rocm_jax/jaxlib/lapack.pyx

117 lines
3.6 KiB
Cython
Raw Normal View History

# distutils: language = c++
# Shims that allow the XLA CPU backend to call scipy-provided LAPACK kernels
# via CustomCall.
from __future__ import print_function
from libc.string cimport memcpy
from libcpp.string cimport string
from cpython.pycapsule cimport PyCapsule_New
from scipy.linalg.cython_lapack cimport spotrf, dpotrf
import numpy as np
from jaxlib import xla_client
cdef register_cpu_custom_call_target(fn_name, void* fn):
cdef const char* name = "xla._CPU_CUSTOM_CALL_TARGET"
xla_client.register_cpu_custom_call_target(
fn_name, PyCapsule_New(fn, name, NULL))
# ?potrf (Cholesky decomposition)
cdef void lapack_spotrf(void* out_tuple, void** data) nogil:
cdef bint lower = (<bint*>(data[0]))[0]
cdef int n = (<int*>(data[1]))[0]
cdef const float* a_in = <float*>(data[2])
cdef char uplo = 'L' if lower else 'U'
cdef void** out = <void**>(out_tuple)
cdef float* a_out = <float*>(out[0])
cdef int* info = <int*>(out[1])
if a_out != a_in:
memcpy(a_out, a_in, n * n * sizeof(float))
spotrf(&uplo, &n, a_out, &n, info)
# spotrf leaves junk in the part of the triangle that is not written; zero it.
cdef int i
cdef int j
if lower:
for i in range(n):
for j in range(i):
a_out[i * n + j] = 0
else:
for i in range(n):
for j in range(i, n):
a_out[i * n + j] = 0
register_cpu_custom_call_target(b"lapack_spotrf", <void*>(lapack_spotrf))
def jax_spotrf(c, a, lower=False):
a_shape = c.GetShape(a)
m, n = a_shape.dimensions()
if m != n:
raise ValueError("spotrf expects a square matrix, got {}".format(a_shape))
return c.CustomCall(
b"lapack_spotrf",
operands=(c.ConstantPredScalar(lower), c.ConstantS32Scalar(n), a),
shape_with_layout=xla_client.Shape.tuple_shape((
xla_client.Shape.array_shape(np.float32, (n, n), (0, 1)),
xla_client.Shape.array_shape(np.int32, (), ()),
)),
operand_shapes_with_layout=(
xla_client.Shape.array_shape(np.bool, (), ()),
xla_client.Shape.array_shape(np.int32, (), ()),
xla_client.Shape.array_shape(np.float32, (n, n), (0, 1)),
))
cdef void lapack_dpotrf(void* out_tuple, void** data) nogil:
cdef bint lower = (<bint*>(data[0]))[0]
cdef int n = (<int*>(data[1]))[0]
cdef const double* a_in = <double*>(data[2])
cdef char uplo = 'L' if lower else 'U'
cdef void** out = <void**>(out_tuple)
cdef double* a_out = <double*>(out[0])
cdef int* info = <int*>(out[1])
if a_out != a_in:
memcpy(a_out, a_in, n * n * sizeof(double))
dpotrf(&uplo, &n, a_out, &n, info)
# dpotrf leaves junk in the part of the triangle that is not written; zero it.
cdef int i
cdef int j
if lower:
for i in range(n):
for j in range(i):
a_out[i * n + j] = 0
else:
for i in range(n):
for j in range(i, n):
a_out[i * n + j] = 0
register_cpu_custom_call_target(b"lapack_dpotrf", <void*>(lapack_dpotrf))
def jax_dpotrf(c, a, lower=False):
a_shape = c.GetShape(a)
m, n = a_shape.dimensions()
if m != n:
raise ValueError("dpotrf expects a square matrix, got {}".format(a_shape))
return c.CustomCall(
b"lapack_dpotrf",
operands=(c.ConstantPredScalar(lower), c.ConstantS32Scalar(n), a),
shape_with_layout=xla_client.Shape.tuple_shape((
xla_client.Shape.array_shape(np.float64, (n, n), (0, 1)),
xla_client.Shape.array_shape(np.int32, (), ()),
)),
operand_shapes_with_layout=(
xla_client.Shape.array_shape(np.bool, (), ()),
xla_client.Shape.array_shape(np.int32, (), ()),
xla_client.Shape.array_shape(np.float64, (n, n), (0, 1)),
))