config.parse_flags_with_absl()
def setUpModule():
2021-06-01 14:32:59 +03:00
jtu.set_spmd_lowering_flag(True)
def tearDownModule():
2021-06-01 14:32:59 +03:00
jtu.restore_spmd_lowering_flag()
# TODO(skye): make the buffer donation utils part of JaxTestCase
class PJitTest(jtu.BufferDonationTestCase):
@jtu.with_mesh([('x', 1)])
def testDeviceBufferAval(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=P('x'))
def f(x):
return x
shape = (2, 2)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
actual = f(x)
expected = x
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertIsInstance(actual, pxla.ShardedDeviceArray)
self.assertLen(actual.device_buffers, 1)
self.assertAllClose(
actual.device_buffers[0].to_py(), expected, check_dtypes=False)
# Repro for a bug on device_buffer aval
_ = repr(actual.device_buffers)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testBasic1D(self):
@partial(pjit,
in_axis_resources=(P('x'), P('x')),
out_axis_resources=None)
def f(x, y):
return x + y
shape = (8, 8)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
actual = f(x, x + 1)
expected = x + (x + 1)
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertIsInstance(actual, pxla.ShardedDeviceArray)
self.assertLen(actual.device_buffers, 2)
self.assertAllClose(actual.device_buffers[0].to_py(), expected,
check_dtypes=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 2)])
def testBasic2D(self):
@partial(pjit,
in_axis_resources=(P(None, 'x', 'y'), P('y')),
out_axis_resources=P('x'))
def f(x, y):
return x @ y
x_shape = (8, 6, 4)
y_shape = (4, 2)
x = jnp.arange(np.prod(x_shape)).reshape(x_shape)
y = jnp.arange(np.prod(y_shape)).reshape(y_shape)
actual = f(x, y)
expected = x @ y
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertIsInstance(actual, pxla.ShardedDeviceArray)
self.assertLen(actual.device_buffers, 4)
split0, split1 = np.split(expected, 2)
self.assertAllClose(actual.device_buffers[0].to_py(), split0,
check_dtypes=False)
self.assertAllClose(actual.device_buffers[1].to_py(), split0,
check_dtypes=False)
self.assertAllClose(actual.device_buffers[2].to_py(), split1,
check_dtypes=False)
self.assertAllClose(actual.device_buffers[3].to_py(), split1,
check_dtypes=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 2)])
def testTwoMeshAxisSharding(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
actual = f(x, x + 1)
expected = x @ (x + 1)
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertIsInstance(actual, pxla.ShardedDeviceArray)
self.assertLen(actual.device_buffers, 4)
splits = np.split(expected, 4)
self.assertAllClose(actual.device_buffers[0].to_py(), splits[0],
check_dtypes=False)
self.assertAllClose(actual.device_buffers[1].to_py(), splits[1],
check_dtypes=False)
self.assertAllClose(actual.device_buffers[2].to_py(), splits[2],
check_dtypes=False)
self.assertAllClose(actual.device_buffers[3].to_py(), splits[3],
check_dtypes=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testBufferDonation(self):
@partial(pjit,
in_axis_resources=P('x'),
out_axis_resources=P('x'),
donate_argnums=0)
def f(x, y):
return x + y
shard = pjit(lambda x: x, in_axis_resources=P('x'),
out_axis_resources=P('x'))
x = shard(jnp.ones((2, 5)) * 4)
y = shard(jnp.ones((2, 5)) * 2)
expected = x + y
self.assertAllClose(f(x, y), expected)
self.assertNotDeleted(y)
self.assertDeleted(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testShardingConstraint(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=None)
def f(x):
y = x + 1
y = with_sharding_constraint(y, P('x', 'y'))
return y * 2
shape = (8, 8)
x = np.arange(prod(shape)).reshape(shape)
expected = (x + 1) * 2
actual = f(x)
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertIsInstance(actual, pxla.ShardedDeviceArray)
self.assertLen(actual.device_buffers, 2)
self.assertAllClose(actual.device_buffers[0].to_py(), expected,
check_dtypes=False)
hlo = jax.xla_computation(f)(np.ones(shape))
# Annotation from with_sharding_constraint
self.assertIn("sharding={devices=[2,1]0,1}", hlo.as_hlo_text())
# Annotation from pjit
self.assertIn("sharding={replicated}", hlo.as_hlo_text())
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testShardingConstraintPyTree(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=None)
def f(x):
x = with_sharding_constraint(x, [P('x', 'y'), P('y', 'x')])
x = x.copy()
x[0]["a"] *= 2
return x
shape = (8, 8)
v = np.arange(prod(shape)).reshape(shape)
x = [{"a": v, "b": v * 2}, v * 3]
actual = f(x)
expected = x.copy()
expected[0]["a"] *= 2
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertLen(actual[0]["a"].device_buffers, 2)
hlo = jax.xla_computation(f)(x)
# Annotations from with_sharding_constraint
self.assertIn("sharding={devices=[2,1]0,1}", hlo.as_hlo_text())
self.assertIn("sharding={devices=[1,2]0,1}", hlo.as_hlo_text())
# Annotation from pjit
self.assertIn("sharding={replicated}", hlo.as_hlo_text())
def testCaching(self):
def f(x):
assert should_be_tracing
return jnp.sin(x) * 2
x = np.arange(16).reshape(4, 4)
devices = np.array(list(jax.local_devices())[:4])
if devices.size < 4:
raise SkipTest("Test requires 4 devices")
devices = devices.reshape((2, 2))
with mesh(devices, ('x', 'y')):
should_be_tracing = True
pjit(f, in_axis_resources=P(('x', 'y')), out_axis_resources=None)(x)
should_be_tracing = False
pjit(f, in_axis_resources=P(('x', 'y')), out_axis_resources=None)(x)
# Re-create the mesh to make sure that has no influence on caching
with mesh(devices, ('x', 'y')):
should_be_tracing = False
pjit(f, in_axis_resources=P(('x', 'y')), out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testNested(self):
# Add a constant captured by the nested pjit to make things more complicated
h = jnp.arange(4)
f = pjit(lambda x: x.sum() + h.sum(), in_axis_resources=P('x', 'y'), out_axis_resources=None)
g = pjit(lambda x: f(jnp.sin(x)), in_axis_resources=P('x', None), out_axis_resources=None)
x = jnp.arange(16).reshape((4, 4))
y = g(x)
self.assertAllClose(y, jnp.sin(x).sum() + h.sum())
self.assertTrue(hasattr(y, "sharding_spec"))
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testJVP(self):
# Add a constant captured by the nested pjit to make things more complicated
h = jnp.arange(4)
f = pjit(lambda x: x.sum() + h.sum(), in_axis_resources=P('x', 'y'), out_axis_resources=None)
g = pjit(lambda x: f(x + 2), in_axis_resources=P('x', None), out_axis_resources=None)
jtu.check_grads(g, (jnp.arange(16, dtype=jnp.float32).reshape((4, 4)),),
order=2, modes=["fwd"], eps=1)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testEvalJaxpr(self):
x, y = jnp.arange(4), jnp.arange(5)
f = pjit(lambda x, y: x.sum() + jnp.sin(y),
in_axis_resources=(P('x'), P('y')),
out_axis_resources=P('y'))
f_jaxpr = jax.make_jaxpr(f)(x, y)
f_eval = jax.core.jaxpr_as_fun(f_jaxpr)
r, = f_eval(x, y)
self.assertAllClose(r, x.sum() + jnp.sin(y))
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testNonArrayArg(self):
self.assertEqual(pjit(lambda x: x + 2,
in_axis_resources=None,
out_axis_resources=None)(1), 3)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testNonHashableAxisResources(self):
x = jnp.arange(4)
y = pjit(lambda x: {'b': x['a'] + 2},
in_axis_resources=({'a': P('x')},),
out_axis_resources={'b': P('x')})({'a': x})
self.assertAllClose(y, {'b': x + 2})
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testGradOfConstraint(self):
# Make sure that we can compute grads through sharding constraints
h = lambda x: jnp.sin(with_sharding_constraint(x, P('x'))).sum()
f = pjit(lambda x: jax.grad(h)(x),
in_axis_resources=None, out_axis_resources=None)
x = jnp.arange(8, dtype=jnp.float32)
self.assertAllClose(f(x), jnp.cos(x))
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testNoopPartitionSpecs(self):
noops = [P(), P(None), P(()), P((), None), P(None, None, ())]
x = jnp.arange(8).reshape((2, 2, 2))
for spec in noops:
y = pjit(lambda x: x * 2, in_axis_resources=spec, out_axis_resources=spec)(x)
self.assertAllClose(y, x * 2)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testVmapModifiesAxisResources(self):
h = pjit(lambda x, y: (x + y, x, y), in_axis_resources=P('x'), out_axis_resources=None)
x = jnp.arange(4)
y = jnp.arange(5*4).reshape((5, 4))
jaxpr = jax.make_jaxpr(jax.vmap(h, in_axes=(None, 0)))(x, y).jaxpr
eqn = jaxpr.eqns[0]
self.assertIs(eqn.primitive, pjit_p)
x_sync, y_sync = (spec.sync for spec in eqn.params['in_axis_resources'])
self.assertEqual(x_sync, SpecSync.IN_SYNC)
self.assertEqual(y_sync, SpecSync.DIM_PERMUTE)
x_sync, y_sync, z_sync = (spec.sync for spec in eqn.params['out_axis_resources'])
self.assertEqual(x_sync, SpecSync.DIM_PERMUTE)
self.assertEqual(y_sync, SpecSync.IN_SYNC)
self.assertEqual(z_sync, SpecSync.DIM_PERMUTE)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testVMap(self):
f = pjit(lambda x, y: (x + y, x), in_axis_resources=P('x'), out_axis_resources=P('x'))
x = jnp.arange(4)
y = jnp.arange(5*4).reshape((5, 4))
z, w = jax.vmap(f, in_axes=(None, 0), out_axes=(0, None))(x, y)
self.assertAllClose(z, x + y)
self.assertAllClose(w, x)
self.assertEqual(z.sharding_spec.sharding, (pxla.NoSharding(), pxla.Chunked([2])))
self.assertEqual(w.sharding_spec.sharding, (pxla.Chunked([2]),))
@jtu.with_mesh([('x', 2)])
def testVMapShardingConstraint(self):
f = pjit(lambda x: with_sharding_constraint(x, P('x')),
in_axis_resources=P(), out_axis_resources=P('x'))
x = jnp.arange(5*4).reshape((5, 4))
jaxpr = jax.make_jaxpr(jax.vmap(f))(x)
pjit_eqn, = jaxpr.eqns
constraint_eqn, = pjit_eqn.params['jaxpr'].eqns
self.assertEqual(constraint_eqn.params['axis_resources'].partitions, ((), ('x',)))
self.assertEqual(constraint_eqn.params['axis_resources'].sync, SpecSync.DIM_PERMUTE)
@jtu.with_mesh([('x', 2), ('y', 1)])
def testShardingInXMap(self):
h = pjit(lambda x: x, in_axis_resources=P('x'), out_axis_resources=None)
f = xmap(lambda x: h(x * 2), in_axes=['i', ...], out_axes=['i', ...],
axis_resources={'i': 'y'})
x = jnp.arange(16).reshape((4, 4))
self.assertIn(pjit_p, xla.call_translations)
rule = xla.call_translations[pjit_p]
test_rule_called = False
def _test_rule(*args, **kwargs):
nonlocal test_rule_called
test_rule_called = True
in_axis_resources = kwargs['in_axis_resources']
self.assertEqual(len(in_axis_resources), 1)
self.assertIn(('y',), in_axis_resources[0].partitions)
return rule(*args, **kwargs)
try:
xla.call_translations[pjit_p] = _test_rule
f(x)
self.assertTrue(test_rule_called)
finally:
xla.call_translations[pjit_p] = rule
def testInfeed(self):
devices = np.array(jax.local_devices())
nr_devices = len(devices)
shape = (nr_devices * 3, nr_devices * 5)
def f_for_jit(x):
token = lax.create_token(x)
(y,), token = lax.infeed(
token, shape=(jax.ShapedArray(x.shape, np.float32),))
(z,), token = lax.infeed(
token, shape=(jax.ShapedArray(x.shape, np.float32),))
(w,), token = lax.infeed(
token, shape=(jax.ShapedArray(x.shape, np.float32),))
return x + y + z + w
x = np.arange(np.prod(shape), dtype=np.float32).reshape(shape)
y = x * 2.
z = x * 3.
w = x * 4.
# Transfer data to infeed before executing the function. For GPUs, the
# execution of the compiled function is blocking, so transferring data
# to infeed before executing ensures that the execution does not deadlock
# waiting for the infeed data.
logging.info('Transfering to infeed for the jit call')
d = devices[0]
d.transfer_to_infeed((y,))
d.transfer_to_infeed((z,))
d.transfer_to_infeed((w,))
# JIT
logging.info('Making jit call')
res0 = jax.jit(f_for_jit)(x)
self.assertAllClose(res0, x + y + z + w, check_dtypes=True)
# PJIT
def f_for_pjit(x):
token = lax.create_token(x)
# A replicated infeed
(y,), token = lax.infeed(
token,
shape=(jax.ShapedArray(x.shape, np.float32),),
partitions=(None,))
# An infeed sharded on first axis
(z,), token = lax.infeed(
token,
shape=(jax.ShapedArray(x.shape, np.float32),),
partitions=(P(nr_devices, 1),))
# An infeed sharded on second axis
(w,), token = lax.infeed(
token,
shape=(jax.ShapedArray(x.shape, np.float32),),
partitions=(P(1, nr_devices),))
return x + y + z + w
logging.info('Transfering to infeed for the pjit call')
for didx, d in enumerate(devices):
# Transfer the whole array to all devices for replicated.
d.transfer_to_infeed((y,))
# For sharded infeed, transfer only the needed slices to each device.
d.transfer_to_infeed((z[3 * didx:3 * didx + 3, :]))
d.transfer_to_infeed((w[:, 5 * didx:5 * didx + 5],))
with mesh(devices, ['d']):
logging.info('Making pjit call')
res = pjit(
f_for_pjit, in_axis_resources=(P('d'),), out_axis_resources=P('d'))(
x)
self.assertAllClose(res0, res, check_dtypes=True)
2021-07-01 11:59:13 -07:00
def testOutfeed(self):
devices = np.array(jax.local_devices())
nr_devices = len(devices)
shape = (nr_devices * 3, nr_devices * 5)
def f(x):
token = lax.create_token(x)
token = lax.outfeed(token, x, partitions=(None,))
token = lax.outfeed(token, x, partitions=(P(nr_devices, 1),))
token = lax.outfeed(token, x, partitions=(P(1, nr_devices),))
return x
x = np.arange(np.prod(shape), dtype=np.float32).reshape(shape)
def dispatch():
with mesh(devices, ['d']):
logging.info('Making pjit call')
pjit(f, in_axis_resources=(P('d'),), out_axis_resources=P('d'))(x)
execution = threading.Thread(target=dispatch)
execution.start()
def check_outfeed(d, x):
y, = d.transfer_from_outfeed(
xla_client.shape_from_pyval((x,)).with_major_to_minor_layout_if_absent())
self.assertAllClose(x, y, check_dtypes=True)
logging.info('Transfering from outfeed for the pjit call')
for didx, d in enumerate(devices):
# Transfer the whole array from all devices for replicated.
check_outfeed(d, x)
# For sharded outfeed, the results are sliced.
check_outfeed(d, x[3 * didx:3 * didx + 3, :])
check_outfeed(d, x[:, 5 * didx:5 * didx + 5])
execution.join()
@curry
def check_1d_2d_mesh(f, set_mesh):
return parameterized.named_parameters(
{"testcase_name": "_" + name, "mesh": mesh, "resources": resources}
for name, mesh, resources in (
("2", (("x", 2),), "x"),
("2x1", (("x", 2), ("y", 1)), ("x", "y")),
("2x2", (("x", 2), ("y", 2)), ("x", "y")),
2021-06-01 14:32:59 +03:00
))(jtu.with_mesh_from_kwargs(f) if set_mesh else f)
def spec_regex(s):
return str(s).replace(r"(", r"\(").replace(r")", r"\)")
class PJitErrorTest(jtu.JaxTestCase):
@check_1d_2d_mesh(set_mesh=True)
def testNonDivisibleArgs(self, mesh, resources):
x = jnp.ones((3, 2))
spec = P(resources, None)
mesh_size = str(np.prod([dim[1] for dim in mesh], dtype=np.int64))
with self.assertRaisesRegex(ValueError,
r"One of pjit arguments.*" + spec_regex(spec) + r".*"
r"implies that the size of its dimension 0 should be "
r"divisible by " + mesh_size + r", but it is equal to 3"):
pjit(lambda x: x, in_axis_resources=spec, out_axis_resources=None)(x)
@check_1d_2d_mesh(set_mesh=True)
def testNonDivisibleOuts(self, mesh, resources):
x = jnp.ones((3, 2))
spec = P(resources, None)
mesh_size = str(np.prod([dim[1] for dim in mesh], dtype=np.int64))
with self.assertRaisesRegex(ValueError,
r"One of pjit outputs.*" + spec_regex(spec) + r".*"
r"implies that the size of its dimension 0 should be "
r"divisible by " + mesh_size + r", but it is equal to 3"):
pjit(lambda x: x, in_axis_resources=None, out_axis_resources=P(resources, None))(x)
@check_1d_2d_mesh(set_mesh=True)
def testNonDivisibleConstraint(self, mesh, resources):
x = jnp.ones((3, 2))
spec = P(resources,)
mesh_size = str(np.prod([dim[1] for dim in mesh], dtype=np.int64))
with self.assertRaisesRegex(ValueError,
r"One of with_sharding_constraint arguments"
r".*" + spec_regex(spec) + r".*implies that the size of "
r"its dimension 0 should be divisible by " + mesh_size +
r", but it is equal to 3"):
pjit(lambda x: with_sharding_constraint(x, spec),
in_axis_resources=None, out_axis_resources=None)(x)
@check_1d_2d_mesh(set_mesh=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('z', 1)])
def testUndefinedResourcesArgs(self, mesh, resources):
x = jnp.ones((2, 2))
spec = P(resources,)
with self.assertRaisesRegex(ValueError,
r"One of pjit arguments.*" + spec_regex(spec) + r", "
r"but resource axis x is undefined."):
pjit(lambda x: x, in_axis_resources=spec, out_axis_resources=None)(x)
@check_1d_2d_mesh(set_mesh=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('z', 1)])
def testUndefinedResourcesOuts(self, mesh, resources):
x = jnp.ones((2, 2))
spec = P(resources,)
with self.assertRaisesRegex(ValueError,
r"One of pjit outputs.*" + spec_regex(spec) + r", "
r"but resource axis x is undefined."):
pjit(lambda x: x, in_axis_resources=None, out_axis_resources=spec)(x)
@check_1d_2d_mesh(set_mesh=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('z', 1)])
def testUndefinedResourcesConstraint(self, mesh, resources):
x = jnp.ones((2, 2))
spec = P(resources,)
with self.assertRaisesRegex(ValueError,
r"One of with_sharding_constraint arguments"
r".*" + spec_regex(spec) + r", but resource axis "
r"x is undefined."):
pjit(lambda x: with_sharding_constraint(x, spec),
in_axis_resources=None, out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRankTooLowArgs(self):
x = jnp.arange(2)
spec = P('x', 'y')
error = (r"One of pjit arguments.*" + spec_regex(spec) + r", which implies "
r"that it has a rank of at least 2, but it is 1")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x.sum(), in_axis_resources=spec, out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRankTooLowOuts(self):
x = jnp.arange(2)
spec = P('x', 'y')
error = (r"One of pjit outputs.*" + spec_regex(spec) + r", which implies "
r"that it has a rank of at least 2, but it is 0")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x.sum(), in_axis_resources=None, out_axis_resources=spec)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRankTooLowConstraint(self):
x = jnp.arange(2)
spec = P('x', 'y')
error = (r"One of with_sharding_constraint arguments " +
r"was given.*" + spec_regex(spec) + r", which implies "
r"that it has a rank of at least 2, but it is 1")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: with_sharding_constraint(x, spec),
in_axis_resources=None, out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRepeatedInResources(self):
x = jnp.arange(2)
for spec in [P('x', 'x'), P('x', ('y', 'x'))]:
error = (r"A single in_axis_resources specification can map every mesh "
r"axis to at most one positional dimension, but " +
spec_regex(spec) + " has duplicate entries for `x`")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, in_axis_resources=spec, out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRepeatedOutResources(self):
x = jnp.arange(2)
for spec in [P('x', 'x'), P('x', ('y', 'x'))]:
error = (r"A single out_axis_resources specification can map every mesh "
r"axis to at most one positional dimension, but " +
spec_regex(spec) + " has duplicate entries for `x`")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, in_axis_resources=None, out_axis_resources=spec)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testInputShardsXMapAxis(self):
spec = P('x')
f = xmap(pjit(lambda x: x + 2, in_axis_resources=spec, out_axis_resources=None),
in_axes=['i', ...], out_axes=['i', ...], axis_resources={'i': 'x'})
x = jnp.arange(4).reshape((2, 2))
error = (r"pjit input has an axis resources specification of " +
spec_regex(spec) + r" that uses one or more mesh axes already used by "
r"xmap to partition a named axis appearing in its named_shape \(both "
r"use mesh axes `x`\)")
with self.assertRaisesRegex(JAXTypeError, error):
f(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testOutputShardsXMapAxis(self):
spec = P('x')
f = xmap(pjit(lambda x: x + 2, in_axis_resources=None, out_axis_resources=spec),
in_axes=['i', ...], out_axes=['i', ...], axis_resources={'i': 'x'})
x = jnp.arange(4).reshape((2, 2))
error = (r"pjit output has an axis resources specification of " +
spec_regex(spec) + r" that uses one or more mesh axes already used by "
r"xmap to partition a named axis appearing in its named_shape \(both "
r"use mesh axes `x`\)")
with self.assertRaisesRegex(JAXTypeError, error):
f(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testConstraintShardsXMapAxis(self):
spec = P('x')
f = xmap(lambda x: with_sharding_constraint(x, axis_resources=spec),
in_axes=['i', ...], out_axes=['i', ...], axis_resources={'i': 'x'})
x = jnp.arange(4).reshape((2, 2))
error = (r"with_sharding_constraint input has an axis resources specification of " +
spec_regex(spec) + r" that uses one or more mesh axes already used by "
r"xmap to partition a named axis appearing in its named_shape \(both "
r"use mesh axes `x`\)")
with self.assertRaisesRegex(JAXTypeError, error):
f(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testCatchesInnerXMapErrors(self):
f = pjit(xmap(lambda x, y: x, in_axes=(['i'], ['j']), out_axes=['i', 'j'],
axis_resources={'i': 'x', 'j': 'x'}),
in_axis_resources=None, out_axis_resources=None)
x = jnp.arange(4)
with self.assertRaises(JAXTypeError):
f(x, x)
def testEmptyMesh(self):
error = (r"pjit requires a non-empty mesh! Are you sure that it's defined "
r"at the call site?")
with self.assertRaisesRegex(RuntimeError, error):
pjit(lambda x: x, in_axis_resources=None, out_axis_resources=None)(jnp.arange(4))
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLinearizeNotImplemented(self):
# pending https://github.com/google/jax/pull/6876
@partial(pjit,
in_axis_resources=(P(None, 'x', 'y'), P('y')),
out_axis_resources=P('x'))
def f(x, y):
return x @ y
x_shape = (8, 6, 4)
y_shape = (4, 2)
x = jnp.arange(np.prod(x_shape)).reshape(x_shape)
y = jnp.arange(np.prod(y_shape)).reshape(y_shape)
with self.assertRaisesRegex(NotImplementedError, "6876"):
jax.linearize(f, x, y)
@jtu.with_mesh([('x', 2)])
def testAxisResourcesMismatch(self):
x = jnp.ones([])
p = [None, None, None]
pjit(lambda x: x, (p,), p)([x, x, x]) # OK
error = re.escape(
r"pjit in_axis_resources specification must be a tree prefix of the "
r"corresponding value, got specification (None, None, None) for value "
r"tree PyTreeDef((*, *)). Note that pjit in_axis_resources that are "
r"non-trivial pytrees should always be wrapped in a tuple representing "
r"the argument list.")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x, y: x, p, p)(x, x) # Error, but make sure we hint at tupling
# TODO(apaszke): Disable implicit list casts and enable this
# error = re.escape(
# r"pjit in_axis_resources specification must be a tree prefix of the "
# r"corresponding value, got specification (None, None, None) for value "
# r"tree PyTreeDef(([*, *, *],)). Note that pjit in_axis_resources that "
# r"are non-trivial pytrees should always be wrapped in a tuple representing "
# r"the argument list. In particular, you're passing in a single argument "
# r"which means that pjit in_axis_resources might need to be wrapped in a "
# r"singleton tuple.")
# with self.assertRaisesRegex(ValueError, error):
# pjit(lambda x: x, p, p)([x, x, x]) # Error, but make sure we hint at singleton tuple
error = re.escape(
r"pjit out_axis_resources specification must be a tree prefix of the "
r"corresponding value, got specification [[None, None, None], None] for "
r"value tree PyTreeDef([*, *, *]).")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, (p,), [p, None])([x, x, x]) # Error, we raise a generic tree mismatch message
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())