rocm_jax/tests/pjit_test.py

3975 lines
144 KiB
Python
Raw Normal View History

# Copyright 2021 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from functools import partial, lru_cache
import logging
2021-07-01 11:59:13 -07:00
import threading
import unittest
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
from collections import OrderedDict, namedtuple
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import concurrent.futures
import jax
import jax.numpy as jnp
from jax._src import dispatch
from jax._src import test_util as jtu
from jax._src.config import parallel_functions_output_gda, jax_array
from jax import dtypes
from jax import stages
from jax.errors import JAXTypeError
from jax import lax
from jax.lax import with_sharding_constraint
from jax import prng
from jax.sharding import PartitionSpec as P
from jax.experimental.maps import xmap
from jax.experimental import global_device_array
from jax.experimental import multihost_utils
from jax.experimental.custom_partitioning import custom_partitioning
from jax._src import array
from jax._src.sharding import NamedSharding, Sharding, OpShardingSharding
import jax._src.pjit as pjit_lib
from jax._src.pjit import (pjit, pjit_p, FROM_GDA, AUTO)
from jax._src.interpreters import pxla
from jax.interpreters import mlir
from jax._src.lib import xla_client as xc, xla_bridge, xla_extension_version
from jax._src.util import prod, curry, unzip2, safe_zip
from jax.config import config
config.parse_flags_with_absl()
prev_xla_flags = None
def setUpModule():
global prev_xla_flags
prev_xla_flags = os.getenv("XLA_FLAGS")
flags_str = prev_xla_flags or ""
# Don't override user-specified device count, or other XLA flags.
if "xla_force_host_platform_device_count" not in flags_str:
os.environ["XLA_FLAGS"] = (flags_str +
" --xla_force_host_platform_device_count=8")
# Clear any cached backends so new CPU backend will pick up the env var.
xla_bridge.get_backend.cache_clear()
2021-06-01 14:32:59 +03:00
jtu.set_spmd_lowering_flag(True)
def tearDownModule():
if prev_xla_flags is None:
del os.environ["XLA_FLAGS"]
else:
os.environ["XLA_FLAGS"] = prev_xla_flags
xla_bridge.get_backend.cache_clear()
2021-06-01 14:32:59 +03:00
jtu.restore_spmd_lowering_flag()
def create_gda(global_shape, global_mesh, mesh_axes, global_data=None,
dtype=np.float32):
if global_data is None:
global_data = np.arange(
prod(global_shape), dtype=dtype).reshape(global_shape)
if isinstance(mesh_axes, Sharding):
mesh_axes = mesh_axes.spec
return global_device_array.GlobalDeviceArray.from_callback(
global_shape, global_mesh, mesh_axes, lambda idx: global_data[idx]), global_data
def create_array(global_shape, global_mesh, mesh_axes, global_data=None,
dtype=np.float32):
if global_data is None:
global_data = np.arange(
prod(global_shape), dtype=dtype).reshape(global_shape)
if isinstance(mesh_axes, Sharding):
sharding = mesh_axes
else:
sharding = NamedSharding(global_mesh, mesh_axes)
return array.make_array_from_callback(
global_shape, sharding, lambda idx: global_data[idx]), global_data
@lru_cache()
def simulated_cached_fun(s):
return s
def _check_instance(self, x):
if config.jax_array:
self.assertIsInstance(x, array.ArrayImpl)
else:
self.assertIsInstance(x, pxla.ShardedDeviceArray)
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
@curry
def check_1d_2d_mesh(f, set_mesh):
return parameterized.named_parameters(
{"testcase_name": "_" + name, "mesh": mesh, "resources": resources}
for name, mesh, resources in (
("2", (("x", 2),), "x"),
("2x1", (("x", 2), ("y", 1)), ("x", "y")),
("2x2", (("x", 2), ("y", 2)), ("x", "y")),
))(jtu.with_mesh_from_kwargs(f) if set_mesh else f)
# TODO(skye): make the buffer donation utils part of JaxTestCase
@jtu.pytest_mark_if_available('multiaccelerator')
class PJitTest(jtu.BufferDonationTestCase):
@jtu.with_mesh([('x', 1)])
def testDeviceBufferAval(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=P('x'))
def f(x):
return x
shape = (2, 2)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
actual = f(x)
expected = x
self.assertAllClose(actual, expected, check_dtypes=False)
_check_instance(self, actual)
self.assertLen(actual.device_buffers, 1)
self.assertAllClose(
np.asarray(actual.device_buffers[0]), expected, check_dtypes=False)
# Repro for a bug on device_buffer aval
_ = repr(actual.device_buffers)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testBasic1D(self):
@partial(pjit,
in_axis_resources=(P('x'), P('x')),
out_axis_resources=None)
def f(x, y):
return x + y
shape = (8, 8)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
actual = f(x, x + 1)
expected = x + (x + 1)
self.assertAllClose(actual, expected, check_dtypes=False)
_check_instance(self, actual)
self.assertLen(actual.device_buffers, 2)
self.assertAllClose(np.asarray(actual.device_buffers[0]), expected,
check_dtypes=False)
@jtu.with_mesh([('x', 2)])
def testJitOfPjitDisallowed(self):
@partial(pjit,
in_axis_resources=(P('x'), P('x')),
out_axis_resources=None)
def f(x, y):
return x + y
shape = (8, 8)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
if config.jax_array:
out = jax.jit(f)(x, x + 1)
self.assertArraysEqual(out, x + x + 1)
else:
with self.assertRaises(RuntimeError,
msg="Nesting pjit() inside jit() is not allowed."):
jax.jit(f)(x, x + 1)
@jtu.with_mesh([('x', 2)])
def testUnevenShardingConstraint(self):
@partial(pjit,
in_axis_resources=(P('x'), P('x')),
out_axis_resources=None)
def f(x, y):
x = x[:3]
y = y[:3]
x = with_sharding_constraint(x, P('x'))
y = with_sharding_constraint(y, P('x'))
out = x + y
return jnp.pad(out, [[0, 1]])
shape = (4,)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
actual = f(x, x + 1)
expected = x + (x + 1)
self.assertAllClose(actual[:3], expected[:3], check_dtypes=False)
_check_instance(self, actual)
self.assertLen(actual.device_buffers, 2)
self.assertAllClose(np.asarray(actual.device_buffers[0])[:3], expected[:3],
check_dtypes=False)
def testBasic1DWithMeshContextManager(self):
@partial(pjit,
in_axis_resources=(P('x'), P('x')),
out_axis_resources=None)
def f(x, y):
return x + y
shape = (8, 8)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
with jtu.create_global_mesh((2,), ('x')) as mesh:
actual = f(x, x + 1)
expected = x + (x + 1)
self.assertEqual(mesh, jtu.create_global_mesh((2,), ('x')))
self.assertAllClose(actual, expected, check_dtypes=False)
_check_instance(self, actual)
self.assertLen(actual.device_buffers, 2)
self.assertAllClose(np.asarray(actual.device_buffers[0]), expected,
check_dtypes=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 2)])
def testBasic2D(self):
@partial(pjit,
in_axis_resources=(P(None, 'x', 'y'), P('y')),
out_axis_resources=P('x'))
def f(x, y):
return x @ y
x_shape = (8, 6, 4)
y_shape = (4, 2)
x = jnp.arange(np.prod(x_shape)).reshape(x_shape)
y = jnp.arange(np.prod(y_shape)).reshape(y_shape)
actual = f(x, y)
expected = x @ y
self.assertAllClose(actual, expected, check_dtypes=False)
_check_instance(self, actual)
self.assertLen(actual.device_buffers, 4)
split0, split1 = np.split(expected, 2)
self.assertAllClose(np.asarray(actual.device_buffers[0]), split0,
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[1]), split0,
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[2]), split1,
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[3]), split1,
check_dtypes=False)
def testDifferentNestedMesh(self):
with jtu.create_global_mesh((2, 1), ("x", "y")) as m1:
with jtu.create_global_mesh((2, 2), ("a", "b")) as m2:
self.assertEqual(pxla.thread_resources.env.physical_mesh, m2)
self.assertEqual(pxla.thread_resources.env.physical_mesh, m1)
self.assertEqual(pxla.thread_resources.env.physical_mesh,
pxla.EMPTY_ENV.physical_mesh)
def testSameNestedMesh(self):
mesh = jtu.create_global_mesh((2, 1), ("a", "b"))
with mesh as m1:
with mesh as m2:
self.assertEqual(pxla.thread_resources.env.physical_mesh, m2)
self.assertEqual(pxla.thread_resources.env.physical_mesh, m1)
self.assertEqual(pxla.thread_resources.env.physical_mesh,
pxla.EMPTY_ENV.physical_mesh)
def testMeshDecorator(self):
x = jnp.arange(8)
mesh_shape = (2, 2)
size = prod(mesh_shape)
if len(jax.devices()) < size:
raise unittest.SkipTest(f"Test requires {size} global devices.")
mesh_devices = np.array(jax.devices()[:size]).reshape(mesh_shape)
@jax.sharding.Mesh(mesh_devices, ('x', 'y'))
def dec():
return pjit(lambda x: x, in_axis_resources=P('x'), out_axis_resources=None)(x)
out = dec()
self.assertArraysEqual(out, x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 2)])
def testTwoMeshAxisSharding(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=jax.sharding.PartitionSpec(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
actual = f(x, x + 1)
expected = x @ (x + 1)
self.assertAllClose(actual, expected, check_dtypes=False)
_check_instance(self, actual)
self.assertLen(actual.device_buffers, 4)
splits = np.split(expected, 4)
self.assertAllClose(np.asarray(actual.device_buffers[0]), splits[0],
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[1]), splits[1],
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[2]), splits[2],
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[3]), splits[3],
check_dtypes=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testBufferDonation(self):
if jax.default_backend() not in {'gpu', 'tpu'}:
raise unittest.SkipTest('Buffer donation only supported on GPU and TPU')
@partial(pjit,
in_axis_resources=P('x'),
out_axis_resources=P('x'),
donate_argnums=0)
def f(x, y):
return x + y
shard = pjit(lambda x: x, in_axis_resources=P('x'),
out_axis_resources=P('x'))
x = shard(jnp.ones((2, 5)) * 4)
y = shard(jnp.ones((2, 5)) * 2)
expected = x + y
self.assertAllClose(f(x, y), expected)
self.assertNotDeleted(y)
self.assertDeleted(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testShardingConstraint(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=None)
def f(x):
y = x + 1
y = with_sharding_constraint(y, P('x', 'y'))
return y * 2
shape = (8, 8)
x = np.arange(prod(shape)).reshape(shape)
expected = (x + 1) * 2
actual = f(x)
self.assertAllClose(actual, expected, check_dtypes=False)
_check_instance(self, actual)
self.assertLen(actual.device_buffers, 2)
self.assertAllClose(np.asarray(actual.device_buffers[0]), expected,
check_dtypes=False)
hlo = f.lower(np.ones(shape)).compiler_ir(dialect="hlo")
# Annotation from with_sharding_constraint
self.assertIn("sharding={devices=[2,1]0,1}", hlo.as_hlo_text())
# Annotation from pjit
self.assertIn("sharding={replicated}", hlo.as_hlo_text())
@jax_array(True)
def testShardingConstraintWithArray(self):
mesh = jtu.create_global_mesh((2, 1), ('x', 'y'))
s = NamedSharding(mesh, P(None))
@partial(pjit, in_axis_resources=s, out_axis_resources=s)
def f(x):
y = x + 1
y = with_sharding_constraint(y, NamedSharding(mesh, P('x', 'y')))
return y * 2
shape = (8, 8)
x = np.arange(prod(shape)).reshape(shape)
expected = (x + 1) * 2
actual = f(x)
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertIsInstance(actual, array.ArrayImpl)
self.assertLen(actual.addressable_shards, 2)
self.assertAllClose(actual, expected, check_dtypes=False)
hlo = f.lower(np.ones(shape)).compiler_ir(dialect="hlo")
# Annotation from with_sharding_constraint
self.assertIn("sharding={devices=[2,1]0,1}", hlo.as_hlo_text())
# Annotation from pjit
self.assertIn("sharding={replicated}", hlo.as_hlo_text())
@jax_array(True)
def testShardingConstraintWithArrayOpSharding(self):
shape = (8, 8)
mesh = jtu.create_global_mesh((2, 1), ('x', 'y'))
s = NamedSharding(mesh, P(None))
ops = pjit_lib.to_op_sharding_sharding(
NamedSharding(mesh, P('x', 'y')), len(shape))
@partial(pjit, in_axis_resources=s, out_axis_resources=s)
def f(x):
y = x + 1
y = with_sharding_constraint(y, ops)
return y * 2
x = np.arange(prod(shape)).reshape(shape)
expected = (x + 1) * 2
actual = f(x)
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertIsInstance(actual, array.ArrayImpl)
self.assertLen(actual.addressable_shards, 2)
self.assertAllClose(actual, expected, check_dtypes=False)
hlo = f.lower(np.ones(shape)).compiler_ir(dialect="hlo")
# Annotation from with_sharding_constraint
self.assertIn("sharding={devices=[2,1]0,1}", hlo.as_hlo_text())
# Annotation from pjit
self.assertIn("sharding={replicated}", hlo.as_hlo_text())
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testShardingConstraintPyTree(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=None)
def f(x):
x = jax.lax.with_sharding_constraint(x, [P('x', 'y'), P('y', 'x')])
x = x.copy()
x[0]["a"] *= 2
return x
shape = (8, 8)
v = np.arange(prod(shape)).reshape(shape)
x = [{"a": v, "b": v * 2}, v * 3]
actual = f(x)
expected = x.copy()
expected[0]["a"] *= 2
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertLen(actual[0]["a"].device_buffers, 2)
hlo = f.lower(x).compiler_ir(dialect="hlo")
# Annotations from with_sharding_constraint
self.assertIn("sharding={devices=[2,1]0,1}", hlo.as_hlo_text())
self.assertIn("sharding={devices=[1,2]0,1}", hlo.as_hlo_text())
# Annotation from pjit
self.assertIn("sharding={replicated}", hlo.as_hlo_text())
@jax_array(True)
def testShardingConstraintPyTreeWithArray(self):
mesh = jtu.create_global_mesh((2, 1), ('x', 'y'))
s = NamedSharding(mesh, P(None))
@partial(pjit, in_axis_resources=s, out_axis_resources=s)
def f(x):
x = with_sharding_constraint(x, [
NamedSharding(mesh, P('x', 'y')),
NamedSharding(mesh, P('y', 'x'))
])
x = x.copy()
x[0]["a"] *= 2
return x
shape = (8, 8)
v = np.arange(prod(shape)).reshape(shape)
x = [{"a": v, "b": v * 2}, v * 3]
actual = f(x)
expected = x.copy()
expected[0]["a"] *= 2
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertLen(actual[0]["a"].addressable_shards, 2)
hlo = f.lower(x).compiler_ir(dialect="hlo")
# Annotations from with_sharding_constraint
self.assertIn("sharding={devices=[2,1]0,1}", hlo.as_hlo_text())
self.assertIn("sharding={devices=[1,2]0,1}", hlo.as_hlo_text())
# Annotation from pjit
self.assertIn("sharding={replicated}", hlo.as_hlo_text())
@jtu.with_mesh([('x', 2), ('y', 2)])
def testShardingConstraintPyTreeWithUnconstrainedDims(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=None)
def f(x):
x = with_sharding_constraint(
x, [P(P.UNCONSTRAINED, 'y', None),
P('x', P.UNCONSTRAINED, None)])
x = x.copy()
x[0]['a'] *= 2
return x
shape = (2, 8, 8)
v = np.arange(prod(shape)).reshape(shape)
x = [{'a': v, 'b': v * 2}, v * 3]
actual = f(x)
expected = x.copy()
expected[0]['a'] *= 2
self.assertAllClose(actual, expected, check_dtypes=False)
self.assertLen(actual[0]['a'].device_buffers, 4)
mlir_str = str(f.lower(x).compiler_ir())
self.assertIn("unspecified_dims=[0]", mlir_str)
self.assertIn("unspecified_dims=[1]", mlir_str)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testShardingConstraintPyTreeVmapWithUnconstrainedDims(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=None)
def f(x):
x = jax.vmap(lambda x: with_sharding_constraint(
x, [P(P.UNCONSTRAINED, 'y'),
P('x', P.UNCONSTRAINED)]))(x)
x = x.copy()
x[0]['a'] *= 2
return x
shape = (2, 8, 8)
v = np.arange(prod(shape)).reshape(shape)
x = [{'a': v, 'b': v * 2}, v * 3]
mlir_str = str(f.lower(x).compiler_ir())
self.assertIn("unspecified_dims=[0,1]", mlir_str)
self.assertIn("unspecified_dims=[0,2]", mlir_str)
def testCaching(self):
def f(x):
assert should_be_tracing
return jnp.sin(x) * 2
x = np.arange(16).reshape(4, 4)
devices = np.array(list(jax.local_devices())[:4])
if devices.size < 4:
raise unittest.SkipTest("Test requires 4 devices")
devices = devices.reshape((2, 2))
with jax.sharding.Mesh(devices, ('x', 'y')):
should_be_tracing = True
pjit(f, in_axis_resources=P(('x', 'y')), out_axis_resources=None)(x)
should_be_tracing = False
pjit(f, in_axis_resources=P(('x', 'y')), out_axis_resources=None)(x)
# Re-create the mesh to make sure that has no influence on caching
with jax.sharding.Mesh(devices, ('x', 'y')):
should_be_tracing = False
pjit(f, in_axis_resources=P(('x', 'y')), out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testNested(self):
# Add a constant captured by the nested pjit to make things more complicated
h = jnp.arange(4.)
f = pjit(lambda x: x.sum() + h.sum(), in_axis_resources=P('x', 'y'), out_axis_resources=None)
g = pjit(lambda x: f(jnp.sin(x)), in_axis_resources=P('x', None), out_axis_resources=None)
x = jnp.arange(16.).reshape((4, 4))
y = g(x)
self.assertAllClose(y, jnp.sin(x).sum() + h.sum())
_check_instance(self, y)
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
@check_1d_2d_mesh(set_mesh=True)
def testAutodiff(self, mesh, resources):
if len(mesh) != 2: return
assert resources == ('x', 'y')
# Add a constant captured by the nested pjit to make things more complicated
h = jnp.arange(4.)
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
f = pjit(lambda x: x.sum(1) * h.sum(),
in_axis_resources=P('x', 'y'), out_axis_resources=P(('x', 'y')))
g = pjit(lambda x: f(jnp.sin(x * 4 + 2)),
in_axis_resources=P('x', None), out_axis_resources=P(('x', 'y')))
jtu.check_grads(g, (jnp.arange(16.).reshape((4, 4)) / 100,), order=2)
@jtu.with_mesh([('x', 2), ('y', 1)])
def testAutodiffCache(self):
if not jax.config.jax_array:
self.skipTest('Does not work without jax.Array')
if xla_extension_version < 123:
self.skipTest('This test requires xla_extension_version >= 123.')
f = pjit(lambda x: jnp.sin(x).sum(),
in_axis_resources=P('x'), out_axis_resources=None)
x = jnp.arange(16, dtype=jnp.float32)
jax.grad(f)(x) # Warm up the cache.
before = pjit_lib._pjit_lower_cached.cache_info()
jax.grad(f)(x)
after = pjit_lib._pjit_lower_cached.cache_info()
# One hit for the forward pass, one hit for backward.
self.assertEqual(after.hits, before.hits + 2)
self.assertEqual(after.misses, before.misses)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testEvalJaxpr(self):
x, y = jnp.arange(4.), jnp.arange(5.)
f = pjit(lambda x, y: x.sum() + jnp.sin(y),
in_axis_resources=(P('x'), P('y')),
out_axis_resources=P('y'))
f_jaxpr = jax.make_jaxpr(f)(x, y)
f_eval = jax.core.jaxpr_as_fun(f_jaxpr)
r, = f_eval(x, y)
self.assertAllClose(r, x.sum() + jnp.sin(y))
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testNonArrayArg(self):
self.assertEqual(pjit(lambda x: x + 2,
in_axis_resources=None,
out_axis_resources=None)(1), 3)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testNonHashableAxisResources(self):
x = jnp.arange(4)
y = pjit(lambda x: {'b': x['a'] + 2},
in_axis_resources=({'a': P('x')},),
out_axis_resources={'b': P('x')})({'a': x})
self.assertAllClose(y, {'b': x + 2})
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testGradOfConstraint(self):
# Make sure that we can compute grads through sharding constraints
h = lambda x: jnp.sin(with_sharding_constraint(x, P('x'))).sum()
f = pjit(lambda x: jax.grad(h)(x),
in_axis_resources=None, out_axis_resources=None)
x = jnp.arange(8, dtype=jnp.float32)
out = f(x)
self.assertAllClose(out, jnp.cos(x))
if jax.config.jax_array:
self.assertLen(out.devices(), 2)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testNoopPartitionSpecs(self):
noops = [P(), P(None), P(()), P((), None), P(None, None, ())]
x = jnp.arange(8).reshape((2, 2, 2))
for spec in noops:
y = pjit(lambda x: x * 2, in_axis_resources=spec, out_axis_resources=spec)(x)
self.assertAllClose(y, x * 2)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testVMap(self):
f = pjit(lambda x, y: (x + y, x), in_axis_resources=P('x'), out_axis_resources=P('x'))
x = jnp.arange(4)
y = jnp.arange(5*4).reshape((5, 4))
z, w = jax.vmap(f, in_axes=(None, 0), out_axes=(0, None))(x, y)
self.assertAllClose(z, x[jnp.newaxis] + y)
self.assertAllClose(w, x)
if config.jax_array:
self.assertEqual(z.sharding._op_sharding.tile_assignment_dimensions, [1, 2])
self.assertEqual(w.sharding._op_sharding.tile_assignment_dimensions, [2])
else:
self.assertEqual(z.sharding_spec.sharding, (pxla.NoSharding(), pxla.Chunked([2])))
self.assertEqual(w.sharding_spec.sharding, (pxla.Chunked([2]),))
@jtu.with_mesh([('x', 2)])
def testVMapShardingConstraint(self):
f = pjit(lambda x: with_sharding_constraint(x, P('x')),
in_axis_resources=P(), out_axis_resources=P('x'))
x = jnp.arange(5*4).reshape((5, 4))
jaxpr = jax.make_jaxpr(jax.vmap(f))(x)
pjit_eqn, = jaxpr.eqns
constraint_eqn, = pjit_eqn.params['jaxpr'].eqns
op = constraint_eqn.params['sharding']._op_sharding
self.assertEqual(op.type, xc.OpSharding.Type.OTHER)
self.assertListEqual(op.tile_assignment_dimensions, [1, 2])
self.assertListEqual(op.tile_assignment_devices, [0, 1])
self.assertFalse(pxla.is_op_sharding_replicated(op))
@jtu.with_mesh([('x', 2)])
def testVMapShardingConstraintWithSpmdAxis(self):
f = pjit(
jax.vmap(
lambda x: with_sharding_constraint(x, P(None)),
spmd_axis_name='x',
),
in_axis_resources=P('x'),
out_axis_resources=P('x'))
x = jnp.arange(16 * 4).reshape((16, 4))
jaxpr = jax.make_jaxpr(f)(x)
pjit_eqn, = jaxpr.eqns
constraint_eqn, = pjit_eqn.params['jaxpr'].eqns
op = constraint_eqn.params['sharding']._op_sharding
self.assertEqual(op.type, xc.OpSharding.Type.OTHER)
self.assertListEqual(op.tile_assignment_dimensions, [2, 1])
self.assertListEqual(op.tile_assignment_devices, [0, 1])
self.assertFalse(pxla.is_op_sharding_replicated(op))
@jtu.with_mesh([('x', 2), ('y', 1)])
def testShardingInXMap(self):
h = pjit(lambda x: x, in_axis_resources=P('x'), out_axis_resources=None)
f = xmap(lambda x: h(x * 2), in_axes=['i', ...], out_axes=['i', ...],
axis_resources={'i': 'y'})
x = jnp.arange(16).reshape((4, 4))
rule = mlir._lowerings[pjit_p]
test_rule_called = False
def _test_rule(*args, **kwargs):
nonlocal test_rule_called
test_rule_called = True
Convert everything in pjit to the `Sharding` interface. The following contains the things that have changed in this CL: * All in_axis_resources and out_axis_resources are instances of `Sharding`. When `config.jax_array` is enabled, `in_shardings` is inferred from the inputs. * `out_shardings` are still instances of `MeshPspecSharding` even if `Array` are used. In a follow up CL, I will change out_axis_resources to accept `Sharding` instances. * This is also a reason why you still need a mesh context manager when `config.jax_array` is enabled. * cl/458267790 is WIP for this. It adds a couple of checks in MeshPspecSharding too when `AUTO` is used. * Checking of sharding with `aval` has a handler system to deal with sharding instances. * The reason for creating a `pjit` specific system rather than putting this check on the sharding instances is because each transformation has a different way of checking the sharding. The best example for this is `pjit` and `xmap`. They both have different way to check if an aval is sharded properly with respect to the given sharding because `pjit` and `xmap` has different ways to express sharding. * `MeshPspecSharding` and `SingleDeviceSharding` have `__hash__` and `__eq__`. So now we don't have to pass around canonicalized pspecs in the new path to get cache hits. The `Sharding` instances should handle that for us. * _pjit_lower still depends on mesh which is the major reason why I haven't removed `resource_env` from `params`. But in the interest of keep this CL small (LOL), I'll make those changes in a follow up CL. * Also the private functions in pxla.py are used by pathways and automap so I'll have to modify those too. * Also it has `pxla.resource_typecheck` which I haven't figured out how to move it to sharding interface. * `_to_xla_op_sharding` takes in `axis_ctx` as an extra **optional** parameter. This is required for `with_sharding_constraint`. * `with_sharding_constraint` uses the MLIR `ctx` here: cl/458042998 * `pjit`'s batching handlers add an extra dimension to the axis_resources. Since this is dependent on how each transformation adds the extra dimension and it also differs on how each sharding instance will handle it, I added a handler system for this too. Again `xmap` and `pjit` differ a lot here. This is why I went with the handler approach. * MeshPspecSharding handles this `insert_axis_partitions` on the parsed partition spec. I have added more detailed comments in the place where this is done. PiperOrigin-RevId: 459548974
2022-07-07 10:41:27 -07:00
in_shardings = kwargs['in_shardings']
self.assertLen(in_shardings, 1)
self.assertListEqual(in_shardings[0]._op_sharding.tile_assignment_dimensions,
[1, 1, 2])
self.assertFalse(pxla.is_op_sharding_replicated(in_shardings[0]._op_sharding))
return rule(*args, **kwargs)
try:
mlir._lowerings[pjit_p] = _test_rule
f(x)
self.assertTrue(test_rule_called)
finally:
mlir._lowerings[pjit_p] = rule
@jtu.with_mesh([('x', 2)])
def testLowerWithDuckTyping(self):
x = jax.ShapeDtypeStruct((2, 2), jnp.float32)
# Make sure this doesn't crash
pjit(lambda x: x + 4,
in_axis_resources=P('x'), out_axis_resources=P('x')).lower(x)
@jtu.with_mesh([('x', 2)])
def testLowerDonateArgnumsAvailable(self):
x = jax.ShapeDtypeStruct((2, 2), jnp.float32)
def f(*args):
x, *_ = args
return x
f_low = pjit(f, donate_argnums=(0,),
in_axis_resources=P('x'), out_axis_resources=P('x')).lower(x)
f_com = f_low.compile()
f_low.donate_argnums == f_com.donate_argnums == (0,)
@unittest.skip('Fails in OSS builds on GPU with jax at HEAD and latest '
'jaxlib on pypi.')
def testInfeed(self):
devices = np.array(jax.local_devices())
nr_devices = len(devices)
shape = (nr_devices * 3, nr_devices * 5)
def f_for_jit(x):
token = lax.create_token(x)
(y,), token = lax.infeed(
token, shape=(jax.core.ShapedArray(x.shape, np.float32),))
(z,), token = lax.infeed(
token, shape=(jax.core.ShapedArray(x.shape, np.float32),))
(w,), token = lax.infeed(
token, shape=(jax.core.ShapedArray(x.shape, np.float32),))
return x + y + z + w
x = np.arange(np.prod(shape), dtype=np.float32).reshape(shape)
y = x * 2.
z = x * 3.
w = x * 4.
# Transfer data to infeed before executing the function. For GPUs, the
# execution of the compiled function is blocking, so transferring data
# to infeed before executing ensures that the execution does not deadlock
# waiting for the infeed data.
logging.info('Transferring to infeed for the jit call')
d = devices[0]
d.transfer_to_infeed((y,))
d.transfer_to_infeed((z,))
d.transfer_to_infeed((w,))
# JIT
logging.info('Making jit call')
res0 = jax.jit(f_for_jit)(x)
self.assertAllClose(res0, x + y + z + w, check_dtypes=True)
# PJIT
def f_for_pjit(x):
token = lax.create_token(x)
# A replicated infeed
(y,), token = lax.infeed(
token,
shape=(jax.core.ShapedArray(x.shape, np.float32),),
partitions=(None,))
# An infeed sharded on first axis
(z,), token = lax.infeed(
token,
shape=(jax.core.ShapedArray(x.shape, np.float32),),
partitions=(P(nr_devices, 1),))
# An infeed sharded on second axis
(w,), token = lax.infeed(
token,
shape=(jax.core.ShapedArray(x.shape, np.float32),),
partitions=(P(1, nr_devices),))
return x + y + z + w
logging.info('Transferring to infeed for the pjit call')
for didx, d in enumerate(devices):
# Transfer the whole array to all devices for replicated.
d.transfer_to_infeed((y,))
# For sharded infeed, transfer only the needed slices to each device.
d.transfer_to_infeed(z[3 * didx:3 * didx + 3, :])
d.transfer_to_infeed((w[:, 5 * didx:5 * didx + 5],))
with jax.sharding.Mesh(devices, ['d']):
logging.info('Making pjit call')
res = pjit(
f_for_pjit, in_axis_resources=(P('d'),), out_axis_resources=P('d'))(
x)
self.assertAllClose(res0, res, check_dtypes=True)
@jtu.pytest_mark_if_available('pjrt_c_api_unimplemented') # outfeed
2021-07-01 11:59:13 -07:00
def testOutfeed(self):
devices = np.array(jax.local_devices())
nr_devices = len(devices)
shape = (nr_devices * 3, nr_devices * 5)
def f(x):
token = lax.create_token(x)
token = lax.outfeed(token, x, partitions=(None,))
token = lax.outfeed(token, x, partitions=(P(nr_devices, 1),))
token = lax.outfeed(token, x, partitions=(P(1, nr_devices),))
return x
x = np.arange(np.prod(shape), dtype=np.float32).reshape(shape)
def dispatch():
with jax.sharding.Mesh(devices, ['d']):
2021-07-01 11:59:13 -07:00
logging.info('Making pjit call')
pjit(f, in_axis_resources=(P('d'),), out_axis_resources=P('d'))(x)
execution = threading.Thread(target=dispatch)
execution.start()
def check_outfeed(d, x):
y, = d.transfer_from_outfeed(
xc.shape_from_pyval((x,)).with_major_to_minor_layout_if_absent())
2021-07-01 11:59:13 -07:00
self.assertAllClose(x, y, check_dtypes=True)
logging.info('Transferring from outfeed for the pjit call')
2021-07-01 11:59:13 -07:00
for didx, d in enumerate(devices):
# Transfer the whole array from all devices for replicated.
check_outfeed(d, x)
# For sharded outfeed, the results are sliced.
check_outfeed(d, x[3 * didx:3 * didx + 3, :])
check_outfeed(d, x[:, 5 * didx:5 * didx + 5])
execution.join()
2021-10-02 20:52:00 -07:00
@jtu.with_mesh([('x', 2)])
def testWithCustomPRNGKey(self):
if not config.jax_enable_custom_prng:
raise unittest.SkipTest("test requires jax_enable_custom_prng")
key = jax.prng.seed_with_impl(jax.prng.rbg_prng_impl, 87)
# Make sure this doesn't crash
pjit(lambda x: x, in_axis_resources=(None), out_axis_resources=(None))(key)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerCompile(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
expected = x @ (x + 1)
lowered = f.lower(x, x + 1)
compiled = lowered.compile()
actual = compiled(x, x + 1)
self.assertEqual(lowered.in_avals, compiled.in_avals)
self.assertEqual(
lowered.in_avals,
((jax.core.ShapedArray(x.shape, x.dtype, weak_type=False),) * 2, {}))
splits = np.split(expected, 4)
self.assertAllClose(np.asarray(actual.device_buffers[0]), splits[0],
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[1]), splits[1],
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[2]), splits[2],
check_dtypes=False)
self.assertAllClose(np.asarray(actual.device_buffers[3]), splits[3],
check_dtypes=False)
for obj in [lowered, compiled]:
self.assertFalse(obj._no_kwargs)
self.assertEqual(obj.in_tree, jax.tree_util.tree_flatten(((0, 0), {}))[1])
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerCompileWithKwargs(self):
if not config.jax_array:
self.skipTest('This test only works when jax.Array is enabled.')
@pjit
def f(x, y, **kwargs):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
exe = f.lower(x, x + 1, a=1, b=2).compile()
out = exe(x, x + 1, a=1, b=2)
self.assertArraysEqual(out, x @ (x + 1))
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerCompileInTreeMismatch(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
exe = f.lower(x, x + 1).compile()
self.assertRaisesRegex(
TypeError, "function compiled for .*, called with .*",
lambda: exe([x], [x + 1]))
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerCompileArgTypeMismatch(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
x_f32 = x.astype(jnp.float32)
x_i32 = x.astype(jnp.int32)
exe = f.lower(x_f32, x_f32).compile()
self.assertRaisesRegex(
TypeError,
"Computation was compiled for different input types and called with "
"different types. One of the mismatches is:\n"
"Compiled with:\n.*float32.*\n"
"called with:\n.*int32.*",
lambda: exe(x_i32, x_i32))
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerAsText(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
f = f.lower(x, x + 1)
self.assertIsInstance(f.as_text(), str)
self.assertIsInstance(f.as_text(dialect='hlo'), str)
self.assertIsInstance(f.as_text(dialect='mhlo'), str)
self.assertIsInstance(f.as_text(dialect='stablehlo'), str)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerCompilerIR(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
f = f.lower(x, x + 1)
self.assertIsNotNone(f.compiler_ir())
self.assertIsNotNone(f.compiler_ir(dialect='hlo'))
self.assertIsNotNone(f.compiler_ir(dialect='mhlo'))
self.assertIsNotNone(f.compiler_ir(dialect='stablehlo'))
@jtu.ignore_warning(category=DeprecationWarning)
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerCompileCompilerIR(self):
# TODO(frostig): remove (deprecated)
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
f = f.lower(x, x + 1).compile()
self.assertIsNotNone(f.compiler_ir())
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerCompileAsText(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
f = f.lower(x, x + 1).compile()
self.assertIsInstance(f.as_text(), (str, type(None)))
@jtu.with_mesh([('x', 2), ('y', 2)])
@jtu.skip_on_xla_cpu_mlir
def testLowerCostAnalysis(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
f = f.lower(x, x + 1)
f.cost_analysis() # doesn't raise
@jtu.with_mesh([('x', 2), ('y', 2)])
@jtu.skip_on_xla_cpu_mlir
def testLowerCompileCostAnalysis(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
f = f.lower(x, x + 1).compile()
f.cost_analysis() # doesn't raise
@jtu.with_mesh([('x', 2), ('y', 2)])
@jtu.skip_on_xla_cpu_mlir
def testLowerCompileMemoryAnalysis(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
f = f.lower(x, x + 1).compile()
f.memory_analysis() # doesn't raise
@jtu.with_mesh([('x', 2), ('y', 2)])
def testLowerCompileExecutable(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
f = f.lower(x, x + 1).compile()
self.assertIsNotNone(f.runtime_executable())
@jtu.with_mesh([('x', 2)])
def test_static_argnums(self):
@partial(pjit, in_axis_resources=None, out_axis_resources=None,
static_argnums=(1,))
def f(x, y):
return x + (3 if y == 'hi' else 4)
self.assertEqual(f(1, 'hi' ), 4)
self.assertEqual(f(1, 'bye'), 5)
@jtu.with_mesh([('x', 4), ('y', 2)])
def testLowerCompileWithAvals(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),))
def f(x, y):
return x @ y
shape = (8, 8)
aval = jax.core.ShapedArray(shape, dtypes.canonicalize_dtype(jnp.int64))
x = jnp.arange(np.prod(shape)).reshape(shape)
exe = f.lower(aval, x).compile()
self.assertIsInstance(exe, stages.Compiled)
self.assertArraysEqual(exe(x, x), x @ x)
def test_local_sharded_key_array_sda(self):
input_shape = (8, 4)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
seeds = jnp.arange(
prod(input_shape), dtype=np.uint32).reshape(input_shape)
with mesh:
def make_keys(seeds):
make_key = partial(prng.seed_with_impl, prng.threefry_prng_impl)
return make_key(seeds)
f = pjit(make_keys, in_axis_resources=P(None), out_axis_resources=P(None))
out = f(seeds)
self.assertIsInstance(out, jax.random.KeyArray)
self.assertEqual(out.shape, input_shape)
out.unsafe_raw_array() # doesn't crash
def test_with_sharding_constraint_is_compatible_error(self):
mesh = jtu.create_global_mesh((1, 1, 2), ('replica', 'data', 'mdl'))
with mesh:
def f(x):
y = with_sharding_constraint(x, P(None, ('mdl',), None, None))
z = y + 2
return z
pjit_f = pjit(f, in_axis_resources=P(None), out_axis_resources=P(None))
with self.assertRaisesRegex(
ValueError,
r"One of with_sharding_constraint.*Sharding "
r"NamedSharding\(mesh={'replica': 1, 'data': 1, 'mdl': 2}, "
r"spec=PartitionSpec\(None, \('mdl',\), None, None\)\) is only "
"valid for values of rank at least 4, but was applied to a value of rank 1"):
pjit_f(jnp.array([1, 2, 3]))
@jtu.pytest_mark_if_available('pjrt_c_api_unimplemented') # custom partitoner
@jtu.skip_on_devices('cpu') # Collectives don't seem to work on CPU.
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_custom_partitioner(self):
if jtu.is_cloud_tpu():
raise unittest.SkipTest("Custom partitioning is not supported on libtpu.")
def partition(
precision, arg_shapes, arg_shardings, result_shape, result_sharding
):
self.assertEqual(arg_shardings[0], result_sharding)
self.assertEqual(P(('x',)), result_sharding.spec)
self.assertEqual(P(('y',)), arg_shardings[1].spec)
def lower_fn(x, y):
axis_name = arg_shardings[1].spec[0][0]
i = jax.lax.axis_index(axis_name)
return jax.lax.psum(
jax.lax.dynamic_slice(x, (0, i * 8), (8, 8)) @ y, (axis_name))
return lower_fn, result_sharding, arg_shardings
def infer_sharding_from_operands(
precision, arg_shapes, arg_shardings, shape
):
x_shard, y_shard = arg_shardings
x_shape, y_shape = arg_shapes
x_names = tuple(x_shard.spec) + tuple(
None for _ in range(len(x_shape.shape) - len(x_shard.spec)))
y_names = tuple(y_shard.spec) + tuple(
None for _ in range(len(y_shape.shape) - len(y_shard.spec)))
return NamedSharding(y_shard.mesh, P(*(x_names[:-1] + y_names[1:])))
@partial(custom_partitioning, static_argnums=(2,))
def f(x, y, precision=None):
return jnp.matmul(x, y, precision=precision)
f.def_partition(
infer_sharding_from_operands=infer_sharding_from_operands,
partition=partition)
pjit_f = pjit(
f, in_axis_resources=(P('x'), P('y')), out_axis_resources=P('x'))
x = np.asarray(np.random.randint(0, 20, (32, 16)), dtype=np.float32)
y = np.asarray(np.random.randint(0, 20, (16, 32)), dtype=np.float32)
result1 = jax.jit(f)(x, y)
result2 = f(x, y)
result0 = pjit_f(x, y)
self.assertArraysEqual(result0, result1)
self.assertArraysEqual(result1, result2)
@jtu.pytest_mark_if_available('multiaccelerator')
class GDAPjitTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
if config.jax_array:
self.skipTest('GDA and Array cannot be enabled together.')
def test_pjit_gda_single_output(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
def cb(index):
return input_data[index]
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, cb)
with parallel_functions_output_gda(True):
with global_mesh:
@partial(pjit, in_axis_resources=FROM_GDA, out_axis_resources=P('x', 'y'))
def f(x):
return x @ x.T
expected_matrix_mul = input_data @ input_data.T
out = f(gda_obj)
self.assertIsInstance(out, global_device_array.GlobalDeviceArray)
self.assertEqual(out.shape, (8, 8))
self.assertEqual(out.addressable_shards[0].data.shape, (2, 4))
self.assertDictEqual(out.mesh.shape, {'x': 4, 'y': 2})
for s in out.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
out2 = f(out)
self.assertIsInstance(out2, global_device_array.GlobalDeviceArray)
with self.assertRaisesRegex(
ValueError, ('For a non-GDA input, the corresponding resource in '
'in_axis_resources cannot be `pjit.FROM_GDA`.')):
f(input_data)
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_pjit_gda_multi_input_multi_output(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
input_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
def cb(index):
return input_data[index]
mesh_axes1 = P('x', 'y')
gda1 = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes1, cb)
mesh_axes2 = P('x')
gda2 = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes2, cb)
mesh_axes3 = P(('x', 'y'))
gda3 = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes3, cb)
mesh_axes4 = P(None)
gda4 = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes4, cb)
with parallel_functions_output_gda(True):
@partial(
pjit,
# `FROM_GDA` will be replicated for all the inputs.
in_axis_resources=FROM_GDA,
out_axis_resources=(mesh_axes1, mesh_axes4, mesh_axes2, mesh_axes3))
def f(x, y, z, a):
return x @ x.T, y, z, a
out1, out2, out3, out4 = f(gda1, gda2, gda3, gda4)
self.assertIsInstance(out1, global_device_array.GlobalDeviceArray)
self.assertEqual(out1.shape, (8, 8))
self.assertEqual(out1.addressable_shards[0].data.shape, (2, 4))
self.assertEqual(out1.addressable_shards[0].index, (slice(0, 2), slice(0, 4)))
self.assertEqual(out1.addressable_shards[1].index, (slice(0, 2), slice(4, 8)))
self.assertListEqual([s.replica_id for s in out1.addressable_shards],
[0, 0, 0, 0, 0, 0, 0, 0])
expected_matrix_mul = input_data @ input_data.T
for s in out1.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
self.assertIsInstance(out2, global_device_array.GlobalDeviceArray)
self.assertEqual(out2.shape, (8, 2))
self.assertEqual(out2.addressable_shards[0].data.shape, (8, 2))
self.assertEqual(out2.addressable_shards[0].index, (slice(None), slice(None)))
self.assertEqual(out2.addressable_shards[1].index, (slice(None), slice(None)))
self.assertListEqual([s.replica_id for s in out2.addressable_shards],
[0, 1, 2, 3, 4, 5, 6, 7])
for s in out2.addressable_shards:
self.assertArraysEqual(s.data, input_data)
self.assertIsInstance(out3, global_device_array.GlobalDeviceArray)
self.assertEqual(out3.shape, (8, 2))
self.assertEqual(out3.addressable_shards[0].data.shape, (2, 2))
self.assertEqual(out3.addressable_shards[0].index, (slice(0, 2), slice(None)))
self.assertEqual(out3.addressable_shards[1].index, (slice(0, 2), slice(None)))
self.assertListEqual([s.replica_id for s in out3.addressable_shards],
[0, 1, 0, 1, 0, 1, 0, 1])
for s in out3.addressable_shards:
self.assertArraysEqual(s.data, input_data[s.index])
self.assertIsInstance(out4, global_device_array.GlobalDeviceArray)
self.assertEqual(out4.shape, (8, 2))
self.assertEqual(out4.addressable_shards[0].data.shape, (1, 2))
self.assertEqual(out4.addressable_shards[0].index, (slice(0, 1), slice(None)))
self.assertEqual(out4.addressable_shards[1].index, (slice(1, 2), slice(None)))
self.assertListEqual([s.replica_id for s in out4.addressable_shards],
[0, 0, 0, 0, 0, 0, 0, 0])
for s in out4.addressable_shards:
self.assertArraysEqual(s.data, input_data[s.index])
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_pjit_gda_mixed_inputs(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
def cb(index):
return input_data[index]
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, cb)
with parallel_functions_output_gda(True):
@partial(pjit,
in_axis_resources=(FROM_GDA, P('x', 'y')),
out_axis_resources=(P('x', 'y'), P(('x', 'y'))))
def f(x, y):
return x @ x.T, y @ y.T
expected_matrix_mul = input_data @ input_data.T
out1, out2 = f(gda_obj, input_data)
self.assertIsInstance(out1, global_device_array.GlobalDeviceArray)
self.assertEqual(out1.shape, (8, 8))
self.assertEqual(out1.addressable_shards[0].data.shape, (2, 4))
self.assertDictEqual(out1.mesh.shape, {'x': 4, 'y': 2})
for s in out1.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
self.assertIsInstance(out2, global_device_array.GlobalDeviceArray)
self.assertEqual(out2.shape, (8, 8))
self.assertEqual(out2.addressable_shards[0].data.shape, (1, 8))
self.assertDictEqual(out2.mesh.shape, {'x': 4, 'y': 2})
for s in out2.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_pjit_gda_non_gda_inputs(self):
input_shape = (8, 2)
input_data = np.arange(prod(input_shape)).reshape(input_shape)
with parallel_functions_output_gda(True):
@partial(pjit,
in_axis_resources=(None, P('x', 'y')),
out_axis_resources=(P('x', 'y'), P(('x', 'y'))))
def f(x, y):
return x @ x.T, y @ y.T
expected_matrix_mul = input_data @ input_data.T
out1, out2 = f(input_data, input_data)
self.assertIsInstance(out1, global_device_array.GlobalDeviceArray)
self.assertEqual(out1.shape, (8, 8))
self.assertEqual(out1.addressable_shards[0].data.shape, (2, 4))
self.assertDictEqual(out1.mesh.shape, {'x': 4, 'y': 2})
for s in out1.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
self.assertIsInstance(out2, global_device_array.GlobalDeviceArray)
self.assertEqual(out2.shape, (8, 8))
self.assertEqual(out2.addressable_shards[0].data.shape, (1, 8))
self.assertDictEqual(out2.mesh.shape, {'x': 4, 'y': 2})
for s in out2.addressable_shards:
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
@jtu.with_mesh([('x', 2), ('y', 2)])
def test_pjit_gda_mesh_mismatch(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
global_input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
def cb(index):
return global_input_data[index]
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, cb)
with self.assertRaisesRegex(ValueError,
"Pjit's mesh and GDA's mesh should be equal."):
@partial(pjit, in_axis_resources=FROM_GDA, out_axis_resources=P('x', 'y'))
def f(x):
return x
f(gda_obj)
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_pjit_gda_wrong_resource_for_gda_input(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x')
global_input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
def cb(index):
return global_input_data[index]
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, cb)
with self.assertRaisesRegex(
ValueError,
r"Got an input GDA to pjit with different partitioning than specified "
r'in the in_axis_resources argument to pjit. The partitioning must match, or '
r'use `jax.experimental.pjit.FROM_GDA` in `in_axis_resources` for GDA. '
r"Got GDA sharding.*PartitionSpec\('x',\).*and "
r"pjit sharding.*PartitionSpec\('x', 'y'\).*"):
@partial(pjit, in_axis_resources=P('x', 'y'), out_axis_resources=P('x', 'y'))
def f(x):
return x
f(gda_obj)
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_pjit_gda_caching(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_data = np.arange(
prod(input_shape), dtype=np.float32).reshape(input_shape)
def cb(index):
return input_data[index]
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
input_shape, global_mesh, mesh_axes, cb)
@partial(pjit, in_axis_resources=mesh_axes, out_axis_resources=P('x', 'y'))
def f(x, y):
return x @ y.T
before_lower_cache = pjit_lib._pjit_lower_cached.cache_info()
f(gda_obj, gda_obj)
after_lower_cache1 = pjit_lib._pjit_lower_cached.cache_info()
self.assertEqual(before_lower_cache.hits, after_lower_cache1.hits)
self.assertEqual(before_lower_cache.misses + 1, after_lower_cache1.misses)
f(gda_obj, gda_obj)
after_lower_cache2 = pjit_lib._pjit_lower_cached.cache_info()
self.assertEqual(after_lower_cache1.hits + 1, after_lower_cache2.hits)
self.assertEqual(after_lower_cache1.misses, after_lower_cache2.misses)
f(input_data, input_data)
after_lower_cache3 = pjit_lib._pjit_lower_cached.cache_info()
self.assertEqual(after_lower_cache2.hits, after_lower_cache3.hits)
self.assertEqual(after_lower_cache2.misses + 1, after_lower_cache3.misses)
f(gda_obj, input_data)
after_lower_cache4 = pjit_lib._pjit_lower_cached.cache_info()
self.assertEqual(after_lower_cache3.hits, after_lower_cache4.hits)
self.assertEqual(after_lower_cache3.misses + 1, after_lower_cache4.misses)
@jtu.with_mesh([('x', 4), ('y', 2)])
def test_partition_spec_mismatch_semantically_equivalent(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P(None)
global_input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
def cb(index):
return global_input_data[index]
with parallel_functions_output_gda(True):
gda_obj = global_device_array.GlobalDeviceArray.from_callback(
global_input_shape, global_mesh, mesh_axes, cb)
@partial(pjit, in_axis_resources=P(None), out_axis_resources=P(None))
def f(x):
return x
output_gda = f(gda_obj)
# Ensure output_gda.mesh_axes = P() is matched with P(None).
self.assertEqual(output_gda.mesh_axes, ())
# P(None) is in_axis_resources.
f(output_gda)
def test_from_gda_duplicates(self):
global_mesh = jtu.create_global_mesh((1, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
input_gda, _ = create_gda(global_input_shape, global_mesh, mesh_axes)
# It's occasionally possible to end up with two FROM_GDA singletons (e.g. if
# pickling in_axis_resources and sending to other processes). Make sure this
# this doesn't cause an error to avoid user confusion.
from_gda_dup = pjit_lib._FromGdaSingleton()
with jax.sharding.Mesh(global_mesh.devices, global_mesh.axis_names):
pjit(lambda x: x, in_axis_resources=from_gda_dup, out_axis_resources=None)(
input_gda)
def test_no_recompilation_due_to_in_axis_resources(self):
global_mesh = jtu.create_global_mesh((1, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P(None,)
input_gda, _ = create_gda(global_input_shape, global_mesh, mesh_axes)
with parallel_functions_output_gda(True):
@partial(pjit, in_axis_resources=mesh_axes, out_axis_resources=mesh_axes)
def f(x):
return x
with global_mesh:
out_gda = f(input_gda)
self.assertEqual(out_gda.mesh_axes, ())
before_cache = pjit_lib._pjit_lower_cached.cache_info()
f(out_gda)
after_cache = pjit_lib._pjit_lower_cached.cache_info()
self.assertEqual(before_cache.hits + 1, after_cache.hits)
self.assertEqual(before_cache.misses, after_cache.misses)
def test_no_recompilation_due_to_fully_replicated_and_gda_inputs(self):
global_mesh = jtu.create_global_mesh((1, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P(None)
global_data = np.arange(
prod(global_input_shape)).reshape(global_input_shape)
with parallel_functions_output_gda(True):
f = pjit(lambda x: x, in_axis_resources=mesh_axes,
out_axis_resources=mesh_axes)
with global_mesh:
out_gda = f(global_data)
self.assertEqual(out_gda.mesh_axes, ())
before_cache = pjit_lib._pjit_lower_cached.cache_info()
f(out_gda)
after_cache = pjit_lib._pjit_lower_cached.cache_info()
self.assertEqual(before_cache.hits + 1, after_cache.hits)
self.assertEqual(before_cache.misses, after_cache.misses)
def test_pjit_gda_aot_sharding_mismatch(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
input_gda, _ = create_gda(global_input_shape, global_mesh, P('x', 'y'))
with global_mesh:
f = pjit(lambda x: x, in_axis_resources=P('x'), out_axis_resources=P('x'))
compiled = f.lower(jax.core.ShapedArray(global_input_shape, jnp.float32)).compile()
with self.assertRaisesRegex(
ValueError, "GDA sharding does not match the input sharding."):
compiled(input_gda)
def test_pjit_gda_same_sharding_aot(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
g1, _ = create_gda(global_input_shape, global_mesh, P(None,))
with global_mesh:
f = pjit(lambda x: x, in_axis_resources=P(None), out_axis_resources=P('x'))
compiled = f.lower(jax.core.ShapedArray(global_input_shape, jnp.float32)).compile()
compiled(g1) # no error
@parallel_functions_output_gda(True)
def test_globally_sharded_key_array_8x4_multi_device(self):
input_shape = (8, 4)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
spec = P('x', 'y')
seeds, _ = create_gda(input_shape, mesh, spec, dtype=np.uint32)
with mesh:
@partial(pjit, in_axis_resources=spec, out_axis_resources=spec)
def make_keys(seeds):
make_key = partial(prng.seed_with_impl, prng.threefry_prng_impl)
return make_key(seeds)
out = make_keys(seeds)
self.assertIsInstance(out, jax.random.KeyArray)
self.assertEqual(out.shape, input_shape)
out.unsafe_raw_array() # doesn't crash
@jtu.pytest_mark_if_available('multiaccelerator')
class AutoShardingPjitTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
self.jax_array_enabled = jax.config.jax_array
jax.config.update('jax_array', True)
def tearDown(self):
config.update('jax_array', self.jax_array_enabled)
super().tearDown()
@parameterized.named_parameters(
('2d_gda', (4, 2), (4, 2), ('x', 'y')),
# TODO(b/226977360): Support 3D mesh shape for example (2, 2, 2).
('3d_gda', (1, 4, 2), (2, 4, 8, 4), ('x', 'y', 'z')),
('1d_gda', (8,), (8, 2), ('x')),
)
def test_pjit_arr_auto_sharding_gda(self, mesh_shape, global_input_shape,
mesh_axis_names):
if xla_bridge.get_backend().runtime_type == 'stream_executor':
raise unittest.SkipTest('AutoSharding is not supported on stream_executor yet.')
if config.jax_array:
raise unittest.SkipTest('GDA and Array cannot be together.')
global_mesh = jtu.create_global_mesh(mesh_shape, mesh_axis_names)
input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
with parallel_functions_output_gda(True):
with global_mesh:
f = pjit(lambda x: x, in_axis_resources=AUTO,
out_axis_resources=AUTO)
inp = jax.core.ShapedArray(input_data.shape, input_data.dtype)
compiled = f.lower(inp).compile()
inputs = [create_gda(global_input_shape, global_mesh, ip, input_data)[0]
for ip in compiled.input_shardings[0]]
out = compiled(*inputs)
self.assertIsInstance(out, global_device_array.GlobalDeviceArray)
self.assertArraysEqual(out._value, input_data)
@parameterized.named_parameters(
('2d_array', (4, 2), (4, 2), ('x', 'y')),
# TODO(b/226977360): Support 3D mesh shape for example (2, 2, 2).
('3d_array', (1, 4, 2), (2, 4, 8, 4), ('x', 'y', 'z')),
('1d_array', (8,), (8, 2), ('x')),
)
def test_pjit_arr_auto_sharding_array(self, mesh_shape, global_input_shape,
mesh_axis_names):
if xla_bridge.get_backend().runtime_type == 'stream_executor':
raise unittest.SkipTest('AutoSharding is not supported on stream_executor yet.')
global_mesh = jtu.create_global_mesh(mesh_shape, mesh_axis_names)
input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
with jax_array(True):
with global_mesh:
f = pjit(lambda x: x, in_axis_resources=AUTO,
out_axis_resources=AUTO)
inp = jax.core.ShapedArray(input_data.shape, input_data.dtype)
compiled = f.lower(inp).compile()
inputs = [create_array(global_input_shape, global_mesh, ip, input_data)[0]
for ip in compiled.input_shardings[0]]
out = compiled(*inputs)
self.assertIsInstance(out, array.ArrayImpl)
self.assertArraysEqual(out._value, input_data)
@parameterized.named_parameters(
('gda', parallel_functions_output_gda, create_gda, 'GDA'),
('array', jax_array, create_array, 'Array'),
)
def test_xla_arr_sharding_mismatch(self, ctx, create_fun, arr_type):
if xla_bridge.get_backend().runtime_type == 'stream_executor':
raise unittest.SkipTest('AutoSharding is not supported on stream_executor yet.')
global_mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
global_input_shape = (4, 2)
input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
with ctx(True):
with global_mesh:
f = pjit(lambda x: x, in_axis_resources=AUTO, out_axis_resources=AUTO)
inp = jax.core.ShapedArray(input_data.shape, input_data.dtype)
compiled = f.lower(inp).compile()
different_pspec = (P('y', 'x')
if compiled.input_shardings[0][0].spec == P(('x',), ('y',))
else P('x', 'y'))
arr, _ = create_fun(global_input_shape, global_mesh, different_pspec,
input_data)
with self.assertRaisesRegex(
ValueError,
f"{arr_type} sharding does not match the input sharding."):
compiled(arr)
def test_gda_auto_shardings_len(self):
if xla_bridge.get_backend().runtime_type == 'stream_executor':
raise unittest.SkipTest('AutoSharding is not supported on stream_executor yet.')
global_mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
global_input_shape = (4, 2)
input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
with global_mesh:
f = pjit(lambda x, y, z: (x, y, z), in_axis_resources=AUTO,
out_axis_resources=AUTO)
inp = jax.core.ShapedArray(input_data.shape, input_data.dtype)
compiled = f.lower(inp, inp, inp).compile()
self.assertLen(compiled.output_shardings, 3)
self.assertLen(compiled.input_shardings[0], 3)
@parameterized.named_parameters(
('3d_gda', (1, 1, 2), ('x', 'y', 'z'), P(('x', 'y', 'z'))),
('2d_gda', (4, 2), ('x', 'y'), P('y', 'x')),
('1d_gda', (8,), ('x'), P('x')),
)
def test_pjit_arr_partial_auto_sharding_gda(
self, mesh_shape, mesh_axis_names, pspec):
if xla_bridge.get_backend().runtime_type == 'stream_executor':
raise unittest.SkipTest('AutoSharding is not supported on stream_executor yet.')
if config.jax_array:
raise unittest.SkipTest('GDA and Array cannot be together.')
global_mesh = jtu.create_global_mesh(mesh_shape, mesh_axis_names)
global_input_shape = (8, 4)
input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
in_resource = pspec
with parallel_functions_output_gda(True):
with global_mesh:
f = pjit(lambda x, y: (x, y), in_axis_resources=(in_resource, AUTO),
out_axis_resources=AUTO)
inp = jax.core.ShapedArray(input_data.shape, input_data.dtype)
compiled = f.lower(inp, inp).compile()
inputs = [create_gda(global_input_shape, global_mesh, ip, input_data)[0]
for ip in compiled.input_shardings[0]]
out1, out2 = compiled(*inputs)
for o in [out1, out2]:
self.assertIsInstance(o, global_device_array.GlobalDeviceArray)
self.assertArraysEqual(o._value, input_data)
@parameterized.named_parameters(
('3d_array', (1, 1, 2), ('x', 'y', 'z'), P(('x', 'y', 'z'))),
('2d_array', (4, 2), ('x', 'y'), P('y', 'x')),
('1d_array', (8,), ('x'), P('x')),
)
def test_pjit_arr_partial_auto_sharding_array(
self, mesh_shape, mesh_axis_names, pspec):
if xla_bridge.get_backend().runtime_type == 'stream_executor':
raise unittest.SkipTest('AutoSharding is not supported on stream_executor yet.')
global_mesh = jtu.create_global_mesh(mesh_shape, mesh_axis_names)
global_input_shape = (8, 4)
input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
in_resource = NamedSharding(global_mesh, pspec)
with jax_array(True):
with global_mesh:
f = pjit(lambda x, y: (x, y), in_axis_resources=(in_resource, AUTO),
out_axis_resources=AUTO)
inp = jax.core.ShapedArray(input_data.shape, input_data.dtype)
compiled = f.lower(inp, inp).compile()
inputs = [create_array(global_input_shape, global_mesh, ip, input_data)[0]
for ip in compiled.input_shardings[0]]
out1, out2 = compiled(*inputs)
for o in [out1, out2]:
self.assertIsInstance(o, array.ArrayImpl)
self.assertArraysEqual(o._value, input_data)
@unittest.skip('The error is not raised yet. Enable this back once we raise '
'the error in pjit again.')
def test_pjit_array_error(self):
if xla_bridge.get_backend().runtime_type == 'stream_executor':
raise unittest.SkipTest('AutoSharding is not supported on stream_executor yet.')
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
input_data = np.arange(
prod(global_input_shape), dtype=np.float32).reshape(global_input_shape)
with jax_array(True):
with global_mesh:
f = pjit(lambda x: x, in_axis_resources=AUTO,
out_axis_resources=AUTO)
inp = jax.core.ShapedArray(input_data.shape, input_data.dtype)
compiled = f.lower(inp).compile()
inputs = [create_array(global_input_shape, global_mesh, ip, input_data)[0]
for ip in compiled.input_shardings[0]]
with self.assertRaisesRegex(
ValueError,
('Passing sharding on pjit and on args while using the '
'auto spmd partitioner is not allowed. Please call the '
'compiled object on the inputs.')):
f(*inputs)
@jtu.pytest_mark_if_available('multiaccelerator')
class ArrayPjitTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
self.jax_array_enabled = jax.config.jax_array
jax.config.update('jax_array', True)
def tearDown(self):
config.update('jax_array', self.jax_array_enabled)
super().tearDown()
@parameterized.named_parameters(
('fully_sharded_output', P('x', 'y'), (2, 4)),
('fully_replicated_output', P(None), (8, 8)),
)
@jax_array(True)
def test_pjit_array_single_output(self, out_axis_resources, shard_shape):
global_input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
mesh_axes = P('x', 'y')
input_array, input_data = create_array(global_input_shape, global_mesh, mesh_axes)
f = pjit(lambda x: x @ x.T, out_axis_resources=NamedSharding(
global_mesh, out_axis_resources))
expected_matrix_mul = input_data @ input_data.T
out = f(input_array)
self.assertIsInstance(out, array.ArrayImpl)
self.assertTrue(out._committed)
self.assertEqual(out.shape, (8, 8))
self.assertEqual(out.addressable_shards[0].data.shape, shard_shape)
for s in out.addressable_shards:
self.assertLen(s.data.devices(), 1)
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
self.assertArraysEqual(out._value, expected_matrix_mul)
@parameterized.named_parameters(
('fully_sharded_output', P('x', 'y'), (2, 4)),
('fully_replicated_output', P(None), (8, 8)),
)
@jax_array(True)
def test_pjit_array_single_output_with_mesh_context_manager(
self, out_axis_resources, shard_shape):
global_input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
mesh_axes = P('x', 'y')
input_array, input_data = create_array(global_input_shape, global_mesh, mesh_axes)
with global_mesh:
f = pjit(lambda x: x @ x.T, out_axis_resources=NamedSharding(
global_mesh, out_axis_resources))
expected_matrix_mul = input_data @ input_data.T
out = f(input_array)
self.assertIsInstance(out, array.ArrayImpl)
self.assertEqual(out.shape, (8, 8))
self.assertEqual(out.addressable_shards[0].data.shape, shard_shape)
for s in out.addressable_shards:
self.assertLen(s.data.devices(), 1)
self.assertArraysEqual(s.data, expected_matrix_mul[s.index])
self.assertArraysEqual(out._value, expected_matrix_mul)
def test_numpy_array_input_assume_fully_replicated(self):
input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
input_data = np.arange(
prod(input_shape), dtype=np.float32).reshape(input_shape)
with jax_array(True):
with global_mesh:
f = pjit(lambda x: x,
out_axis_resources=NamedSharding(
Convert everything in pjit to the `Sharding` interface. The following contains the things that have changed in this CL: * All in_axis_resources and out_axis_resources are instances of `Sharding`. When `config.jax_array` is enabled, `in_shardings` is inferred from the inputs. * `out_shardings` are still instances of `MeshPspecSharding` even if `Array` are used. In a follow up CL, I will change out_axis_resources to accept `Sharding` instances. * This is also a reason why you still need a mesh context manager when `config.jax_array` is enabled. * cl/458267790 is WIP for this. It adds a couple of checks in MeshPspecSharding too when `AUTO` is used. * Checking of sharding with `aval` has a handler system to deal with sharding instances. * The reason for creating a `pjit` specific system rather than putting this check on the sharding instances is because each transformation has a different way of checking the sharding. The best example for this is `pjit` and `xmap`. They both have different way to check if an aval is sharded properly with respect to the given sharding because `pjit` and `xmap` has different ways to express sharding. * `MeshPspecSharding` and `SingleDeviceSharding` have `__hash__` and `__eq__`. So now we don't have to pass around canonicalized pspecs in the new path to get cache hits. The `Sharding` instances should handle that for us. * _pjit_lower still depends on mesh which is the major reason why I haven't removed `resource_env` from `params`. But in the interest of keep this CL small (LOL), I'll make those changes in a follow up CL. * Also the private functions in pxla.py are used by pathways and automap so I'll have to modify those too. * Also it has `pxla.resource_typecheck` which I haven't figured out how to move it to sharding interface. * `_to_xla_op_sharding` takes in `axis_ctx` as an extra **optional** parameter. This is required for `with_sharding_constraint`. * `with_sharding_constraint` uses the MLIR `ctx` here: cl/458042998 * `pjit`'s batching handlers add an extra dimension to the axis_resources. Since this is dependent on how each transformation adds the extra dimension and it also differs on how each sharding instance will handle it, I added a handler system for this too. Again `xmap` and `pjit` differ a lot here. This is why I went with the handler approach. * MeshPspecSharding handles this `insert_axis_partitions` on the parsed partition spec. I have added more detailed comments in the place where this is done. PiperOrigin-RevId: 459548974
2022-07-07 10:41:27 -07:00
global_mesh, P('x', 'y')))
# Since no in_axis_resources is provided, pjit will assume that
# the numpy input is fully replicated over the mesh.
out = f(input_data)
self.assertIsInstance(out, array.ArrayImpl)
for s in out.addressable_shards:
self.assertEqual(s.data.shape, (2, 1))
self.assertArraysEqual(s.data, input_data[s.index])
self.assertArraysEqual(out._value, input_data)
def test_numpy_array_input(self):
input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
input_data = np.arange(
prod(input_shape), dtype=np.float32).reshape(input_shape)
with jax_array(True):
with global_mesh:
f = pjit(lambda x: x,
in_axis_resources=NamedSharding(
global_mesh, P(None)),
out_axis_resources=NamedSharding(
global_mesh, P('x', 'y')))
out = f(input_data)
self.assertIsInstance(out, array.ArrayImpl)
for s in out.addressable_shards:
self.assertEqual(s.data.shape, (2, 1))
self.assertArraysEqual(s.data, input_data[s.index])
self.assertArraysEqual(out._value, input_data)
@jax_array(True)
def test_unspecified_out_axis_resources(self):
def _checks(out, input_data):
self.assertIsInstance(out, array.ArrayImpl)
self.assertIsInstance(out.sharding, OpShardingSharding)
self.assertEqual(out.shape, (8, 2))
self.assertEqual(out.addressable_shards[0].data.shape, (2, 1))
for s in out.addressable_shards:
self.assertLen(s.data.devices(), 1)
self.assertArraysEqual(s.data, input_data[s.index])
self.assertArraysEqual(out._value, input_data)
global_input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
mesh_axes = P('x', 'y')
input_array, input_data = create_array(global_input_shape, global_mesh, mesh_axes)
f = pjit(lambda x: x * 2)
out = f(input_array)
_checks(out, input_data * 2)
out2 = f(out)
_checks(out2, input_data * 4)
@parameterized.named_parameters(
('mesh1', (4, 2), (2, 8), (2, 2), (1, 2), (8, 2)),
('mesh2', (2, 2), (4, 8), (4, 2), (2, 2), (8, 2)),
('mesh3', (2, 1), (4, 8), (4, 2), (4, 2), (8, 2)),
)
@jax_array(True)
def test_pjit_array_multi_input_multi_output(self, mesh_shape, s1_shape,
s2_shape, s3_shape, s4_shape):
global_mesh = jtu.create_global_mesh(mesh_shape, ('x', 'y'))
global_input_shape = (8, 2)
spec1 = P('x', 'y')
a1, input_data = create_array(global_input_shape, global_mesh, spec1)
spec2 = P('x')
a2, _ = create_array(global_input_shape, global_mesh, spec2)
spec3 = P(('x', 'y'))
a3, _ = create_array(global_input_shape, global_mesh, spec3)
spec4 = P(None)
a4, _ = create_array(global_input_shape, global_mesh, spec4)
@pjit
def f(tree):
return tree
out_tree = f((a1 @ a1.T, (a2, (a3 * 2, a4))))
(out1, out2, out3, out4), _ = jax.tree_util.tree_flatten(out_tree)
self.assertIsInstance(out1, array.ArrayImpl)
self.assertEqual(out1.shape, (8, 8))
self.assertEqual(out1.addressable_shards[0].data.shape, s1_shape)
for s in out1.addressable_shards:
self.assertArraysEqual(
s.data, (input_data @ input_data.T)[s.index])
self.assertIsInstance(out2, array.ArrayImpl)
self.assertEqual(out2.shape, (8, 2))
self.assertEqual(out2.addressable_shards[0].data.shape, s2_shape)
for s in out2.addressable_shards:
self.assertArraysEqual(s.data, input_data[s.index])
self.assertIsInstance(out3, array.ArrayImpl)
self.assertEqual(out3.shape, (8, 2))
self.assertEqual(out3.addressable_shards[0].data.shape, s3_shape)
for s in out3.addressable_shards:
self.assertArraysEqual(s.data, (input_data * 2)[s.index])
self.assertIsInstance(out4, array.ArrayImpl)
self.assertEqual(out4.shape, (8, 2))
self.assertEqual(out4.addressable_shards[0].data.shape, s4_shape)
for s in out4.addressable_shards:
self.assertArraysEqual(s.data, input_data)
def test_in_axis_resources_mismatch_error(self):
global_input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
mesh_axes = P('x', 'y')
input_array, _ = create_array(global_input_shape, global_mesh, mesh_axes)
with jax_array(True):
with global_mesh:
f = pjit(lambda x: x,
in_axis_resources=NamedSharding(global_mesh, P('x')))
err_msg = re.compile(
"Sharding passed to pjit does not match the sharding on the "
r"respective arg.*arg shape.*\(8, 2\)", re.M | re.S)
with self.assertRaisesRegex(ValueError, err_msg):
f(input_array)
def test_in_axis_resources_same_as_array_sharding(self):
global_input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
mesh_axes = P('x', 'y')
input_array, _ = create_array(global_input_shape, global_mesh, mesh_axes)
with jax_array(True):
with global_mesh:
out = pjit(
lambda x: x,
in_axis_resources=NamedSharding(global_mesh, P('x' ,'y')))(input_array)
self.assertIsInstance(out, array.ArrayImpl)
Convert everything in pjit to the `Sharding` interface. The following contains the things that have changed in this CL: * All in_axis_resources and out_axis_resources are instances of `Sharding`. When `config.jax_array` is enabled, `in_shardings` is inferred from the inputs. * `out_shardings` are still instances of `MeshPspecSharding` even if `Array` are used. In a follow up CL, I will change out_axis_resources to accept `Sharding` instances. * This is also a reason why you still need a mesh context manager when `config.jax_array` is enabled. * cl/458267790 is WIP for this. It adds a couple of checks in MeshPspecSharding too when `AUTO` is used. * Checking of sharding with `aval` has a handler system to deal with sharding instances. * The reason for creating a `pjit` specific system rather than putting this check on the sharding instances is because each transformation has a different way of checking the sharding. The best example for this is `pjit` and `xmap`. They both have different way to check if an aval is sharded properly with respect to the given sharding because `pjit` and `xmap` has different ways to express sharding. * `MeshPspecSharding` and `SingleDeviceSharding` have `__hash__` and `__eq__`. So now we don't have to pass around canonicalized pspecs in the new path to get cache hits. The `Sharding` instances should handle that for us. * _pjit_lower still depends on mesh which is the major reason why I haven't removed `resource_env` from `params`. But in the interest of keep this CL small (LOL), I'll make those changes in a follow up CL. * Also the private functions in pxla.py are used by pathways and automap so I'll have to modify those too. * Also it has `pxla.resource_typecheck` which I haven't figured out how to move it to sharding interface. * `_to_xla_op_sharding` takes in `axis_ctx` as an extra **optional** parameter. This is required for `with_sharding_constraint`. * `with_sharding_constraint` uses the MLIR `ctx` here: cl/458042998 * `pjit`'s batching handlers add an extra dimension to the axis_resources. Since this is dependent on how each transformation adds the extra dimension and it also differs on how each sharding instance will handle it, I added a handler system for this too. Again `xmap` and `pjit` differ a lot here. This is why I went with the handler approach. * MeshPspecSharding handles this `insert_axis_partitions` on the parsed partition spec. I have added more detailed comments in the place where this is done. PiperOrigin-RevId: 459548974
2022-07-07 10:41:27 -07:00
def test_no_input_output(self):
with jax_array(True):
Convert everything in pjit to the `Sharding` interface. The following contains the things that have changed in this CL: * All in_axis_resources and out_axis_resources are instances of `Sharding`. When `config.jax_array` is enabled, `in_shardings` is inferred from the inputs. * `out_shardings` are still instances of `MeshPspecSharding` even if `Array` are used. In a follow up CL, I will change out_axis_resources to accept `Sharding` instances. * This is also a reason why you still need a mesh context manager when `config.jax_array` is enabled. * cl/458267790 is WIP for this. It adds a couple of checks in MeshPspecSharding too when `AUTO` is used. * Checking of sharding with `aval` has a handler system to deal with sharding instances. * The reason for creating a `pjit` specific system rather than putting this check on the sharding instances is because each transformation has a different way of checking the sharding. The best example for this is `pjit` and `xmap`. They both have different way to check if an aval is sharded properly with respect to the given sharding because `pjit` and `xmap` has different ways to express sharding. * `MeshPspecSharding` and `SingleDeviceSharding` have `__hash__` and `__eq__`. So now we don't have to pass around canonicalized pspecs in the new path to get cache hits. The `Sharding` instances should handle that for us. * _pjit_lower still depends on mesh which is the major reason why I haven't removed `resource_env` from `params`. But in the interest of keep this CL small (LOL), I'll make those changes in a follow up CL. * Also the private functions in pxla.py are used by pathways and automap so I'll have to modify those too. * Also it has `pxla.resource_typecheck` which I haven't figured out how to move it to sharding interface. * `_to_xla_op_sharding` takes in `axis_ctx` as an extra **optional** parameter. This is required for `with_sharding_constraint`. * `with_sharding_constraint` uses the MLIR `ctx` here: cl/458042998 * `pjit`'s batching handlers add an extra dimension to the axis_resources. Since this is dependent on how each transformation adds the extra dimension and it also differs on how each sharding instance will handle it, I added a handler system for this too. Again `xmap` and `pjit` differ a lot here. This is why I went with the handler approach. * MeshPspecSharding handles this `insert_axis_partitions` on the parsed partition spec. I have added more detailed comments in the place where this is done. PiperOrigin-RevId: 459548974
2022-07-07 10:41:27 -07:00
def f():
pass
pjit(f)
def test_array_device_assignment_mismatch_with_mesh(self):
global_input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
mesh_axes = P('x', 'y')
input_array, _ = create_array(
global_input_shape, jtu.create_global_mesh((2, 2), ('x', 'y')),
mesh_axes)
with jax_array(True):
with global_mesh:
with self.assertRaisesRegex(
ValueError, "Received incompatible devices for pjitted computation"):
pjit(lambda x: x)(input_array)
def test_array_lower_compile(self):
global_input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
a1, input_data = create_array(global_input_shape, global_mesh, P('x', 'y'))
a2, _ = create_array(global_input_shape, global_mesh, P('x'))
aval = jax.core.ShapedArray(global_input_shape, np.float32)
with jax_array(True):
with global_mesh:
f = pjit(
lambda x, y: x @ y.T,
in_axis_resources=NamedSharding(global_mesh, P('x' ,'y')))
compiled = f.lower(aval, aval).compile()
out = compiled(a1, a1)
self.assertIsInstance(out, array.ArrayImpl)
self.assertArraysEqual(out._value, input_data @ input_data.T)
with self.assertRaisesRegex(
ValueError, 'Array sharding does not match the input sharding'):
compiled(a2, a2)
@jax_array(True)
def test_globally_sharded_key_array_result_8x4_single_device(self):
input_shape = (8, 4)
seeds = jnp.arange(
prod(input_shape), dtype=np.uint32).reshape(input_shape)
@pjit
def make_keys(seeds):
make_key = partial(prng.seed_with_impl, prng.threefry_prng_impl)
return make_key(seeds)
out = make_keys(seeds)
self.assertIsInstance(out, jax.random.KeyArray)
self.assertEqual(out.shape, input_shape)
out.unsafe_raw_array() # doesn't crash
@jax_array(True)
def test_globally_sharded_key_array_8x4_multi_device_with_out_sharding(self):
input_shape = (8, 4)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
spec = P('x', 'y')
seeds, _ = create_array(input_shape, mesh, spec, dtype=np.uint32)
@partial(pjit, out_axis_resources=NamedSharding(mesh, P('x', 'y')))
def make_keys(seeds):
make_key = partial(prng.seed_with_impl, prng.threefry_prng_impl)
return make_key(seeds)
out = make_keys(seeds)
self.assertIsInstance(out, jax.random.KeyArray)
self.assertEqual(out.shape, input_shape)
out.unsafe_raw_array() # doesn't crash
@jax_array(True)
def test_globally_sharded_key_array_8x4_multi_device(self):
input_shape = (8, 4)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
spec = P('x', 'y')
seeds, _ = create_array(input_shape, mesh, spec, dtype=np.uint32)
@pjit
def make_keys(seeds):
make_key = partial(prng.seed_with_impl, prng.threefry_prng_impl)
return make_key(seeds)
out = make_keys(seeds)
self.assertIsInstance(out, jax.random.KeyArray)
self.assertEqual(out.shape, input_shape)
out.unsafe_raw_array() # doesn't crash
def test_array_device_assignment_mismatch_out_shardings(self):
input_shape = (8, 2)
m1 = jtu.create_global_mesh((4, 2), ('x', 'y'))
m2 = jtu.create_global_mesh((2, 2), ('x', 'y'))
spec = P('x', 'y')
a1 = jnp.arange(prod(input_shape)).reshape(input_shape)
with jax_array(True):
with m1:
with self.assertRaisesRegex(
ValueError, "Received incompatible devices for pjitted computation"):
pjit(lambda x, y: (x, y),
out_axis_resources=(NamedSharding(m1, spec),
NamedSharding(m2, spec)))(a1, a1)
def test_array_device_assignment_mismatch_in_and_out_shardings(self):
input_shape = (8, 2)
m1 = jtu.create_global_mesh((4, 2), ('x', 'y'))
m2 = jtu.create_global_mesh((2, 2), ('x', 'y'))
spec = P('x', 'y')
a1 = jnp.arange(prod(input_shape)).reshape(input_shape)
with jax_array(True):
with m1:
with self.assertRaisesRegex(
ValueError, "Received incompatible devices for pjitted computation"):
pjit(lambda x, y: (x, y),
in_axis_resources=NamedSharding(m2, spec),
out_axis_resources=NamedSharding(m1, spec))(a1, a1)
def test_mixed_inputs(self):
input_shape = (8, 2)
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
spec = P('x', 'y')
a1, input_data = create_array(input_shape, global_mesh, spec)
with jax_array(True):
with global_mesh:
f = pjit(lambda x, y: (x, y),
in_axis_resources=NamedSharding(global_mesh, P(None)))
with self.assertRaisesRegex(
ValueError,
('Sharding passed to pjit does not match the sharding on the '
'respective arg')):
f(input_data, a1)
def test_pjit_array_same_sharding_aot(self):
global_mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
input_shape = (8, 2)
a1, _ = create_array(input_shape, global_mesh, P(None,))
with jax_array(True):
with global_mesh:
f = pjit(lambda x: x, in_axis_resources=NamedSharding(global_mesh, P(None,)))
compiled = f.lower(jax.core.ShapedArray(input_shape, jnp.float32)).compile()
compiled(a1) # no error
@jax_array(True)
def test_pjit_single_device_sharding_add(self):
a = np.array([1, 2, 3], dtype=jnp.float32)
b = np.array([4, 5, 6], dtype=jnp.float32)
@pjit
def add(x, y):
return x + y
out = add(a, b)
cache_info1 = pjit_lib._pjit_lower_cached.cache_info()
self.assertIsInstance(out, array.ArrayImpl)
self.assertArraysEqual(out, a + b)
self.assertFalse(out._committed)
out2 = add(out, out)
cache_info2 = pjit_lib._pjit_lower_cached.cache_info()
self.assertIsInstance(out2, array.ArrayImpl)
self.assertArraysEqual(out2, 2 * (a + b))
self.assertFalse(out2._committed)
self.assertEqual(cache_info2.hits, cache_info1.hits + 1)
self.assertEqual(cache_info2.misses, cache_info1.misses)
c = jax.device_put(a, jax.devices()[0])
out3 = add(c, c)
cache_info3 = pjit_lib._pjit_lower_cached.cache_info()
self.assertArraysEqual(out3, 2 * c)
self.assertTrue(out3._committed)
self.assertEqual(cache_info3.hits, cache_info2.hits)
self.assertEqual(cache_info3.misses, cache_info2.misses + 1)
out4 = add(out3, out3)
self.assertArraysEqual(out4, 4 * c)
self.assertTrue(out4._committed)
@jax_array(True)
def test_pjit_single_device_sharding_mul(self):
a = jnp.arange(16).reshape((8, 2))
@pjit
def mul(x):
return x @ x.T
out = mul(a)
self.assertIsInstance(out, array.ArrayImpl)
self.assertArraysEqual(out, a @ a.T)
@jax_array(True)
def test_pjit_single_device_sharding_cache(self):
a = jnp.arange(16).reshape((8, 2))
f = pjit(lambda x: x)
out = f(a)
cache_info1 = pjit_lib._pjit_lower_cached.cache_info()
_ = f(out)
cache_info2 = pjit_lib._pjit_lower_cached.cache_info()
self.assertEqual(cache_info2.hits, cache_info1.hits + 1)
self.assertEqual(cache_info2.misses, cache_info1.misses)
@jax_array(True)
def test_pjit_different_device_recompilation(self):
if jax.device_count() < 2:
raise unittest.SkipTest('Requires 2 or more devices.')
val1 = jnp.array([1, 2, 3], dtype=jnp.float32)
a = jax.device_put(val1, jax.devices()[0])
val2 = jnp.array([4, 5, 6], dtype=jnp.float32)
b = jax.device_put(val2, jax.devices()[1])
f = pjit(lambda x: x)
out1 = f(a)
cache_info1 = pjit_lib._pjit_lower_cached.cache_info()
out2 = f(b)
cache_info2 = pjit_lib._pjit_lower_cached.cache_info()
self.assertEqual(cache_info2.hits, cache_info1.hits)
self.assertEqual(cache_info2.misses, cache_info1.misses + 1)
self.assertArraysEqual(out1, val1)
self.assertArraysEqual(out2, val2)
@jax_array(True)
def test_grad_of_pjit_single_device_sharding(self):
a = jnp.array(16, dtype=jnp.float32)
f = lambda x: x * 3
out = jax.grad(pjit(f))(a)
self.assertIsInstance(out, array.ArrayImpl)
self.assertArraysEqual(out, jax.grad(f)(a))
@jax_array(True)
def test_autodiff_with_single_device_sharding(self):
# Add a constant captured by the nested pjit to make things more complicated
h = jnp.arange(4.)
f = pjit(lambda x: x.sum(1) * h.sum())
g = pjit(lambda x: f(jnp.sin(x * 4 + 2)))
jtu.check_grads(g, (jnp.arange(16.).reshape((4, 4)) / 100,), order=2)
@jax_array(True)
def test_fast_path_array(self):
devices = jax.devices()
if len(devices) < 8:
raise unittest.SkipTest("Test requires 8 global devices.")
mesh_devices = np.array([[devices[0], devices[2]],
[devices[3], devices[1]],
[devices[4], devices[6]],
[devices[7], devices[5]]])
shape = (8, 2)
mesh = jax.sharding.Mesh(mesh_devices, ('x', 'y'))
s = NamedSharding(mesh, P('x', 'y'))
inp_data = np.arange(prod(shape), dtype=np.float32).reshape(shape)
# Explicitly put on the ordering of devices which does not match the mesh
# ordering to make sure we reorder them in the constructor and the output
# is correct.
di_map = s.devices_indices_map(shape)
bufs = [jax.device_put(inp_data[di_map[d]], d)
for d in jax.local_devices()]
arr = array.ArrayImpl(jax.core.ShapedArray(shape, np.float32), s, bufs, committed=True)
f = pjit(lambda x: x, out_axis_resources=s)
out = f(arr)
self.assertTrue(out.sharding.is_equivalent_to(arr.sharding, arr.ndim))
self.assertArraysEqual(out, inp_data)
out2 = f(out)
self.assertTrue(out2.sharding.is_equivalent_to(out.sharding, out.ndim))
self.assertArraysEqual(out2, inp_data)
@jax_array(True)
def test_not_xlacompatible_sharding_error(self):
shape = (8, 2)
inp_data = np.arange(prod(shape)).reshape(shape)
ts = TempSharding(jax.devices())
arr = array.make_array_from_callback(
shape, ts, lambda idx: inp_data[idx])
with self.assertRaisesRegex(
ValueError,
'One of the argument to pjit got sharding.*which is not a subclass of '
'XLACompatibleSharding.'):
pjit(lambda x: x)(arr)
with self.assertRaisesRegex(
ValueError,
'One of in_shardings leaf specifications got sharding.*which is '
'not a subclass of XLACompatibleSharding.'):
pjit(lambda x: x, in_axis_resources=ts)(arr)
with self.assertRaisesRegex(
ValueError,
'One of out_shardings leaf specifications got sharding.*which is '
'not a subclass of XLACompatibleSharding.'):
pjit(lambda x: x, out_axis_resources=ts)(arr)
@jax_array(True)
def test_array_enabled_non_empty_mesh_with_pspec(self):
arr = jnp.array([1, 2, 3])
with self.assertRaisesRegex(
RuntimeError,
"pjit requires a non-empty mesh!.*Alternatively, provide a "
"XLACompatibleSharding to pjit and then the mesh context manager is "
"not required."):
pjit(lambda x: x, in_axis_resources=P('x'))(arr)
with self.assertRaisesRegex(
TypeError,
"in_shardings leaf specifications are expected to be PartitionSpec "
"instances or None, but got x"):
pjit(lambda x: x, in_axis_resources='x')
@jax_array(True)
def test_pjit_uncommitted_array_reshard(self):
arr = jnp.array([[1, 2, 3]])
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
with mesh:
out = pjit(lambda x: x)(arr)
self.assertArraysEqual(out, arr)
self.assertLen(out.addressable_shards, 8)
@jax_array(True)
def test_pjit_uncommitted_array_in_axis_resources_reshard(self):
arr = jnp.arange(16).reshape(8, 2)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
with mesh:
out = pjit(lambda x: x, in_axis_resources=P('x', 'y'))(arr)
self.assertArraysEqual(out, arr)
self.assertLen(out.addressable_shards, 8)
for s in out.addressable_shards:
self.assertArraysEqual(s.data, arr[s.index])
self.assertEqual(s.replica_id, 0)
@jax_array(True)
def test_pjit_uncommitted_array_and_committed_array(self):
shape = (8, 2)
uarr = jnp.arange(prod(shape), dtype=np.float32).reshape(shape)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
carr, inp_data = create_array(shape, mesh, P('x', 'y'))
with mesh:
out1, out2 = pjit(lambda x, y: (x, y))(uarr, carr)
self.assertArraysEqual(out1, inp_data)
self.assertArraysEqual(out2, inp_data)
self.assertLen(out1.addressable_shards, 8)
self.assertLen(out2.addressable_shards, 8)
mul_out = pjit(lambda x, y: x @ y.T)(uarr, carr)
self.assertEqual(mul_out.shape, (8, 8))
self.assertLen(mul_out.addressable_shards, 8)
with jtu.create_global_mesh((2, 2), ('x', 'y')):
with self.assertRaisesRegex(
ValueError,
"Received incompatible devices for pjitted computation"):
pjit(lambda x, y: (x, y))(uarr, carr)
@jax_array(True)
def test_pjit_uncommitted_array_multi_devices(self):
shape = (8, 2)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
inp = np.arange(prod(shape), dtype=np.int32).reshape(shape)
arr = array.ArrayImpl(
jax.core.ShapedArray(shape, np.int32), NamedSharding(mesh, P(None)),
[jax.device_put(inp, d) for d in mesh.devices.flat], committed=False)
with self.assertRaisesRegex(
NotImplementedError,
"Having uncommitted Array sharded on multiple devices is not supported."):
pjit(lambda x: x)(arr)
@jax_array(True)
def test_pjit_committed_array_different_devices(self):
if jax.device_count() < 2:
self.skipTest('Test requires >= 2 devices')
a = jax.device_put(np.array([1, 2, 3]), jax.devices()[0])
b = jax.device_put(np.array([4, 5, 6]), jax.devices()[1])
with self.assertRaisesRegex(
ValueError,
"Received incompatible devices for pjitted computation. Got argument "
r"x of.*\<lambda\> with shape int.*\[3\] and device ids \[0\].*and "
r"argument y of.*\<lambda\> with shape int.*\[3\] and device ids \[1\].*"):
pjit(lambda x, y: (x, y))(a, b)
def test_pjit_pytree_inp_device_assignment_mismatch(self):
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
a = jax.device_put(np.array([1, 2, 3]), jax.devices()[0])
b = jax.device_put(np.array([4, 5, 6]), jax.devices()[1])
c = jax.device_put(np.arange(16).reshape(8, 2),
NamedSharding(mesh, P('x', 'y')))
msg = ("Received incompatible devices for pjitted computation. Got "
r"argument {} of.*<lambda> with shape int.*\[3\] and device ids "
r"\[0\].*and argument {} of.*<lambda> with shape int.*\[8,2\] and "
r"device ids \[0, 1, 2, 3\].*")
with self.assertRaisesRegex(
ValueError, msg.format(r'tuple_inp\[0\]', r'tuple_inp\[1\]\[0\]')):
pjit(lambda tuple_inp: tuple_inp)((a, (c, (b))))
with self.assertRaisesRegex(
ValueError, msg.format(r"dict_inp\['a'\]\['b'\]\['c'\]",
r"dict_inp\['a'\]\['b'\]\['g'\]")):
inp = {'d': a, 'z': a, 'a': {'f': a, 'y': b, 'b': {'g': c, 'c': a}}}
pjit(lambda dict_inp: dict_inp)(inp)
@jax_array(True)
def test_same_out_sharding_id(self):
shape = (8, 2)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
arr, inp_data = create_array(shape, mesh, P('x', 'y'))
f = pjit(lambda x: x)
out1 = f(arr)
self.assertArraysEqual(out1, inp_data)
out1_sharding_id = id(out1.sharding)
out2 = f(out1)
self.assertArraysEqual(out2, inp_data)
out2_sharding_id = id(out2.sharding)
out3 = f(out2)
self.assertArraysEqual(out3, inp_data)
out3_sharding_id = id(out3.sharding)
self.assertEqual(out1_sharding_id, out2_sharding_id)
self.assertEqual(out1_sharding_id, out3_sharding_id)
self.assertEqual(out2_sharding_id, out3_sharding_id)
@jax_array(True)
def test_out_sharding_indices_id_cache_hit(self):
shape = (8, 2)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
arr, _ = create_array(shape, mesh, P('x', 'y'))
f = pjit(lambda x: x)
out1 = f(arr)
self.assertIsInstance(out1.sharding, OpShardingSharding)
out1.sharding.devices_indices_map(shape)
cache_info1 = OpShardingSharding.devices_indices_map.cache_info()
out2 = f(out1)
self.assertIsInstance(out2.sharding, OpShardingSharding)
out2.sharding.devices_indices_map(shape)
cache_info2 = OpShardingSharding.devices_indices_map.cache_info()
self.assertEqual(cache_info2.hits, cache_info1.hits + 1)
out3 = f(out2)
self.assertIsInstance(out3.sharding, OpShardingSharding)
out3.sharding.devices_indices_map(shape)
cache_info3 = OpShardingSharding.devices_indices_map.cache_info()
self.assertEqual(cache_info3.hits, cache_info2.hits + 1)
@jax_array(True)
def test_device_put_sharding_prng(self):
mesh = jtu.create_global_mesh((8,), ('x',))
s = NamedSharding(mesh, P('x'))
x = jax.random.split(jax.random.PRNGKey(0), len(jax.devices()))
y = jax.device_put(x, s)
if config.jax_enable_custom_prng:
self.assertIsInstance(y, jax.random.KeyArray)
self.assertEqual(y.sharding, s)
@jax_array(True)
def test_device_put_on_different_sharding(self):
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
x = jnp.arange(8).reshape(4, 2)
s1 = NamedSharding(mesh, P('x'))
a = jax.device_put(x, s1)
self.assertEqual(a.sharding, s1)
s2 = NamedSharding(mesh, P('x', 'y'))
b = jax.device_put(a, s2)
self.assertEqual(b.sharding, s2)
# TODO(yashkatariya): Remove this test once jax_array is enabled globally.
def test_device_put_sharding_error(self):
if config.jax_array:
self.skipTest('This test is only when jax_array is not enabled.')
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
x = jnp.arange(8).reshape(4, 2)
s1 = NamedSharding(mesh, P('x'))
with self.assertRaisesRegex(
RuntimeError,
"Please enable `jax_array` to use device_put with a `Sharding`"):
jax.device_put(x, s1)
@jax_array(True)
def test_with_sharding_constraint_jit(self):
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
@partial(jax.jit, static_argnums=(0, 1))
def sharded_zeros(shape, pspec):
out = jnp.zeros(shape, jnp.bfloat16)
return jax.lax.with_sharding_constraint(out, NamedSharding(mesh, pspec))
out = sharded_zeros((4096, 3072), P('x', 'y'))
out_s = NamedSharding(mesh, P('x', 'y'))
self.assertTrue(pxla.are_op_shardings_equal(
out.sharding._to_xla_op_sharding(out.ndim),
out_s._to_xla_op_sharding(out.ndim)))
@jax_array(True)
def test_with_sharding_constraint_pjit(self):
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
@partial(pjit, static_argnums=(0, 1))
def sharded_zeros(shape, pspec):
out = jnp.zeros(shape, jnp.bfloat16)
return jax.lax.with_sharding_constraint(out, NamedSharding(mesh, pspec))
out = sharded_zeros((4096, 3072), P('x', 'y'))
out_s = NamedSharding(mesh, P('x', 'y'))
self.assertTrue(pxla.are_op_shardings_equal(
out.sharding._to_xla_op_sharding(out.ndim),
out_s._to_xla_op_sharding(out.ndim)))
@jax_array(True)
def test_jit_with_sharding_constraint_committed_inp_error(self):
if not jax.config.jax_jit_pjit_api_merge or not jax.config.jax_array:
self.skipTest('Requires jit-pjit merge and jax.Array')
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
s = NamedSharding(mesh, P('x', 'y'))
@jax.jit
def sharded_inp(inp):
return jax.lax.with_sharding_constraint(
inp, NamedSharding(mesh, P('x', 'y')))
committed_inp = jax.device_put(jnp.zeros((8, 2), jnp.bfloat16), jax.devices()[0])
with self.assertRaisesRegex(
ValueError,
"Received incompatible devices for jitted computation. Got argument "
r"inp of.*sharded_inp with shape bfloat16\[8,2\] and device ids \[0\].*"
r"sharding_constraint inside jit with device ids \[0, 1, 2, 3\].*"):
sharded_inp(committed_inp)
@pjit
def my_nested_pjit(inp1, inp2, inp3):
@partial(pjit, in_axis_resources=(s, s, s),
out_axis_resources=(s, s, s))
def f(x, y, z):
return x * 2, y * 2, z * 2
return f(inp1, inp2, inp3)
with self.assertRaisesRegex(
ValueError,
"Received incompatible devices for pjitted computation. Got argument "
r"inp1 of.*my_nested_pjit with shape bfloat16\[8,2\] and device ids \[0\].*"
r"pjit inside pjit with device ids \[0, 1, 2, 3\].*"):
my_nested_pjit(committed_inp, committed_inp, committed_inp)
@jax_array(True)
def test_jit_device_with_sharding_constraint_error(self):
if not jax.config.jax_jit_pjit_api_merge or not jax.config.jax_array:
self.skipTest('Requires jax.Array and jit-pjit merge.')
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
@partial(jax.jit, static_argnums=(0, 1), device=jax.devices()[0])
def sharded_zeros(shape, pspec):
out = jnp.zeros(shape, jnp.bfloat16)
return jax.lax.with_sharding_constraint(out, NamedSharding(mesh, pspec))
with self.assertRaisesRegex(
ValueError,
"Received incompatible devices for jitted computation. Got explicit "
r"output sharding with device ids \[0\].*sharding_constraint inside "
r"jit with device ids \[0, 1, 2, 3\].*"):
sharded_zeros((4096, 3072), P('x', 'y'))
@jax_array(True)
def test_concurrent_pjit(self):
global_mesh = jtu.create_global_mesh((1,), ('x',))
sharding = NamedSharding(global_mesh, P('x',))
n = 10
with global_mesh:
fs = [pjit(lambda x, i: x + i, static_argnums=1) for _ in range(n)]
@jax_array(True)
def _invoke_with_mesh_twice(arg_tuple):
f, x, i = arg_tuple
with global_mesh:
f(x, i)
return f(x, i)
xs = [
array.make_array_from_callback(
(i,), sharding, lambda idx: np.arange(i, dtype=np.float32))
for i in range(n)
]
with concurrent.futures.ThreadPoolExecutor() as executor:
ys = executor.map(_invoke_with_mesh_twice,
[(fs[i], x, i) for i, x in enumerate(xs)])
for i, x, y in zip(range(n), xs, ys):
self.assertAllClose(x + i, y)
@jax_array(True)
def test_trivial_computation(self):
shape = (8, 2)
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
s = NamedSharding(mesh, P('x', 'y'))
inp_data = np.arange(prod(shape)).reshape(shape)
arr = jax.device_put(inp_data, s)
out = pjit(lambda x: x)(arr)
self.assertArraysEqual(out, inp_data)
@jax_array(True)
def test_trivial_computation_with_sharded_const(self):
mesh = jtu.create_global_mesh((2, 1), ('x', 'y'))
const = jax.device_put(np.arange(16).reshape(8, 2),
NamedSharding(mesh, P('x', 'y')))
with mesh:
out = pjit(lambda: const)()
self.assertIsInstance(out, array.ArrayImpl)
self.assertArraysEqual(out, np.arange(16).reshape(8, 2))
@jax_array(True)
def test_trivial_computation_with_sharded_const_using_transposed_mesh(self):
mesh = jtu.create_global_mesh((2, 1), ('x', 'y'))
const = jax.device_put(np.arange(16).reshape(8, 2),
NamedSharding(mesh, P('x', 'y')))
mesh2 = jtu.create_global_mesh((1, 2), ('x', 'y'))
with mesh2:
out = pjit(lambda: const)()
self.assertIsInstance(out, array.ArrayImpl)
self.assertArraysEqual(out, np.arange(16).reshape(8, 2))
@jax_array(True)
def test_trivial_computation_with_replicated_literal(self):
mesh = jtu.create_global_mesh((2, 1), ('x', 'y'))
with mesh:
out = pjit(lambda: 1)()
self.assertIsInstance(out, array.ArrayImpl)
self.assertEqual(out, 1)
@jax_array(True)
def test_multi_device_pjit_mul(self):
shape = (8, 2)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
inp_data = np.arange(prod(shape)).reshape(shape)
arr1 = jax.device_put(inp_data, NamedSharding(mesh, P('x', 'y')))
arr2 = jax.device_put(inp_data, NamedSharding(mesh, P(None, 'y')))
out1, out2 = pjit(lambda x, y: (x @ x.T, y * 2))(arr1, arr2)
self.assertArraysEqual(out1, inp_data @ inp_data.T)
self.assertEqual(out1.shape, (8, 8))
self.assertArraysEqual(out2, inp_data * 2)
self.assertEqual(out2.shape, (8, 2))
@jax_array(True)
def test_single_device_pjit_cpp_dispatch(self):
shape = (8, 2)
mesh = jtu.create_global_mesh((1,), ('x',))
inp_data = np.arange(prod(shape)).reshape(shape)
f = pjit(lambda x: x @ x.T, in_axis_resources=None, out_axis_resources=None)
with jtu.count_pjit_cache_miss() as count:
for _ in range(10):
arr1 = jax.device_put(
inp_data, jax.sharding.NamedSharding(mesh, P('x')))
with mesh:
f(arr1)
self.assertEqual(count[0], 1)
@jax_array(True)
def test_single_device_add_single_compile(self):
f1 = pjit(lambda x, y: x + y)
a = jax.device_put(jnp.array([1, 2, 3], dtype=jnp.float32),
jax.devices()[0])
b = jax.device_put(jnp.array([4, 5, 6], dtype=jnp.float32),
jax.devices()[0])
with jtu.count_pjit_cache_miss() as count:
for _ in range(2):
f1(a, b)
self.assertEqual(count[0], 1)
@jax_array(True)
def test_global_array_to_host_local_array_already_host_local(self):
inp_shape = (8, 2)
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
pspec = P('x', 'y')
arr, _ = create_array(inp_shape, mesh, pspec)
out = multihost_utils.global_array_to_host_local_array(arr, mesh, pspec)
self.assertEqual(id(arr), id(out))
@jtu.with_mesh([('x', 2), ('y', 2)])
@jax_array(True)
def testLowerCompileWithStaticArguments(self):
@partial(pjit,
in_axis_resources=P(('x', 'y'),),
out_axis_resources=P(('x', 'y'),), static_argnums=0)
def f(c, x):
return x if c == 0 else x + 1
shape = (8, 8)
x = jnp.arange(np.prod(shape)).reshape(shape)
exe = f.lower(1, x).compile()
self.assertAllClose(exe(x), x + 1, check_dtypes=False)
def test_unspecified_error_without_jax_array(self):
if jax.config.jax_array:
self.skipTest("This test does not fail if jax.Array is enabled.")
with self.assertRaisesRegex(
ValueError,
("in_axis_resources and out_axis_resources should not "
"be the unspecified singleton value. Please enable `jax.Array` to use "
"this feature.")):
pjit(lambda x: x)
def test_vmap_of_jvp_pjit_no_axis_resources(self):
if not jax.config.jax_array:
self.skipTest("This test does not work without jax.Array")
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
pjit_inp1 = jax.device_put(
jnp.arange(8.), jax.sharding.NamedSharding(mesh, P('x')))
pjit_inp2 = jax.device_put(
jnp.arange(8.), jax.sharding.NamedSharding(mesh, P(('x', 'y'))))
def f_(x, n):
if n == 0:
return x * 2.
return jax.jit(partial(f_, n=n-1))(x - 1)
f = jax.jit(partial(f_, n=5))
jit_out1, jit_out2 = jax.vmap(lambda xs, ts: jax.jvp(f, xs, ts))(
(jnp.arange(8.),), (jnp.arange(8.),))
def g_(x, n):
if n == 0:
return x * 2.
return pjit(partial(g_, n=n - 1))(x - 1)
g = pjit(partial(g_, n=5))
pjit_out1, pjit_out2 = jax.vmap(lambda xs, ts: jax.jvp(g, xs, ts))(
(pjit_inp1,), (pjit_inp2,))
self.assertArraysEqual(pjit_out1, jit_out1)
self.assertArraysEqual(pjit_out2, jit_out2)
def test_vmap_of_jvp_pjit_no_axis_resources_2d(self):
if not jax.config.jax_array:
self.skipTest("This test does not work without jax.Array")
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
f_inp = jnp.arange(8.).reshape(2, 2, 2)
# g_inp is sharded with P(None, 'x') because f_inp is sharded with P('x')
# and then `f` will get vmapped and pjit's batching rule will insert a
# replicated axis for the batched dimension converting it into P(None, 'x')
g_inp = jax.device_put(f_inp,
jax.sharding.NamedSharding(mesh, P(None, 'x')))
# Reference pjit with axis_resources
def f_(x, n):
if n == 0:
return x * 2.
return pjit(partial(f_, n=n-1), in_axis_resources=P('x'),
out_axis_resources=P('x'))(x - 1)
f = pjit(partial(f_, n=5), in_axis_resources=P('x'),
out_axis_resources=P('x'))
with mesh:
f_out1, f_out2 = jax.vmap(lambda xs, ts: jax.jvp(f, xs, ts))(
(f_inp,), (f_inp,))
# pjit with no axis_resources
def g_(x, n):
if n == 0:
return x * 2.
return pjit(partial(g_, n=n - 1))(x - 1)
g = pjit(partial(g_, n=5))
g_out1, g_out2 = jax.vmap(lambda xs, ts: jax.jvp(g, xs, ts))(
(g_inp,), (g_inp,))
self.assertArraysEqual(f_out1, g_out1)
self.assertArraysEqual(f_out2, g_out2)
self.assertEqual(f_out1.sharding, g_out1.sharding)
self.assertEqual(f_out2.sharding, g_out2.sharding)
def test_pjit_on_different_default_device_with_uncommitted_inputs(self):
if jax.device_count() < 2 or not jax.config.jax_array:
self.skipTest('Test requires >=2 devices and jax.Array should be '
'enabled.')
@pjit
def f(x, y):
return x + y
a = jnp.array([1, 2, 3], dtype=jnp.float32)
self.assertFalse(a._committed)
out = f(a, a)
self.assertFalse(out._committed)
self.assertEqual(out.device(), jax.devices()[0])
self.assertArraysEqual(out, a * 2)
with jax.default_device(jax.devices()[1]):
b = jnp.array([4, 5, 6], dtype=jnp.float32)
self.assertFalse(b._committed)
out2 = f(b, b)
self.assertFalse(out2._committed)
self.assertEqual(out2.device(), jax.devices()[1])
self.assertArraysEqual(out2, b * 2)
def test_pjit_with_static_argnames(self):
def f(x: str) -> int:
assert x == 'foo'
return 1
f_nums = pjit(f, static_argnums=0)
assert f_nums('foo') == 1
assert f_nums(x='foo') == 1
f_names = pjit(f, static_argnames='x')
assert f_names('foo') == 1
assert f_names(x='foo') == 1
def test_pjit_with_static_argnames_cpp_dispatch(self):
def f(y, **kwargs):
self.assertEqual(kwargs, {'x': 'foo'})
return y * y
with jtu.count_pjit_cache_miss() as count:
y = jnp.arange(8.)
f_names = pjit(f, static_argnames='x')
f_names(y, x='foo')
f_names(y, x='foo')
self.assertEqual(count[0], 1)
def test_new_static_argnum_on_keyword_arguments(self):
f = pjit(lambda x: x, static_argnums=0)
y = f(x=4)
assert y == 4
def test_new_static_argnum_with_default_arguments(self):
f = pjit(lambda x=4: x, static_argnums=0)
y = f()
assert y == 4
def test_pjit_different_default_device(self):
if jax.device_count() <= 1:
self.skipTest('Test requires more >1 device.')
if xla_extension_version < 125:
self.skipTest('This test requires xla_extension_version >= 125.')
system_default_device = jnp.add(1, 1).device()
test_device = jax.devices()[-1]
f = pjit(lambda x: x + 1)
f(1)
with jax.default_device(system_default_device):
f(1)
with jax.default_device(test_device):
f(1)
with jtu.count_pjit_cache_miss() as count:
f(1)
with jax.default_device(system_default_device):
f(1)
with jax.default_device(test_device):
f(1)
with jax.default_device(test_device):
with jax.default_device(system_default_device):
f(1)
# The count here is 0 because before `count_pjit_cache_miss`, `f` was
# called with `system_default_device` and `test_device` so it was added
# to the cache. Subsequent calls hit the C++ cache.
self.assertEqual(count[0], 0)
def test_pjit_with_mismatched_static_argnames(self):
x_is_tracer, y_is_tracer = False, False
def f(x, y):
assert isinstance(x, jax.core.Tracer) == x_is_tracer
assert isinstance(y, jax.core.Tracer) == y_is_tracer
return 1
# If both static_argnums and static_argnames are provided, they are allowed
# to disagree and `jit` will respect the user's choices.
f_nums = pjit(f, static_argnums=1, static_argnames=())
x_is_tracer, y_is_tracer = True, False
assert f_nums(2, 3) == 1
x_is_tracer, y_is_tracer = True, True
assert f_nums(1, y=2) == 1
f_names = pjit(f, static_argnums=(), static_argnames='y')
x_is_tracer, y_is_tracer = True, True
assert f_names(2, 3) == 1
x_is_tracer, y_is_tracer = True, False
assert f_names(1, y=3) == 1
f_mixed = pjit(f, static_argnums=(1,), static_argnames='x')
x_is_tracer, y_is_tracer = True, False
assert f_mixed(2, 3) == 1
x_is_tracer, y_is_tracer = True, True
assert f_mixed(1, y=3) == 1
x_is_tracer, y_is_tracer = False, True
assert f_mixed(x=2, y=3) == 1
def test_pjit_kwargs(self):
a = jnp.arange(8.)
b = jnp.arange(4.)
c = jnp.arange(2.)
@pjit
def f(x, y, z):
return x, y, z
o1, o2, o3 = f(a, y=b, z=c)
cache_info1 = pjit_lib._pjit_lower_cached.cache_info()
self.assertArraysEqual(o1, a)
self.assertArraysEqual(o2, b)
self.assertArraysEqual(o3, c)
o4, o5, o6 = f(x=a, y=b, z=c)
cache_info2 = pjit_lib._pjit_lower_cached.cache_info()
self.assertArraysEqual(o4, a)
self.assertArraysEqual(o5, b)
self.assertArraysEqual(o6, c)
self.assertEqual(cache_info2.hits, cache_info1.hits)
self.assertEqual(cache_info2.misses, cache_info1.misses + 1)
o7, o8, o9 = f(a, b, c)
cache_info3 = pjit_lib._pjit_lower_cached.cache_info()
self.assertArraysEqual(o7, a)
self.assertArraysEqual(o8, b)
self.assertArraysEqual(o9, c)
self.assertEqual(cache_info3.hits, cache_info2.hits)
self.assertEqual(cache_info3.misses, cache_info2.misses + 1)
def test_pjit_kwargs_axis_resources_error(self):
with self.assertRaisesRegex(
ValueError,
"pjit does not support kwargs when in_shardings is specified."):
pjit(lambda x: x, in_axis_resources=None)(x=jnp.arange(8.))
def test_pjit_keep_unused_true(self):
@partial(pjit, keep_unused=True)
def f(x, y, z, a, b, c): # pylint: disable=unused-argument
return c @ c.T
inp = jnp.arange(4)
unused_inp = jnp.arange(8)
out = f(unused_inp, unused_inp, unused_inp, unused_inp, unused_inp, inp)
# Run it again to take the C++ dispatch.
out_again = f(unused_inp, unused_inp, unused_inp, unused_inp, unused_inp, inp)
self.assertArraysEqual(out, inp @ inp.T)
self.assertArraysEqual(out_again, inp @ inp.T)
compiled = f.lower(
unused_inp, unused_inp, unused_inp, unused_inp, unused_inp, inp).compile()
self.assertEqual(compiled._executable._kept_var_idx, {0, 1, 2, 3, 4, 5})
self.assertLen(compiled._executable.in_avals, 6)
def test_pjit_keep_unused_default_false(self):
@pjit
def f(x, y, z, a, b, c): # pylint: disable=unused-argument
return c @ c.T
inp = jax.device_put(jnp.arange(4), jax.devices()[0])
unused_inp = jax.device_put(jnp.arange(8), jax.devices()[0])
out = f(unused_inp, unused_inp, unused_inp, unused_inp, unused_inp, inp)
# Run it again to take the C++ dispatch.
out_again = f(unused_inp, unused_inp, unused_inp, unused_inp, unused_inp, inp)
self.assertArraysEqual(out, inp @ inp.T)
self.assertArraysEqual(out_again, inp @ inp.T)
compiled = f.lower(
unused_inp, unused_inp, unused_inp, unused_inp, unused_inp, inp).compile()
self.assertEqual(compiled._executable._kept_var_idx, {5})
self.assertLen(compiled._executable.in_avals, 1)
def test_pjit_with_device_arg(self):
def mul(x):
return x @ x.T
def _check(out, expected_device, expected_out):
self.assertEqual(out.device(), expected_device)
self.assertLen(out.sharding.device_set, 1)
self.assertArraysEqual(out, expected_out @ expected_out.T)
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
f = pjit(mul, device=jax.devices()[1])
x = jnp.arange(8).reshape(4, 2)
f_out = f(x)
f_out2 = f(f_out)
cache_info1 = pjit_lib._pjit_lower_cached.cache_info()
_check(f_out, jax.devices()[1], x)
_check(f_out2, jax.devices()[1], f_out)
y = jax.device_put(x, jax.sharding.NamedSharding(mesh, P('x', 'y')))
out2 = f(y)
cache_info2 = pjit_lib._pjit_lower_cached.cache_info()
_check(out2, jax.devices()[1], y)
self.assertEqual(cache_info2.hits, cache_info1.hits + 1)
h = pjit(mul, device=jax.devices()[-1])
h_out = h(y)
cache_info3 = pjit_lib._pjit_lower_cached.cache_info()
_check(h_out, jax.devices()[-1], y)
self.assertEqual(cache_info3.hits, cache_info2.hits)
# AOT test
compiled = f.lower(jax.core.ShapedArray(y.shape, y.dtype)).compile()
out3 = compiled(y)
_check(out3, jax.devices()[1], y)
def test_pjit_with_device_arg_input_from_another_pjit(self):
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
inp = np.arange(8).reshape(4, 2)
y = jax.device_put(inp, jax.sharding.NamedSharding(mesh, P('x', 'y')))
out = pjit(lambda x: x * 2)(y)
expected_device = jax.devices()[2]
final_out = pjit(lambda x: x * 3, device=expected_device)(out)
self.assertEqual(final_out.device(), expected_device)
self.assertLen(final_out.sharding.device_set, 1)
self.assertArraysEqual(final_out, inp * 6)
@jtu.skip_on_devices("gpu", "cpu")
def test_pjit_with_backend_arg(self):
def _check(out, expected_device, expected_out):
self.assertEqual(out.device(), expected_device)
self.assertLen(out.sharding.device_set, 1)
self.assertArraysEqual(out, expected_out)
x = jnp.arange(8)
g = pjit(lambda x: x, backend='tpu')
g_out = g(x)
_check(g_out, jax.devices()[0], x)
compiled = g.lower(jax.core.ShapedArray(x.shape, x.dtype)).compile()
out4 = compiled(x)
_check(out4, jax.devices()[0], x)
def test_autodiff_with_device_arg(self):
if jax.device_count() <= 1:
self.skipTest('Test requires more >1 device.')
# Add a constant captured by the nested pjit to make things more complicated
h = jnp.arange(4.)
f = pjit(lambda x: x.sum(1) * h.sum(), device=jax.devices()[1])
g = pjit(lambda x: f(jnp.sin(x * 4 + 2)), device=jax.devices()[1])
jtu.check_grads(g, (jnp.arange(16.).reshape((4, 4)) / 100,), order=2)
def test_pjit_device_backend_axis_resources_error(self):
with self.assertRaisesRegex(
ValueError,
'If backend or device is specified on jit, then '
'in_shardings should not be specified.'):
pjit(lambda x: x, in_axis_resources=None, backend='cpu')
with self.assertRaisesRegex(
ValueError,
'If backend or device is specified on jit, then '
'out_shardings should not be specified.'):
pjit(lambda x: x, out_axis_resources=None, device=jax.devices()[0])
def test_pjit_device_backend_both_error(self):
with self.assertRaisesRegex(
ValueError, "can't specify both a device and a backend for jit"):
pjit(lambda x: x, device=jax.devices()[0], backend='cpu')
def test_pjit_mesh_with_device_or_backend_error(self):
mesh = jtu.create_global_mesh((1,), ('x',))
with mesh:
with self.assertRaisesRegex(
ValueError,
"Mesh context manager should not be used with jit when backend or "
"device is also specified as an argument to jit."):
pjit(lambda x: x, device=jax.devices()[0])(jnp.arange(8))
def test_pjit_inline(self):
@partial(pjit, inline=False)
def f(x):
return x * 2
jaxpr = jax.make_jaxpr(f)(3)
self.assertIn('pjit', str(jaxpr))
@partial(pjit, inline=True)
def g(x):
return x * 2
jaxpr = jax.make_jaxpr(g)(3)
self.assertNotIn('pjit', str(jaxpr))
def test_pmap_in_axis_resources_error(self):
pmap_out = jax.pmap(lambda x: x)(jnp.arange(jax.device_count()))
self.assertIsInstance(pmap_out.sharding, jax.sharding.PmapSharding)
with self.assertRaisesRegex(
ValueError,
r"One of in_shardings.*got sharding.*which is not allowed."):
pjit(lambda x: x, in_axis_resources=pmap_out.sharding)
with self.assertRaisesRegex(
ValueError,
r"One of out_shardings.*got sharding.*which is not allowed."):
pjit(lambda x: x, out_axis_resources=pmap_out.sharding)
def test_pmap_sharding_input_to_pjit_single_device(self):
pmap_out = jax.pmap(lambda x: x)(jnp.arange(jax.device_count()))
self.assertIsInstance(pmap_out.sharding, jax.sharding.PmapSharding)
self.assertLen(pmap_out.devices(), jax.device_count())
out = pjit(lambda x: x * 3)(pmap_out)
self.assertArraysEqual(out, pmap_out * 3)
# Even though pmap out is on jax.device_count() number of devices, the
# output will be 1 device since it will be resharded.
self.assertLen(out.devices(), 1)
def test_pmap_sharding_input_to_pjit_multi_device(self):
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
pmap_out = jax.pmap(lambda x: x)(jnp.arange(jax.device_count()))
self.assertIsInstance(pmap_out.sharding, jax.sharding.PmapSharding)
inp2 = jnp.arange(4)
with mesh:
out1, out2 = pjit(lambda x, y: (x * 2, y * 2))(pmap_out, inp2)
self.assertArraysEqual(out1, pmap_out * 2)
self.assertArraysEqual(out2, inp2 * 2)
self.assertLen(out1.devices(), 4)
self.assertLen(out2.devices(), 4)
self.assertTrue(pxla.is_op_sharding_replicated(
out1.sharding._to_xla_op_sharding(pmap_out.ndim)))
self.assertTrue(pxla.is_op_sharding_replicated(
out2.sharding._to_xla_op_sharding(inp2.ndim)))
def test_pmap_sharding_input_pjit_in_axis_resources(self):
mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
pmap_out = jax.pmap(lambda x: x)(jnp.arange(jax.device_count()))
self.assertIsInstance(pmap_out.sharding, jax.sharding.PmapSharding)
out = pjit(lambda x: x * 2, in_axis_resources=NamedSharding(mesh, P('x')))(pmap_out)
self.assertArraysEqual(out, pmap_out * 2)
self.assertLen(out.devices(), 4)
def test_nested_pjit_closing_over_tracer(self):
@pjit
def f(x):
y = jnp.float32(2) * x
@pjit
def g(z):
return jax.pmap(lambda x: x[jnp.newaxis] * y)(z)
return g(x)
f(np.arange(1., dtype='float32').reshape((1, 1))) # doesn't crash
# Second call is to trigger C++ dispatch.
f(np.arange(1., dtype='float32').reshape((1, 1))) # doesn't crash
def test_aot_nested_pjit_closing_over_const_top_level(self):
const = jnp.arange(8.)
@pjit
def f(x):
return const * 2 + x
inp = jnp.arange(8.)
compiled = f.lower(inp).compile()
self.assertArraysEqual(compiled(inp), const * 2 + inp)
def test_nested_pjit_closing_over_const_top_level_and_tracer(self):
const = jnp.arange(8.)
@pjit
def f(x):
y = jnp.arange(8., 16.) * x + const
@pjit
def g(z):
return z + y * 2 + const
return g(x)
f(jnp.arange(8.)) # doesn't crash
# Second call is to trigger C++ dispatch.
f(jnp.arange(8.)) # doesn't crash
def test_nested_pjit_closing_over_top_level_const(self):
const = jnp.arange(8.)
@pjit
def f(x):
@pjit
def g(z):
return z + const
return g(x)
inp = jnp.arange(8., 16.)
f(inp) # doesn't crash
# Second call is to trigger C++ dispatch.
f(inp) # doesn't crash
def test_pjit_sin_nested(self):
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
@pjit
def f(x):
return jnp.sin(x)
with mesh:
inp = jnp.arange(8.)
out = f(inp)
self.assertArraysAllClose(out, np.sin(inp))
self.assertLen(out.devices(), 8)
def test_jit_with_mesh_context_manager(self):
if not jax.config.jax_jit_pjit_api_merge:
self.skipTest("This test only works if jax_jit_pjit_api_merge is True")
mesh = jtu.create_global_mesh((1,), ('x',))
with self.assertRaisesRegex(
RuntimeError,
"jit does not support using the mesh context manager"):
with mesh:
jax.jit(lambda x: x, in_shardings=P('x'),
out_shardings=P('x'))(jnp.arange(8))
def test_pjit_nested_uncommitted_output(self):
@pjit
def f(x):
@pjit
def g(y):
return y * 2
return g(x)
out = f(jnp.arange(8))
self.assertFalse(out._committed)
self.assertArraysEqual(out, np.arange(8) * 2)
def test_pjit_disable_jit(self):
sideeffect = []
def f(x):
sideeffect.append(None)
return x + 1
f = jax.jit(f)
for _ in range(2):
f(1)
self.assertLen(sideeffect, 1)
with jax.disable_jit():
f(1)
self.assertLen(sideeffect, 2)
def test_pmap_pjit_axis_index(self):
@partial(jax.pmap, axis_name='data')
def _pmapped_fun(inputs):
del inputs
return jax.lax.axis_index('data')
inputs = jnp.zeros(shape=[jax.device_count()])
with jtu.ignore_warning(
message=".*Using jit-of-pmap can lead to inefficient data movement"):
pjit(_pmapped_fun)(inputs) # doesn't crash
jax.jit(_pmapped_fun)(inputs) # doesn't crash
def test_pjit_function_cache_cpp(self):
if xla_extension_version < 124 or not config.jax_array:
self.skipTest('This test requires xla_extension_version >= 124 and '
'jax.Array')
def f(x):
return x * 2
inp = jnp.arange(3.)
with jtu.count_pjit_cache_miss() as count:
for _ in range(10):
pjit(f)(inp)
self.assertEqual(count[0], 1)
def test_pjit_no_global_cache_hit_axis_resources(self):
if xla_extension_version < 124 or not config.jax_array:
self.skipTest('This test requires xla_extension_version >= 124 and '
'jax.Array')
mesh = jtu.create_global_mesh((1,), ('x',))
s = NamedSharding(mesh, P('x'))
with jtu.count_pjit_cache_miss() as count:
for _ in range(10):
pjit(lambda x: x * 2, in_axis_resources=s, out_axis_resources=s)(jnp.arange(8.))
self.assertEqual(count[0], 10)
with jtu.count_pjit_cache_miss() as count:
for _ in range(10):
pjit(lambda x: x * 2, device=jax.devices()[0])(jnp.arange(8.))
self.assertEqual(count[0], 10)
pf = pjit(lambda x: x * 2, in_axis_resources=s, out_axis_resources=s)
with jtu.count_pjit_cache_miss() as count:
for _ in range(10):
pf(jnp.arange(8.))
self.assertEqual(count[0], 1)
pf1 = pjit(lambda x: x * 2, device=jax.devices()[0])
with jtu.count_pjit_cache_miss() as count:
for _ in range(10):
pf1(jnp.arange(8.))
self.assertEqual(count[0], 1)
def test_jit_function_cache_cpp(self):
if xla_extension_version < 124 or not config.jax_array:
self.skipTest('This test requires xla_extension_version >= 124 and '
'jax.Array')
if jax.config.jax_jit_pjit_api_merge:
self.skipTest("This test only works if jax_jit_pjit_api_merge is False "
"since it tests the old jit codepath.")
def f(x):
return x * 2
inp = jnp.arange(3.)
original_xla_call_impl_lazy = dispatch._xla_call_impl_lazy
count = 0
def xla_call_impl_lazy_and_count(*args, **kwargs):
nonlocal count
count += 1
return original_xla_call_impl_lazy(*args, **kwargs)
try:
dispatch._xla_call_impl_lazy = xla_call_impl_lazy_and_count
for _ in range(10):
jax.jit(f)(inp)
self.assertEqual(count, 1)
finally:
dispatch._xla_call_impl_lazy = original_xla_call_impl_lazy
def test_set_both_axis_resources_and_shardings(self):
with self.assertRaisesRegex(
ValueError,
"Setting both in_shardings and in_axis_resources is not allowed"):
pjit(lambda x: x, in_shardings=P('x'), in_axis_resources=P('x'))
with self.assertRaisesRegex(
ValueError,
"Setting both out_shardings and out_axis_resources is not allowed"):
pjit(lambda x: x, out_shardings=P('x'), out_axis_resources=P('x'))
def test_set_none_wsc_axis_resources_and_shardings(self):
with self.assertRaisesRegex(
ValueError,
"Not specifying shardings to `with_sharding_constraint` is not allowed."):
pjit(jax.lax.with_sharding_constraint(jnp.arange(8)))
def test_set_both_wsc_axis_resources_and_shardings(self):
with self.assertRaisesRegex(
ValueError,
"Setting both axis_resources and shardings is not allowed"):
pjit(jax.lax.with_sharding_constraint(
jnp.arange(8), axis_resources=P('x'), shardings=P('x')))
class TempSharding(Sharding):
def __init__(self, devices):
self._devices = devices
@property
def device_set(self):
return set(self._devices)
def devices_indices_map(self, global_shape):
return {d: (slice(None),) * len(global_shape) for d in self.device_set}
def shard_shape(self, global_shape):
return global_shape
def spec_regex(s):
return str(s).replace(r"(", r"\(").replace(r")", r"\)")
@jtu.pytest_mark_if_available('multiaccelerator')
class PJitErrorTest(jtu.JaxTestCase):
@check_1d_2d_mesh(set_mesh=True)
def testNonDivisibleArgs(self, mesh, resources):
x = jnp.ones((3, 2))
spec = P(resources, None)
mesh_size = str(np.prod([dim[1] for dim in mesh], dtype=np.int64))
error = re.compile(
r"One of pjit arguments.*" + spec_regex(spec) + r".*"
r"implies that the size of its dimension 0 should be "
r"divisible by " + mesh_size + r", but it is equal to 3 "
r"\(full shape: \(3, 2\)\)", re.M | re.S)
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, in_axis_resources=spec, out_axis_resources=None)(x)
@check_1d_2d_mesh(set_mesh=True)
def testNonDivisibleOuts(self, mesh, resources):
x = jnp.ones((3, 2))
spec = P(resources, None)
mesh_size = str(np.prod([dim[1] for dim in mesh], dtype=np.int64))
error = re.compile(
r"One of pjit outputs.*" + spec_regex(spec) + r".*"
r"implies that the size of its dimension 0 should be "
r"divisible by " + mesh_size + r", but it is equal to 3", re.M | re.S)
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, in_axis_resources=None, out_axis_resources=P(resources, None))(x)
@check_1d_2d_mesh(set_mesh=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('z', 1)])
def testUndefinedResourcesArgs(self, mesh, resources):
x = jnp.ones((2, 2))
spec = P(resources,)
with self.assertRaisesRegex(
ValueError,
r"Resource axis: x of.*" + spec_regex(spec) + " is undefined"):
pjit(lambda x: x, in_axis_resources=spec, out_axis_resources=None)(x)
@check_1d_2d_mesh(set_mesh=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('z', 1)])
def testUndefinedResourcesOuts(self, mesh, resources):
x = jnp.ones((2, 2))
spec = P(resources,)
with self.assertRaisesRegex(
ValueError,
r"Resource axis: x of.*" + spec_regex(spec) + " is undefined"):
pjit(lambda x: x, in_axis_resources=None, out_axis_resources=spec)(x)
@check_1d_2d_mesh(set_mesh=False)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('z', 1)])
def testUndefinedResourcesConstraint(self, mesh, resources):
x = jnp.ones((2, 2))
spec = P(resources,)
with self.assertRaisesRegex(
ValueError,
r"Resource axis: x of.*" + spec_regex(spec) + " is undefined"):
pjit(lambda x: with_sharding_constraint(x, spec),
in_axis_resources=None, out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRankTooLowArgs(self):
x = jnp.arange(2)
spec = P('x', 'y')
error = re.compile(
r"One of pjit arguments.*" + spec_regex(spec) +
r".*rank at least 2, but was applied to a value of rank 1", re.M | re.S)
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x.sum(), in_axis_resources=spec, out_axis_resources=None)(x)
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRankTooLowArgsAxisResourcesNone(self):
x = jnp.arange(2)
spec = P(None, None)
error = re.compile(
r"One of pjit arguments.*" + spec_regex(spec) +
r".*rank at least 2, but was applied to a value of rank 1", re.M | re.S)
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x.sum(), in_axis_resources=spec, out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRankTooLowOuts(self):
x = jnp.arange(2)
spec = P('x', 'y')
error = re.compile(
r"One of pjit outputs.*" + spec_regex(spec) +
r".*rank at least 2, but was applied to a value of rank 0", re.M | re.S)
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x.sum(), in_axis_resources=None, out_axis_resources=spec)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRankTooLowConstraint(self):
x = jnp.arange(2)
spec = P('x', 'y')
error = re.compile(
r"One of with_sharding_constraint arguments" + r".*" + spec_regex(spec) +
r".*rank at least 2, but was applied to a value of rank 1", re.M | re.S)
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: with_sharding_constraint(x, spec),
in_axis_resources=None, out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRepeatedInResources(self):
x = jnp.arange(2)
for spec in [P('x', 'x'), P('x', ('y', 'x'))]:
error = (r"A single in_shardings specification can map every mesh "
r"axis to at most one positional dimension, but " +
spec_regex(spec) + " has duplicate entries for `x`")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, in_axis_resources=spec, out_axis_resources=None)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2), ('y', 1)])
def testRepeatedOutResources(self):
x = jnp.arange(2)
for spec in [P('x', 'x'), P('x', ('y', 'x'))]:
error = (r"A single out_shardings specification can map every mesh "
r"axis to at most one positional dimension, but " +
spec_regex(spec) + " has duplicate entries for `x`")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, in_axis_resources=None, out_axis_resources=spec)(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testInputShardsXMapAxis(self):
spec = P('x')
f = xmap(pjit(lambda x: x + 2, in_axis_resources=spec, out_axis_resources=None),
in_axes=['i', ...], out_axes=['i', ...], axis_resources={'i': 'x'})
x = jnp.arange(4).reshape((2, 2))
error = (r"pjit input has an axis resources specification of " +
spec_regex(spec) + r" that uses one or more "
"mesh axes already used by "
r"xmap to partition a named axis appearing in its named_shape \(both "
r"use mesh axes `x`\)")
with self.assertRaisesRegex(JAXTypeError, error):
f(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testOutputShardsXMapAxis(self):
spec = P('x')
f = xmap(pjit(lambda x: x + 2, in_axis_resources=None, out_axis_resources=spec),
in_axes=['i', ...], out_axes=['i', ...], axis_resources={'i': 'x'})
x = jnp.arange(4).reshape((2, 2))
error = (r"pjit output has an axis resources specification of " +
spec_regex(spec) + r" that uses one or more "
"mesh axes already used by "
r"xmap to partition a named axis appearing in its named_shape \(both "
r"use mesh axes `x`\)")
with self.assertRaisesRegex(JAXTypeError, error):
f(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testConstraintShardsXMapAxis(self):
spec = P('x')
f = xmap(lambda x: with_sharding_constraint(x, spec),
in_axes=['i', ...], out_axes=['i', ...], axis_resources={'i': 'x'})
x = jnp.arange(4).reshape((2, 2))
error = (r"with_sharding_constraint input has an axis resources specification of " +
spec_regex(spec) + r" that uses one or more "
"mesh axes already used by "
r"xmap to partition a named axis appearing in its named_shape \(both "
r"use mesh axes `x`\)")
with self.assertRaisesRegex(JAXTypeError, error):
f(x)
2021-06-01 14:32:59 +03:00
@jtu.with_mesh([('x', 2)])
def testCatchesInnerXMapErrors(self):
f = pjit(xmap(lambda x, y: x, in_axes=(['i'], ['j']), out_axes=['i', 'j'],
axis_resources={'i': 'x', 'j': 'x'}),
in_axis_resources=None, out_axis_resources=None)
x = jnp.arange(4)
with self.assertRaises(JAXTypeError):
f(x, x)
def testEmptyMesh(self):
if config.jax_array:
error = (r"pjit requires a non-empty mesh!.*Alternatively, provide a "
"XLACompatibleSharding to "
r"pjit and then the mesh context manager is not required.")
else:
error = (r"pjit requires a non-empty mesh! Are you sure that it's defined "
r"at the call site?")
with self.assertRaisesRegex(RuntimeError, error):
pjit(lambda x: x, in_axis_resources=None, out_axis_resources=None)(jnp.arange(4))
@jtu.with_mesh([('x', 2)])
def testAxisResourcesMismatch(self):
x = jnp.ones([])
p = [None, None, None]
pjit(lambda x: x, (p,), p)([x, x, x]) # OK
error = re.escape(
"pjit in_shardings specification must be a tree prefix of the "
"positional arguments tuple passed to the `pjit`-decorated function. "
"In particular, pjit in_shardings must either be a None, a "
"PartitionSpec, or a tuple of length equal to the number of positional "
"arguments. But pjit in_shardings is the wrong length: got a "
"tuple or list of length 3 for an args tuple of length 2.")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x, y: x, p, p)(x, x)
Foo = namedtuple('Foo', ['x'])
error = "in_shardings is not a tuple.*might need to be wrapped"
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, Foo(None), Foo(None))(Foo(x))
pjit(lambda x: x, (Foo(None),), Foo(None))(Foo(x)) # OK w/ singleton tuple
# TODO(apaszke,mattjj): Disable implicit list casts and enable this
# error = ("it looks like pjit in_axis_resources might need to be wrapped in "
# "a singleton tuple.")
# with self.assertRaisesRegex(ValueError, error):
# pjit(lambda x, y: x, p, p)([x, x, x])
# TODO(apaszke): Disable implicit list casts and enable this
# error = re.escape(
# r"pjit in_axis_resources specification must be a tree prefix of the "
# r"corresponding value, got specification (None, None, None) for value "
# r"tree PyTreeDef(([*, *, *],)). Note that pjit in_axis_resources that "
# r"are non-trivial pytrees should always be wrapped in a tuple representing "
# r"the argument list. In particular, you're passing in a single argument "
# r"which means that pjit in_axis_resources might need to be wrapped in a "
# r"singleton tuple.")
# with self.assertRaisesRegex(ValueError, error):
# pjit(lambda x: x, p, p)([x, x, x]) # Error, but make sure we hint at singleton tuple
error = re.escape(
2023-01-20 11:40:22 -08:00
"pytree structure error: different lengths of list at "
"key path\n"
" pjit out_shardings tree root\n")
with self.assertRaisesRegex(ValueError, error):
pjit(lambda x: x, (p,), [p, None])([x, x, x]) # Error, we raise a generic tree mismatch message
@jtu.with_mesh([('x', 2)])
def testNestedDifferentResources(self):
@partial(pjit, in_axis_resources=P('x'), out_axis_resources=None)
def f(x):
with jax.sharding.Mesh(np.array([jax.local_devices()[0]]), ('x')):
@partial(pjit, in_axis_resources=P('x'), out_axis_resources=None)
def h(x):
return x
return h(x)
xshape = (2, 5, 6)
x = jnp.arange(np.prod(xshape)).reshape(xshape)
with self.assertRaisesRegex(RuntimeError,
"Changing the physical mesh is not allowed.*"):
f(x)
@parameterized.named_parameters(
("committed", True),
("uncommitted", False),
)
@jax_array(True)
def test_pjit_with_deleted_input_at_first_call(self, committed):
shape = (8,)
mesh = jtu.create_global_mesh((1,), ('x',))
inp_data = np.arange(prod(shape)).reshape(shape)
if committed:
s = NamedSharding(mesh, P('x',))
x = jax.device_put(inp_data, s)
else:
x = jax.device_put(inp_data)
f = pjit(lambda x: x + 1)
with self.assertRaisesRegex(RuntimeError, 'Array has been deleted.'):
x.delete()
_ = f(x)
@parameterized.named_parameters(
("committed", True),
("uncommitted", False),
)
@jax_array(True)
def test_pjit_with_deleted_input_at_subsequent_call(self, committed):
shape = (8,)
mesh = jtu.create_global_mesh((1,), ('x',))
inp_data = np.arange(prod(shape)).reshape(shape)
if committed:
s = NamedSharding(mesh, P('x',))
x = jax.device_put(inp_data, s)
else:
x = jax.device_put(inp_data)
f = pjit(lambda x: x + 1)
_ = f(x)
with self.assertRaisesRegex(RuntimeError, 'Array has been deleted.'):
x.delete()
_ = f(x)
@jtu.pytest_mark_if_available('multiaccelerator')
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
class UtilTest(jtu.JaxTestCase):
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
def testOpShardingRoundTrip(self):
FakeDevice = namedtuple('FakeDevice', ['id'])
mesh_named_shape = OrderedDict([('a', 2), ('b', 3), ('c', 4), ('d', 7), ('e', 4)])
mesh_axes, mesh_shape = unzip2(mesh_named_shape.items())
devices = [FakeDevice(i) for i in range(np.prod(list(mesh_shape)))]
mesh = pxla.Mesh(np.array(devices).reshape(*mesh_shape), tuple(mesh_axes))
dims = 5
aval = jax.core.ShapedArray((len(devices),) * dims, jnp.float32)
def roundtrip(spec):
op_sharding = NamedSharding(mesh, spec)._to_xla_op_sharding(aval.ndim)
parsed_spec = pjit_lib.parse_flatten_op_sharding(op_sharding, mesh)[0].partitions
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
self.assertEqual(parsed_spec[:len(spec)], spec)
self.assertEqual(parsed_spec[len(spec):], ((),) * (len(parsed_spec) - len(spec)))
special_specs = [P()]
for spec in special_specs:
roundtrip(spec)
rng = self.rng()
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
for i in range(100):
spec = [()] * dims
for axis in rng.permutation(mesh_axes)[:rng.randint(low=1, high=len(mesh_axes) + 1)]:
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
spec[rng.choice(dims)] += (axis,)
roundtrip(P(*spec))
@parameterized.named_parameters(
("linear", {'x': 0, 'y': 1, 'z': 2}, P(('x',), ('y',), ('z',))),
("combine", {'x': 0, 'y': 0, 'z': 1}, P(('x', 'y'), ('z',))),
("skip", {'x': 0, 'y': 0, 'z': 2}, P(('x', 'y'), None, ('z',))),
("multi_skip", {'x': 0, 'y': 1, 'z': 3}, P(('x',), ('y',), None, ('z',))),
)
def test_array_mapping_to_axis_resources(self, inp, expected_out):
self.assertEqual(pxla.array_mapping_to_axis_resources(inp), expected_out)
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
def test_get_input_metadata_fully_replicated(self):
global_mesh = jtu.create_global_mesh((2, 2), ('x', 'y'))
global_in_aval1 = jax.core.ShapedArray((4, 4), jnp.int32)
global_in_aval2 = jax.core.ShapedArray((4, 4, 4), jnp.int32)
global_in_aval3 = jax.core.ShapedArray((), jnp.int32)
in_avals = [global_in_aval1, global_in_aval2, global_in_aval3]
mp = NamedSharding(global_mesh, P(None))
_, out_indices, _ = pxla.get_input_metadata(
in_avals, [mp, mp, mp], [False, False, False])
self.assertLen(out_indices, len(in_avals))
self.assertTrue(all(len(out) == len(global_mesh.local_devices)
for out in out_indices))
self.assertTrue(all(len(i) == aval.ndim
for out, aval in safe_zip(out_indices, in_avals) for i in out))
self.assertTrue(all(i == (slice(None),) * aval.ndim
for out, aval in safe_zip(out_indices, in_avals) for i in out))
def test_mesh_sharding_spec(self):
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
array_mapping = pxla.get_array_mapping(P('x', 'y'))
aval = jax.core.ShapedArray((1, 1), jnp.int32)
with self.assertRaisesRegex(
ValueError,
'The aval shape on dimension 0 is 1 and the size of axis x is 4. The '
'aval shape % axis size should be zero but got 1'
):
pxla.mesh_sharding_specs(mesh.shape, mesh.axis_names)(aval, array_mapping)
@parameterized.named_parameters(
("all_unspecified", (pjit_lib._UNSPECIFIED, pjit_lib._UNSPECIFIED), AssertionError),
("only_unspecified", pjit_lib._UNSPECIFIED),
("all_specified", (P('x'), P('y'))),
("only_specified", P('x')),
("mix_1", (P('x'), pjit_lib._UNSPECIFIED), ValueError),
("mix_2", (P('x'), pjit_lib._UNSPECIFIED, P('y')), ValueError),
("mix_3", (pjit_lib._UNSPECIFIED, P('x'), P('y')), ValueError),
("mix_4", (pjit_lib._UNSPECIFIED, P('x'), pjit_lib._UNSPECIFIED), ValueError),
)
def test_all_or_non_unspecified(self, axis_resources, error=None):
entries, _ = jax.tree_util.tree_flatten(axis_resources, is_leaf=lambda x: x is None)
if error is not None:
with self.assertRaises(error):
pjit_lib._check_all_or_none_unspecified(entries, 'test axis resources')
else:
pjit_lib._check_all_or_none_unspecified(entries, 'test axis resources')
def test_op_sharding_equality_and_hash_equality(self):
op1 = xc.OpSharding()
op1.type = xc.OpSharding.Type.OTHER
op1.tile_assignment_dimensions = [2, 2]
op1.tile_assignment_devices = [0, 1, 2, 3]
op2 = xc.OpSharding()
op2.type = xc.OpSharding.Type.OTHER
op2.tile_assignment_dimensions = [2, 2]
op2.tile_assignment_devices = [0, 1, 2, 3]
op3 = xc.OpSharding()
op3.type = xc.OpSharding.Type.OTHER
op3.tile_assignment_dimensions = [4, 2]
op3.tile_assignment_devices = [0, 1, 2, 3, 4, 5, 6, 7]
self.assertTrue(pxla.are_op_shardings_equal(op1, op2))
self.assertFalse(pxla.are_op_shardings_equal(op1, op3))
self.assertFalse(pxla.are_op_shardings_equal(op2, op3))
hs1 = xc.HloSharding.from_proto(op1)
hs2 = xc.HloSharding.from_proto(op2)
hs3 = xc.HloSharding.from_proto(op3)
self.assertEqual(hash(hs1), hash(hs2))
self.assertNotEqual(hash(hs1), hash(hs3))
self.assertNotEqual(hash(hs2), hash(hs3))
def test_op_sharding_partial_sharding(self):
op1 = xc.OpSharding()
op1.type = xc.OpSharding.Type.OTHER
op1.tile_assignment_dimensions = [4, 1]
op1.tile_assignment_devices = [0, 1, 2, 3]
op1.last_tile_dims = [xc.OpSharding.Type.REPLICATED]
op2 = xc.OpSharding()
op2.type = xc.OpSharding.Type.OTHER
op2.tile_assignment_dimensions = [4, 1]
op2.tile_assignment_devices = [0, 1, 2, 3]
op2.last_tile_dims = [xc.OpSharding.Type.REPLICATED]
self.assertTrue(pxla.are_op_shardings_equal(op1, op2))
hs1 = xc.HloSharding.from_proto(op1)
hs2 = xc.HloSharding.from_proto(op2)
self.assertEqual(hash(hs1), hash(hs2))
def test_op_sharding_tuple_shardings(self):
top1 = xc.OpSharding()
top1.type = xc.OpSharding.Type.OTHER
top1.tile_assignment_dimensions = [4, 1]
top1.tile_assignment_devices = [0, 1, 2, 3]
top1.replicate_on_last_tile_dim = True
top2 = xc.OpSharding()
top2.type = xc.OpSharding.Type.OTHER
top2.tile_assignment_dimensions = [2, 2]
top2.tile_assignment_devices = [0, 1, 2, 3]
top2.replicate_on_last_tile_dim = True
op1 = xc.OpSharding()
op1.type = xc.OpSharding.Type.TUPLE
op1.tuple_shardings = [top1, top2]
op2 = xc.OpSharding()
op2.type = xc.OpSharding.Type.TUPLE
op2.tuple_shardings = [top2, top1]
self.assertFalse(pxla.are_op_shardings_equal(op1, op2))
hs1 = xc.HloSharding.from_proto(op1)
hs2 = xc.HloSharding.from_proto(op2)
self.assertNotEqual(hash(hs1), hash(hs2))
def test_device_indices_cache(self):
op1 = xc.OpSharding()
op1.type = xc.OpSharding.Type.OTHER
op1.tile_assignment_dimensions = [1, 1, 2, 1]
op1.tile_assignment_devices = [0, 1]
op1.last_tile_dims = [xc.OpSharding.Type.REPLICATED, xc.OpSharding.Type.MANUAL]
op2 = xc.OpSharding()
op2.type = xc.OpSharding.Type.REPLICATED
shape = (8, 4)
devices = jax.devices()
ops = OpShardingSharding(devices, op1)
ops.devices_indices_map(shape)
cache_info1 = OpShardingSharding.devices_indices_map.cache_info()
ops.devices_indices_map(shape)
cache_info2 = OpShardingSharding.devices_indices_map.cache_info()
self.assertEqual(cache_info2.hits, cache_info1.hits + 1)
ops = OpShardingSharding(devices, op2)
ops.devices_indices_map(shape)
cache_info3 = OpShardingSharding.devices_indices_map.cache_info()
self.assertEqual(cache_info3.hits, cache_info2.hits + 1)
ops.devices_indices_map(shape)
cache_info4 = OpShardingSharding.devices_indices_map.cache_info()
self.assertEqual(cache_info4.hits, cache_info3.hits + 1)
def test_op_sharding_semantically_replicated(self):
op1 = xc.OpSharding()
op1.type = xc.OpSharding.Type.OTHER
op1.tile_assignment_dimensions = [1, 1, 2]
op1.tile_assignment_devices = [0, 1]
op1.last_tile_dims = [xc.OpSharding.Type.REPLICATED]
op2 = xc.OpSharding()
op2.type = xc.OpSharding.Type.REPLICATED
op3 = xc.OpSharding()
op3.type = xc.OpSharding.Type.OTHER
op3.tile_assignment_dimensions = [1, 1, 1, 1]
op3.tile_assignment_devices = [0]
op3.last_tile_dims = [xc.OpSharding.Type.REPLICATED]
op4 = xc.OpSharding()
op4.type = xc.OpSharding.Type.OTHER
op4.tile_assignment_dimensions = [1]
op4.tile_assignment_devices = [0]
self.assertTrue(pxla.is_op_sharding_replicated(op1))
self.assertTrue(pxla.is_op_sharding_replicated(op2))
self.assertTrue(pxla.is_op_sharding_replicated(op3))
self.assertTrue(pxla.is_op_sharding_replicated(op4))
self.assertTrue(pxla.are_op_shardings_equal(op1, op2))
self.assertTrue(pxla.are_op_shardings_equal(op2, op3))
self.assertTrue(pxla.are_op_shardings_equal(op3, op4))
def test_op_sharding_manual_replicated(self):
op1 = xc.OpSharding()
op1.type = xc.OpSharding.Type.OTHER
op1.tile_assignment_dimensions = [1, 1, 2, 1]
op1.tile_assignment_devices = [0, 1]
op1.last_tile_dims = [xc.OpSharding.Type.REPLICATED, xc.OpSharding.Type.MANUAL]
op2 = xc.OpSharding()
op2.type = xc.OpSharding.Type.OTHER
op2.tile_assignment_dimensions = [1, 1, 1, 2]
op2.tile_assignment_devices = [0, 1]
op2.last_tile_dims = [xc.OpSharding.Type.MANUAL, xc.OpSharding.Type.REPLICATED]
op3 = xc.OpSharding()
op3.type = xc.OpSharding.Type.REPLICATED
self.assertTrue(pxla.is_op_sharding_replicated(op1))
self.assertTrue(pxla.is_op_sharding_replicated(op2))
self.assertTrue(pxla.are_op_shardings_equal(op1, op2))
self.assertTrue(pxla.are_op_shardings_equal(op1, op3))
def test_op_sharding_cache_on_mesh_pspec_sharding(self):
ndim = 2
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
mps1 = NamedSharding(mesh, P('x', 'y'))
op1 = mps1._to_xla_op_sharding(ndim)
cache_info1 = NamedSharding._to_xla_op_sharding.cache_info()
mps2 = NamedSharding(mesh, P('x', 'y'))
op2 = mps2._to_xla_op_sharding(ndim)
cache_info2 = NamedSharding._to_xla_op_sharding.cache_info()
self.assertEqual(id(op1), id(op2))
self.assertEqual(cache_info2.hits, cache_info1.hits + 1)
self.assertEqual(cache_info2.misses, cache_info1.misses)
self.assertEqual(cache_info2.currsize, cache_info1.currsize)
def test_simulated_training_cache_in_pjit(self):
ndim = 2
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
mps1 = NamedSharding(mesh, P('x', 'y'))
op_sharding_sharding = pjit_lib.to_op_sharding_sharding(mps1, ndim)
next_loop_sharding = simulated_cached_fun(op_sharding_sharding)
cache_info1 = simulated_cached_fun.cache_info()
next_op_sharding_sharding = pjit_lib.to_op_sharding_sharding(
next_loop_sharding, ndim)
simulated_cached_fun(next_op_sharding_sharding)
cache_info2 = simulated_cached_fun.cache_info()
self.assertEqual(cache_info2.hits, cache_info1.hits + 1)
self.assertEqual(cache_info2.misses, cache_info1.misses)
self.assertEqual(id(next_op_sharding_sharding), id(op_sharding_sharding))
def test_get_partition_spec(self):
mesh = jtu.create_global_mesh((4, 2), ('x', 'y'))
s = NamedSharding(mesh, P('x', 'y', None))
self.assertEqual(s._parsed_pspec.get_partition_spec(), P('x', 'y', None))
recovered_parsed_pspec = pjit_lib.parse_flatten_op_sharding(
s._to_xla_op_sharding(3), mesh)
self.assertEqual(recovered_parsed_pspec[0].get_partition_spec(),
P(('x',), ('y',)))
out_of_sync_parsed_pspec = pjit_lib.ParsedPartitionSpec(
P('x', 'y'), ('x', 'y'), pjit_lib.SpecSync.OUT_OF_SYNC)
self.assertEqual(out_of_sync_parsed_pspec.get_partition_spec(),
P(('x',), ('y',)))
def test_mesh_with_list_devices(self):
mesh = jax.sharding.Mesh(jax.devices(), ('x',))
self.assertIsInstance(mesh.devices, np.ndarray)
self.assertEqual(mesh.size, jax.device_count())
def test_mesh_with_string_axis_names(self):
mesh = jax.sharding.Mesh(jax.devices(), 'dp')
self.assertTupleEqual(mesh.axis_names, ('dp',))
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())