2018-11-17 18:03:33 -08:00
|
|
|
# Copyright 2018 Google LLC
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
2019-05-20 10:15:20 -07:00
|
|
|
import collections
|
2021-10-05 15:25:28 -04:00
|
|
|
import collections.abc
|
implement lazy sublanguage
Before this commit, this computation would avoid materializing the iota
array at trace time:
@jit
def f(x):
m, n = x.shape
return x + np.arange(n)
But this one would materialize the iota array at trace time and stage it
into the computation as a potentially large array constant:
@jit
def f(x):
m, n = x.shape
return x + np.arange(m)[:, None]
The difference is that previously operations like broadcasts,
transposes, and reshapes that add singleton dimensions (as above) would
force otherwise lazy values to be materialized, while after this commit
broadcasts, transposes, and reshapes are all lazy operations that only
update metadata on their input rather than compiling and executing XLA
computations and producing new buffers.
Also, np.eye and np.tri become lazy (in addition to np.zeros, np.ones, np.full).
This commit replaces the ad-hoc "lazy device constant" system, which was
used to get the simpler behavior in the first example above.
Incidentally fixes #1431
See https://github.com/google/jax/pull/1668 for more.
2020-01-03 15:46:19 -08:00
|
|
|
from contextlib import contextmanager
|
2019-12-11 02:48:51 +00:00
|
|
|
import copy
|
2021-03-18 18:05:22 -07:00
|
|
|
import enum
|
2019-07-24 21:45:56 +03:00
|
|
|
from functools import partial
|
2021-04-07 13:47:39 -07:00
|
|
|
import operator
|
2020-02-15 06:35:49 +01:00
|
|
|
import re
|
2021-06-28 12:54:21 -07:00
|
|
|
import subprocess
|
|
|
|
import sys
|
2020-09-16 20:29:19 -07:00
|
|
|
import types
|
2022-01-10 20:18:57 -08:00
|
|
|
from typing import Callable
|
2021-06-28 12:54:21 -07:00
|
|
|
import unittest
|
2019-08-22 09:22:57 -07:00
|
|
|
import warnings
|
2019-10-30 14:57:00 -07:00
|
|
|
import weakref
|
2020-08-18 10:43:52 +02:00
|
|
|
import functools
|
Add support for non-zero (but still not-None) out_axes in pmap
Previously `pmap` didn't have the `out_axes` parameter (unlike `vmap`),
but its semantics would match the specification of `out_axes=0` (i.e.
all outputs should be stacked along the first axis). This patch makes it
possible to specify non-zero values for out_axes, but more importantly
it lays down the groundwork for `xmap` which will have to use some
extremely similar (if not the same) code paths.
One thing to note is that when I started this implementation I was also
planning to add support for `out_axes=None`, which would allow us to
stop using the `unbroadcast` hack, and most of the code is written with
that in mind. Unfortunately it turned out that the correct
implementation of the transpose rule for maps that do allow unmapped
outputs would require me to pretty much simulate what avals-with-names
is supposed to achieve. Technically replicated outputs should work
today, for as long as the user does not do reverse-mode AD of `pmap`.
But I decided that it's better to just disable them altogether until we
can get the full and correct behavior.
* Implementation details *
This patch is significantly more involved than the one that implemented
general `in_axes` support. That previous one at least had the foundation
of `mapped_invars` which already behaved pretty similarly to general
`in_axes`. From a quick glance one might think that `out_axes` should
behave similarly to `in_axes`, but it turns out that this is not the
case, at least not if we're interested in keeping those primitives
final-style.
** Thunking **
The biggest difficulty with handling `out_axes` in final style
primitives is that we want to treat them as a prefix of the output
pytree, but we don't know the structure of the output pytree until the
user function is evaluated! And the user function is not evaluated until
we've applied all transforms and reached the impl rule! The solution to
this problem is "straightforward": instead of putting `out_axes` as a
primitive parameter, we bundle an `out_axes_thunk` which can only be
called successfully after the wrapped function has been executed. The
thunk returns a list of flat `out_axes`, expanded to the output pytree.
However, the thunking presents us with two problems:
*** Transformations ***
Each transformation that modifies the number of outputs needs to ensure
that the thunk is updated to reflect the new values. To make things
worse a lot of the transforms can learn the number of added outputs
_only after the wrapped function is evaluated_, which leads to the
following "time travel" pattern that can be found in most `Trace`s:
```py
@lu.transformation_with_aux
def compute_output_statistic(*args, **kwargs):
outputs = yield args, kwargs
yield outputs, compute_statistic(outputs)
wrapped_fun, output_statistic = compute_output_statistic(wrapped_fun)
def new_out_axes_thunk():
old_out_axes = params['out_axes_thunk']()
return compute_new_out_axes(old_out_axes(), output_statistic())
primitive.bind(wrapped_fun, dict(params, out_axes_thunk=new_out_axes_thunk))
```
The reason why we have to structure the code this way is that we can
only specify a new `out_axes_thunk` before we bind the primitive, but we
need the outputs of bind to know how to update the `out_axes_thunk`. To
make things worse, the implementation of `bind` is allowed to make a
call to `out_axes_thunk` _immediately after `wrapped_fun` is evaluated_.
This means that we cannot compute the output statistic in the
implementation of the transformation, but we have to use an extra
`lu.transformation_with_aux` for that (this populates the statistic
store immediately after `wrapped_fun` is evaluated).
The `compute_statistic` function depends on the transform in question.
E.g. in the JVP trace it counts the number of non-zero tangent results.
The situation is of course further complicated when we take
`post_process_map` into account. The new `process_env_traces` now always
sets up this funny time travel trampoline just in case it ends up being
necessary, and `post_process_map` is now expected to return `(outputs,
(todo, out_axes_transform))` instead of just `(outputs, todo)`.
*** Compilation cache ***
Because the `out_axes_thunk`s are now arguments to a _global_
compilation cache (in the form of `lu.cache` decorator on
`parallel_callable`), we have to ensure that they implement `hash` and
`==`. This is what forces us to add some slightly weird helpers such as
`_hashable_function` and `_ignore_elem_list`. The code that uses those
makes an assumption that the output pytree depends deterministically on
the identity of the wrapped function, which I think is in line with
general JAX assumptions. Otherwise the cache would depend on the
identity of the thunk, which changes with every function invocation.
Relaxing the global constraint on the cache (e.g. allowing each
`pmap(f)` instance to have a separate cache) would make this easier too.
* Why final style? *
Now, making the primitives initial-style would remove the necessity for
thunking, because we could have obtained the output pytree right when
the function is wrapped. I assumed there is a good argument for making
`pmap` pretend that it's a final-style primitive, but I'm not sure why
that is? I hope it's something better than just avoiding a single jaxpr
tracing.
2020-11-09 17:23:16 +00:00
|
|
|
import itertools as it
|
2021-03-23 20:58:52 -07:00
|
|
|
import operator as op
|
2018-11-21 13:20:44 -08:00
|
|
|
|
2019-11-26 07:56:48 -08:00
|
|
|
from absl import logging
|
implement lazy sublanguage
Before this commit, this computation would avoid materializing the iota
array at trace time:
@jit
def f(x):
m, n = x.shape
return x + np.arange(n)
But this one would materialize the iota array at trace time and stage it
into the computation as a potentially large array constant:
@jit
def f(x):
m, n = x.shape
return x + np.arange(m)[:, None]
The difference is that previously operations like broadcasts,
transposes, and reshapes that add singleton dimensions (as above) would
force otherwise lazy values to be materialized, while after this commit
broadcasts, transposes, and reshapes are all lazy operations that only
update metadata on their input rather than compiling and executing XLA
computations and producing new buffers.
Also, np.eye and np.tri become lazy (in addition to np.zeros, np.ones, np.full).
This commit replaces the ad-hoc "lazy device constant" system, which was
used to get the simpler behavior in the first example above.
Incidentally fixes #1431
See https://github.com/google/jax/pull/1668 for more.
2020-01-03 15:46:19 -08:00
|
|
|
from absl.testing import absltest, parameterized
|
2020-05-05 14:59:16 -04:00
|
|
|
import numpy as np
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2020-01-08 13:17:55 -05:00
|
|
|
import concurrent.futures
|
2019-08-09 13:12:44 -04:00
|
|
|
|
|
|
|
import jax
|
2020-05-05 14:59:16 -04:00
|
|
|
import jax.numpy as jnp
|
2020-09-24 16:29:57 +01:00
|
|
|
from jax import float0, jit, grad, device_put, jacfwd, jacrev, hessian
|
2021-11-23 15:04:08 -08:00
|
|
|
from jax import core, lax
|
|
|
|
from jax._src import api, dtypes
|
2019-12-06 22:28:41 -08:00
|
|
|
from jax.core import Primitive
|
2021-06-30 10:46:37 +01:00
|
|
|
from jax.errors import UnexpectedTracerError
|
2019-06-03 07:17:37 -07:00
|
|
|
from jax.interpreters import ad
|
2021-11-30 06:08:26 -08:00
|
|
|
from jax.interpreters import mlir
|
2019-12-10 14:10:57 -08:00
|
|
|
from jax.interpreters import xla
|
2021-09-15 15:12:19 -04:00
|
|
|
from jax.interpreters import pxla
|
2020-08-14 13:05:58 -07:00
|
|
|
from jax.interpreters.sharded_jit import PartitionSpec as P
|
2021-11-22 08:22:10 -08:00
|
|
|
from jax._src import device_array
|
2021-09-23 06:33:25 -07:00
|
|
|
import jax._src.lib
|
|
|
|
from jax._src.lib import xla_client
|
2021-09-24 07:02:08 -07:00
|
|
|
from jax._src import test_util as jtu
|
2019-08-21 20:36:47 -07:00
|
|
|
from jax import tree_util
|
2020-07-30 12:59:36 -07:00
|
|
|
from jax import linear_util as lu
|
2021-01-11 14:20:32 -08:00
|
|
|
import jax._src.util
|
2021-10-13 18:21:20 -07:00
|
|
|
from jax._src.ad_checkpoint import saved_residuals
|
2021-10-14 07:09:06 -07:00
|
|
|
from jax.ad_checkpoint import checkpoint as new_checkpoint, checkpoint_name
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2018-12-12 09:00:39 -08:00
|
|
|
from jax.config import config
|
|
|
|
config.parse_flags_with_absl()
|
2019-08-22 09:22:57 -07:00
|
|
|
FLAGS = config.FLAGS
|
2018-12-12 09:00:39 -08:00
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2021-06-28 12:54:21 -07:00
|
|
|
python_version = (sys.version_info[0], sys.version_info[1])
|
2021-06-24 11:02:22 -04:00
|
|
|
numpy_version = tuple(map(int, np.__version__.split('.')[:3]))
|
|
|
|
|
|
|
|
|
2021-02-04 14:53:38 +00:00
|
|
|
class CPPJitTest(jtu.BufferDonationTestCase):
|
2020-08-19 18:39:25 +02:00
|
|
|
"""Shared tests between the Python and the C++ jax,jit implementations.
|
|
|
|
|
|
|
|
Because the Python implementation supports more features, we need to have the
|
|
|
|
Python tests that extend the C++ tests (and not the other way around).
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def jit(self):
|
|
|
|
# Right now, the CPP tests also test the Python code-path when jaxlib is
|
|
|
|
# too old.
|
|
|
|
# TODO(jblespiau,phawkins): Remove this when jaxlib has been released.
|
2020-08-22 03:44:52 +02:00
|
|
|
# This is in the future, because we are making a breaking change to
|
|
|
|
# Tensorflow.
|
2021-04-13 09:42:54 -07:00
|
|
|
return api._cpp_jit
|
2020-08-19 18:39:25 +02:00
|
|
|
|
2021-10-14 12:24:49 -07:00
|
|
|
def test_jit_repr(self):
|
|
|
|
def my_function():
|
|
|
|
return
|
|
|
|
jitted = jit(my_function)
|
|
|
|
self.assertEqual(repr(jitted), f"<CompiledFunction of {repr(my_function)}>")
|
|
|
|
|
|
|
|
def test_jit_repr_errors(self):
|
|
|
|
class Callable:
|
|
|
|
def __call__(self): pass
|
|
|
|
def __repr__(self):
|
|
|
|
raise ValueError("invalid repr")
|
|
|
|
|
|
|
|
# repr succeeds when underlying function repr fails.
|
|
|
|
jitted = jit(Callable())
|
|
|
|
self.assertEqual(repr(jitted), "<CompiledFunction>")
|
|
|
|
|
|
|
|
# repr succeeds when object is malformed.
|
|
|
|
del jitted.__wrapped__
|
|
|
|
self.assertEqual(repr(jitted), "<CompiledFunction>")
|
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
def test_jit_of_noncallable(self):
|
|
|
|
self.assertRaisesRegex(TypeError, "Expected a callable value.*",
|
|
|
|
lambda: self.jit(3))
|
|
|
|
|
|
|
|
def test_jit_of_generator(self):
|
|
|
|
|
|
|
|
def gen(x):
|
|
|
|
yield x
|
|
|
|
|
|
|
|
self.assertRaisesRegex(TypeError,
|
|
|
|
"Expected a function, got a generator function.*",
|
|
|
|
lambda: self.jit(gen))
|
2020-08-18 10:43:52 +02:00
|
|
|
|
|
|
|
@parameterized.parameters([
|
|
|
|
# Integer support
|
|
|
|
(1, 2, 3, 4, 5),
|
|
|
|
# Numpy array support
|
|
|
|
(
|
|
|
|
np.asarray(1, np.int32),
|
|
|
|
np.asarray(2, np.int32),
|
|
|
|
np.asarray(3, np.int32),
|
|
|
|
np.asarray(4, np.int32),
|
|
|
|
np.asarray(5, np.int32),
|
|
|
|
),
|
|
|
|
])
|
|
|
|
def test_jit_static_args(self, one, two, three, four, five):
|
2018-11-17 18:03:33 -08:00
|
|
|
side = []
|
|
|
|
|
|
|
|
def f(x, y, z, flag=False, flag2=False):
|
2020-08-18 10:43:52 +02:00
|
|
|
del flag2 # unused
|
2018-11-17 18:03:33 -08:00
|
|
|
assert flag
|
|
|
|
side.append(None)
|
2020-08-18 10:43:52 +02:00
|
|
|
return 100 * x + 10 * y + z
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
f1 = self.jit(f, static_argnums=(3, 4))
|
2020-08-18 10:43:52 +02:00
|
|
|
assert f1(one, two, three, True, False) == 123
|
2018-11-17 18:03:33 -08:00
|
|
|
assert len(side) == 1
|
2020-08-18 10:43:52 +02:00
|
|
|
assert f1(one, two, three, True, False) == 123
|
|
|
|
assert len(side) == 1 # Obvious cache hit.
|
|
|
|
assert f1(two, one, three, True, False) == 213
|
|
|
|
assert len(side) == 1 # Should cache hit because same signature.
|
|
|
|
assert f1(two, one, three, True, True) == 213
|
2018-11-17 18:03:33 -08:00
|
|
|
assert len(side) == 2
|
|
|
|
|
|
|
|
side[:] = []
|
2020-08-19 18:39:25 +02:00
|
|
|
f2 = self.jit(f, static_argnums=(0, 2, 3, 4))
|
2020-10-22 08:57:12 -07:00
|
|
|
assert f2(1, 2, 3, True, False) == 123
|
2018-11-17 18:03:33 -08:00
|
|
|
assert len(side) == 1
|
2020-10-22 08:57:12 -07:00
|
|
|
assert f2(1, 3, 3, True, False) == 133
|
2018-11-17 18:03:33 -08:00
|
|
|
assert len(side) == 1
|
2020-10-22 08:57:12 -07:00
|
|
|
assert f2(2, 2, 3, True, False) == 223
|
2018-11-17 18:03:33 -08:00
|
|
|
assert len(side) == 2
|
2020-10-22 08:57:12 -07:00
|
|
|
assert f2(2, 4, 3, True, False) == 243
|
2018-11-17 18:03:33 -08:00
|
|
|
assert len(side) == 2
|
2020-10-22 08:57:12 -07:00
|
|
|
assert f2(2, 4, 3, True, True) == 243
|
2018-11-17 18:03:33 -08:00
|
|
|
assert len(side) == 3
|
2020-10-22 08:57:12 -07:00
|
|
|
assert f2(2, 5, 3, True, True) == 253
|
2018-11-17 18:03:33 -08:00
|
|
|
assert len(side) == 3
|
|
|
|
|
2020-10-14 11:25:31 -07:00
|
|
|
def test_static_args_equality(self):
|
|
|
|
class A():
|
|
|
|
|
|
|
|
def __hash__(self):
|
|
|
|
return 1
|
|
|
|
|
|
|
|
def __eq__(self, other):
|
|
|
|
return isinstance(other, A)
|
|
|
|
|
|
|
|
side = []
|
|
|
|
def f(x, static_arg):
|
|
|
|
del static_arg
|
|
|
|
side.append(None)
|
|
|
|
return x * 100
|
|
|
|
|
|
|
|
f1 = self.jit(f, static_argnums=(1,))
|
|
|
|
|
|
|
|
self.assertEqual(f1(1, A()), 100)
|
|
|
|
self.assertLen(side, 1)
|
|
|
|
self.assertEqual(f1(1, A()), 100)
|
|
|
|
self.assertLen(side, 1)
|
2021-04-13 09:42:54 -07:00
|
|
|
if self.jit == api._cpp_jit:
|
2021-03-25 19:00:29 -07:00
|
|
|
f1_cpp = getattr(f1, "_cpp_jitted_f", f1)
|
|
|
|
self.assertEqual(f1_cpp._cache_size(), 1)
|
2020-10-14 11:25:31 -07:00
|
|
|
|
2020-08-18 10:43:52 +02:00
|
|
|
@parameterized.parameters([
|
|
|
|
(1, 2, 3),
|
|
|
|
(
|
|
|
|
np.asarray(1, np.int32),
|
|
|
|
np.asarray(2, np.int32),
|
|
|
|
np.asarray(3, np.int32),
|
|
|
|
),
|
|
|
|
])
|
|
|
|
def test_jit_kwargs(self, one, two, three):
|
2019-04-10 22:09:14 -07:00
|
|
|
side = []
|
2020-09-01 09:34:47 +02:00
|
|
|
# For the CPP jit, we need to clear the cache to prevent cache hits between
|
|
|
|
# parameterized tests.
|
|
|
|
if hasattr(self.jit, "cache_clear"):
|
|
|
|
self.jit.cache_clear()
|
2019-04-10 22:09:14 -07:00
|
|
|
|
|
|
|
def f(x, y, z):
|
|
|
|
side.append(None)
|
2020-08-18 10:43:52 +02:00
|
|
|
return 100 * x + 10 * y + z
|
2019-04-10 22:09:14 -07:00
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
f = self.jit(f)
|
2020-08-18 10:43:52 +02:00
|
|
|
assert f(one, two, three) == 123
|
2019-04-10 22:09:14 -07:00
|
|
|
assert len(side) == 1
|
2020-08-18 10:43:52 +02:00
|
|
|
assert f(one, two, three) == 123
|
2019-04-11 08:07:32 -07:00
|
|
|
assert len(side) == 1
|
|
|
|
|
2020-08-18 10:43:52 +02:00
|
|
|
assert f(one, two, z=three) == 123
|
2019-04-11 08:07:32 -07:00
|
|
|
assert len(side) == 2 # actually recompiles from kwarg
|
2020-08-18 10:43:52 +02:00
|
|
|
assert f(one, two, z=three) == 123
|
2019-04-11 08:07:32 -07:00
|
|
|
assert len(side) == 2 # but should still cache
|
2019-04-10 22:09:14 -07:00
|
|
|
|
2020-08-18 10:43:52 +02:00
|
|
|
f(one, two, z=np.zeros(3)) # doesn't crash
|
2021-02-04 09:48:22 -08:00
|
|
|
if config.x64_enabled:
|
2020-08-18 10:43:52 +02:00
|
|
|
# In the above call, three is of a new type (int64), thus it should
|
|
|
|
# trigger a new compilation.
|
|
|
|
assert len(side) == 3
|
|
|
|
|
|
|
|
def test_jit_device(self):
|
2021-09-23 06:33:25 -07:00
|
|
|
device = jax.devices()[-1]
|
2020-08-19 18:39:25 +02:00
|
|
|
x = self.jit(lambda x: x, device=device)(3.)
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertIsInstance(x, jnp.DeviceArray)
|
2020-08-18 10:43:52 +02:00
|
|
|
self.assertEqual(x.device_buffer.device(), device)
|
|
|
|
|
|
|
|
def test_complex_support(self):
|
2020-08-19 18:39:25 +02:00
|
|
|
self.assertEqual(self.jit(lambda x: x + 1)(1 + 1j), 2 + 1j)
|
2019-04-10 22:09:14 -07:00
|
|
|
|
2020-03-17 17:02:22 -04:00
|
|
|
def test_jit_with_many_args_works(self):
|
2020-08-18 10:43:52 +02:00
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
@self.jit
|
2019-09-18 17:21:57 -07:00
|
|
|
def f(args_list):
|
|
|
|
return sum(args_list)
|
|
|
|
|
2020-03-17 17:02:22 -04:00
|
|
|
self.assertEqual(f(list(range(500))), sum(range(500)))
|
2019-09-18 17:21:57 -07:00
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
# Jit and Donate arguments
|
|
|
|
|
|
|
|
def test_jit_donate_argnums_warning_raised(self):
|
|
|
|
x = jnp.array([1.0, 2.0], jnp.float32)
|
|
|
|
y = jnp.array([1, 2], jnp.int32)
|
|
|
|
f = self.jit(lambda x, y: x.sum() + y.sum(), donate_argnums=(0, 1))
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
|
|
warnings.simplefilter("always")
|
|
|
|
f(x, y)
|
|
|
|
|
|
|
|
self.assertLen(w, 1)
|
|
|
|
self.assertTrue(issubclass(w[-1].category, UserWarning))
|
|
|
|
self.assertIn(
|
2021-11-30 14:24:02 -08:00
|
|
|
"Some donated buffers were not usable:",
|
2020-08-19 18:39:25 +02:00
|
|
|
str(w[-1].message))
|
|
|
|
|
|
|
|
@jtu.skip_on_devices("cpu") # In/out aliasing not supported on CPU.
|
|
|
|
def test_jit_donate_argnums_invalidates_input(self):
|
|
|
|
# We can't just use `lambda x: x` because JAX simplifies this away to an
|
|
|
|
# empty XLA computation.
|
|
|
|
move = self.jit(lambda x: x + x - x, donate_argnums=0)
|
|
|
|
x = jnp.ones([])
|
|
|
|
y = move(x)
|
|
|
|
self.assertDeleted(x)
|
|
|
|
self.assertEqual(y, 1.)
|
|
|
|
|
|
|
|
@jtu.skip_on_devices("cpu") # In/out aliasing not supported on CPU.
|
|
|
|
def test_jit_donate_argnums_static_argnums(self):
|
|
|
|
jit_fun = self.jit(
|
|
|
|
lambda a, b, c, d: ((a + b + c), (a + b + d)),
|
|
|
|
static_argnums=(0, 1),
|
|
|
|
donate_argnums=(2, 3))
|
|
|
|
|
|
|
|
c = jax.device_put(jnp.array([1., 1.]))
|
|
|
|
d = jax.device_put(jnp.array([1., 1., 1.]))
|
2020-10-22 08:57:12 -07:00
|
|
|
e, f = jit_fun(1, 2, c, d)
|
2020-08-19 18:39:25 +02:00
|
|
|
np.testing.assert_allclose(e, jnp.array([4., 4.]))
|
|
|
|
np.testing.assert_allclose(f, jnp.array([4., 4., 4.]))
|
|
|
|
self.assertDeleted(c)
|
|
|
|
self.assertDeleted(d)
|
|
|
|
|
2020-09-19 22:19:29 -07:00
|
|
|
@jtu.skip_on_devices("cpu") # In/out aliasing not supported on CPU.
|
2020-08-19 18:39:25 +02:00
|
|
|
def test_jnp_array_copy(self):
|
|
|
|
# https://github.com/google/jax/issues/3412
|
|
|
|
|
|
|
|
@partial(self.jit, donate_argnums=(0,))
|
|
|
|
def _test(array):
|
|
|
|
return array.at[0].set(77)
|
|
|
|
|
|
|
|
x = jnp.asarray([0, 1])
|
|
|
|
x_copy = jnp.array(x, copy=True)
|
|
|
|
with warnings.catch_warnings():
|
|
|
|
warnings.simplefilter("ignore")
|
|
|
|
_test(x) # donation
|
|
|
|
|
|
|
|
# Gives: RuntimeError: Invalid argument: CopyToHostAsync() called on invalid buffer.
|
|
|
|
print(x_copy) # doesn't crash
|
|
|
|
|
2020-09-01 09:34:47 +02:00
|
|
|
def test_jit_global_cache(self):
|
|
|
|
def f(x):
|
|
|
|
assert python_should_be_executing
|
|
|
|
return x
|
2020-08-19 18:39:25 +02:00
|
|
|
|
2020-09-01 09:34:47 +02:00
|
|
|
python_should_be_executing = True
|
|
|
|
self.jit(f)(2)
|
|
|
|
python_should_be_executing = False
|
|
|
|
self.jit(f)(3)
|
2020-08-19 18:39:25 +02:00
|
|
|
|
2020-09-01 09:34:47 +02:00
|
|
|
def test_jit_shallow_copy(self):
|
|
|
|
def f(x):
|
|
|
|
return copy.copy(x)
|
|
|
|
self.jit(f)(1)
|
|
|
|
|
|
|
|
def test_jit_deep_copy(self):
|
|
|
|
def f(x):
|
|
|
|
return copy.deepcopy(x)
|
|
|
|
self.jit(f)(1)
|
|
|
|
|
|
|
|
def test_disable_jit(self):
|
|
|
|
effects = []
|
|
|
|
|
|
|
|
@self.jit
|
|
|
|
def f(x):
|
|
|
|
effects.append(1)
|
|
|
|
return x
|
|
|
|
|
|
|
|
with api.disable_jit():
|
|
|
|
f(2)
|
|
|
|
f(2)
|
|
|
|
assert len(effects) == 2
|
|
|
|
|
|
|
|
f(2)
|
|
|
|
f(2)
|
|
|
|
assert len(effects) == 3
|
2020-08-19 18:39:25 +02:00
|
|
|
|
2020-08-18 10:43:52 +02:00
|
|
|
def test_static_argnum_on_method(self):
|
|
|
|
|
|
|
|
class A:
|
|
|
|
|
2020-09-01 09:34:47 +02:00
|
|
|
@functools.partial(self.jit, static_argnums=(0,))
|
2020-08-19 18:39:25 +02:00
|
|
|
def my_func_jit(self, x):
|
2020-08-18 10:43:52 +02:00
|
|
|
return x+2
|
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
A().my_func_jit(3)
|
2020-08-18 10:43:52 +02:00
|
|
|
|
2020-09-01 09:34:47 +02:00
|
|
|
def test_static_argnum_on_static_method_is_not_supported(self):
|
|
|
|
with self.assertRaisesRegex(TypeError, "Expected a callable value"):
|
|
|
|
|
|
|
|
class A:
|
|
|
|
|
|
|
|
@functools.partial(self.jit, static_argnums=(0,))
|
|
|
|
@classmethod
|
|
|
|
def my_classmethod_jit(cls, x):
|
|
|
|
return x+2
|
|
|
|
|
2021-10-05 15:25:28 -04:00
|
|
|
def test_staticmethod_is_not_supported(self):
|
|
|
|
with self.assertRaisesRegex(TypeError,
|
|
|
|
"staticmethod arguments are not supported"):
|
2020-09-01 09:34:47 +02:00
|
|
|
|
|
|
|
class A:
|
|
|
|
|
|
|
|
@functools.partial(self.jit)
|
|
|
|
@staticmethod
|
|
|
|
def my_staticmethod_jit(x):
|
|
|
|
return x + 2
|
|
|
|
|
|
|
|
def test_concurrent_jit(self):
|
|
|
|
@self.jit
|
|
|
|
def f(x):
|
|
|
|
return x + x - 3.
|
|
|
|
|
2021-12-10 10:32:09 -08:00
|
|
|
xs = [self.rng().randn(i) for i in range(10)]
|
2020-09-01 09:34:47 +02:00
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
|
|
futures = [executor.submit(partial(f, x)) for x in xs]
|
|
|
|
ys = [f.result() for f in futures]
|
|
|
|
for x, y in zip(xs, ys):
|
|
|
|
self.assertAllClose(x * 2 - 3., y)
|
|
|
|
|
|
|
|
def test_trivial_computations(self):
|
|
|
|
x = jnp.array([1, 2, 3])
|
|
|
|
y = self.jit(lambda x: x)(x)
|
|
|
|
self.assertIs(x, y)
|
|
|
|
|
|
|
|
z1, z2 = self.jit(lambda x: (x, x))(x)
|
|
|
|
self.assertIs(z1, z2)
|
|
|
|
|
|
|
|
x1, x2 = jnp.array([1, 2]), jnp.array([2, 3])
|
|
|
|
z1, z2, z3 = self.jit(lambda x, y: (y, 1, x))(x1, x2)
|
|
|
|
self.assertIs(z1, x2)
|
|
|
|
self.assertIs(z3, x1)
|
|
|
|
self.assertEqual(z2, 1)
|
|
|
|
|
2021-06-07 16:19:14 -04:00
|
|
|
def test_trivial_computations_with_tokens(self):
|
|
|
|
@self.jit
|
|
|
|
def noop(arr, token):
|
|
|
|
return arr, token
|
|
|
|
|
|
|
|
arr = jax.numpy.ones(10)
|
|
|
|
token = jax.lax.create_token()
|
|
|
|
|
|
|
|
self.assertEqual(token, noop(arr, token)[1])
|
|
|
|
|
2020-09-01 09:34:47 +02:00
|
|
|
def test_jit_bad_input(self):
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError, ".* 'foo' of type <.*'str'> is not a valid JAX type",
|
2020-10-12 08:49:14 -07:00
|
|
|
lambda: self.jit(f)("foo"))
|
2020-09-01 09:34:47 +02:00
|
|
|
|
2021-12-14 15:35:43 -08:00
|
|
|
if jax._src.lib._xla_extension_version >= 47:
|
|
|
|
# Jax type objects aren't valid data arguments.
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
".* '.*int32.*' of type <.*_ScalarMeta.*> is not a valid JAX type",
|
|
|
|
lambda: self.jit(f)(jnp.int32))
|
|
|
|
|
2020-09-01 09:34:47 +02:00
|
|
|
def test_jit_on_all_devices(self):
|
|
|
|
# Verifies we can run the same computation on every device present, even
|
|
|
|
# if they are, for example, different models of GPU.
|
2021-12-10 10:32:09 -08:00
|
|
|
data = self.rng().rand(1000).astype(np.float32)
|
2020-09-01 09:34:47 +02:00
|
|
|
f = self.jit(jnp.negative)
|
|
|
|
for device in jax.local_devices():
|
|
|
|
x = device_put(data, device=device)
|
|
|
|
np.testing.assert_array_equal(-data, f(x))
|
|
|
|
|
2020-09-11 12:12:34 -07:00
|
|
|
def test_jit_nested_donate_ignored(self):
|
|
|
|
jit_fun = self.jit(lambda x: self.jit(lambda y: y**2, donate_argnums=0)(x))
|
|
|
|
a = jax.device_put(jnp.array(1))
|
|
|
|
|
|
|
|
# NOTE(mattjj): stopped raising error here and instead just ignored
|
|
|
|
# with self.assertRaisesRegex(ValueError, "nested.*not supported"):
|
|
|
|
# jit_fun(a)
|
|
|
|
|
|
|
|
jit_fun(a) # doesn't crash
|
|
|
|
|
2020-10-12 08:49:14 -07:00
|
|
|
def test_jit_reference_dropping(self):
|
|
|
|
x = jnp.ones(10)
|
|
|
|
f = (lambda x: lambda: x)(x) # reference to x in f's closure
|
|
|
|
g = self.jit(f)
|
|
|
|
x = weakref.ref(x) # no more strong ref to x in this scope
|
|
|
|
assert x() is not None # x is still around
|
|
|
|
f() # f runs
|
|
|
|
g() # g runs
|
|
|
|
g() # g runs a second time
|
|
|
|
del f # delete the raw callable
|
|
|
|
assert x() is not None # x is still around
|
|
|
|
g() # g still runs
|
|
|
|
del g # no more references to x
|
|
|
|
assert x() is None # x is gone
|
|
|
|
|
Raise an error on non-hashable static arguments for jax.jit and xla_computation.
Up to now, Jax was silently wrapping the object to ensure objects which are not hashable will be hashed using `id` and compared using `is`:
```
class WrapHashably(object):
__slots__ = ["val"]
def __init__(self, val):
self.val = val
def __hash__(self):
return id(self.val)
def __eq__(self, other):
return self.val is other.val
```
This means that when providing different instances of objects that are non hashable, a recompilation was always occurring. This can be non-intuitive, for example with:
@partial(jax.jit, static_argnums=(1,))
def sum(a, b):
return a+ b
sum(np.asarray([1,2,3]), np.asarray([4,5,6])
# The next line will recompile, because the 1-indexed argument is non
# hashable and thus compared by identity with different instances
sum(np.asarray([1,2,3]), np.asarray([4,5,6])
or more simply
np.pad(a, [2, 3], 'constant', constant_values=(4, 6))
^^^^^^
non-hashable static argument.
The same problems can occur with any non-hashable types such as lists, dicts, etc. Even JAX itself was having some issues with this (which shows the behaviour was non-trivial to reason about).
If this commit breaks you, you usually have one of the following options:
- If specifying numpy array or jnp arrays arguments as static, you probably simply need to make them non static.
- When using non-hashable values, such as list, dicts or sets, you can simply use non-mutable versions, with tuples, frozendict, and frozenset.
- You can also change the way the function is defined, to capture these non-hashable arguments by closure, returning the jitted function.
PiperOrigin-RevId: 339351798
2020-10-27 16:11:41 -07:00
|
|
|
def test_jit_raises_on_first_invocation_on_non_hashable_static_argnum(self):
|
2021-04-13 09:42:54 -07:00
|
|
|
if self.jit != api._python_jit:
|
Raise an error on non-hashable static arguments for jax.jit and xla_computation.
Up to now, Jax was silently wrapping the object to ensure objects which are not hashable will be hashed using `id` and compared using `is`:
```
class WrapHashably(object):
__slots__ = ["val"]
def __init__(self, val):
self.val = val
def __hash__(self):
return id(self.val)
def __eq__(self, other):
return self.val is other.val
```
This means that when providing different instances of objects that are non hashable, a recompilation was always occurring. This can be non-intuitive, for example with:
@partial(jax.jit, static_argnums=(1,))
def sum(a, b):
return a+ b
sum(np.asarray([1,2,3]), np.asarray([4,5,6])
# The next line will recompile, because the 1-indexed argument is non
# hashable and thus compared by identity with different instances
sum(np.asarray([1,2,3]), np.asarray([4,5,6])
or more simply
np.pad(a, [2, 3], 'constant', constant_values=(4, 6))
^^^^^^
non-hashable static argument.
The same problems can occur with any non-hashable types such as lists, dicts, etc. Even JAX itself was having some issues with this (which shows the behaviour was non-trivial to reason about).
If this commit breaks you, you usually have one of the following options:
- If specifying numpy array or jnp arrays arguments as static, you probably simply need to make them non static.
- When using non-hashable values, such as list, dicts or sets, you can simply use non-mutable versions, with tuples, frozendict, and frozenset.
- You can also change the way the function is defined, to capture these non-hashable arguments by closure, returning the jitted function.
PiperOrigin-RevId: 339351798
2020-10-27 16:11:41 -07:00
|
|
|
raise unittest.SkipTest("this test only applies to _python_jit")
|
|
|
|
f = lambda x, y: x + 3
|
|
|
|
jitted_f = self.jit(f, static_argnums=(1,))
|
|
|
|
|
|
|
|
msg = ("Non-hashable static arguments are not supported, as this can lead "
|
|
|
|
"to unexpected cache-misses. Static argument (index 1) of type "
|
|
|
|
"<class 'numpy.ndarray'> for function <lambda> is non-hashable.")
|
|
|
|
with self.assertRaisesRegex(ValueError, re.escape(msg)):
|
|
|
|
jitted_f(1, np.asarray(1))
|
|
|
|
|
2020-10-22 08:57:12 -07:00
|
|
|
def test_cpp_jit_raises_on_non_hashable_static_argnum(self):
|
2021-04-13 09:42:54 -07:00
|
|
|
if self.jit != api._cpp_jit:
|
2020-10-22 08:57:12 -07:00
|
|
|
raise unittest.SkipTest("this test only applies to _cpp_jit")
|
|
|
|
|
|
|
|
f = lambda x, y: x + 3
|
2021-04-13 09:42:54 -07:00
|
|
|
jitted_f = api._cpp_jit(f, static_argnums=[1])
|
2020-10-22 08:57:12 -07:00
|
|
|
|
|
|
|
jitted_f(1, 1)
|
|
|
|
|
Raise an error on non-hashable static arguments for jax.jit and xla_computation.
Up to now, Jax was silently wrapping the object to ensure objects which are not hashable will be hashed using `id` and compared using `is`:
```
class WrapHashably(object):
__slots__ = ["val"]
def __init__(self, val):
self.val = val
def __hash__(self):
return id(self.val)
def __eq__(self, other):
return self.val is other.val
```
This means that when providing different instances of objects that are non hashable, a recompilation was always occurring. This can be non-intuitive, for example with:
@partial(jax.jit, static_argnums=(1,))
def sum(a, b):
return a+ b
sum(np.asarray([1,2,3]), np.asarray([4,5,6])
# The next line will recompile, because the 1-indexed argument is non
# hashable and thus compared by identity with different instances
sum(np.asarray([1,2,3]), np.asarray([4,5,6])
or more simply
np.pad(a, [2, 3], 'constant', constant_values=(4, 6))
^^^^^^
non-hashable static argument.
The same problems can occur with any non-hashable types such as lists, dicts, etc. Even JAX itself was having some issues with this (which shows the behaviour was non-trivial to reason about).
If this commit breaks you, you usually have one of the following options:
- If specifying numpy array or jnp arrays arguments as static, you probably simply need to make them non static.
- When using non-hashable values, such as list, dicts or sets, you can simply use non-mutable versions, with tuples, frozendict, and frozenset.
- You can also change the way the function is defined, to capture these non-hashable arguments by closure, returning the jitted function.
PiperOrigin-RevId: 339351798
2020-10-27 16:11:41 -07:00
|
|
|
msg = ("Non-hashable static arguments are not supported. An error occured "
|
2021-09-08 13:50:08 -07:00
|
|
|
".*while trying to hash an object of type "
|
|
|
|
"<class 'numpy\\.ndarray'>, 1. The error was:\nTypeError: "
|
|
|
|
"unhashable type: 'numpy\\.ndarray'")
|
2020-10-22 08:57:12 -07:00
|
|
|
|
2021-09-08 13:50:08 -07:00
|
|
|
with self.assertRaisesRegex(ValueError, msg):
|
2020-10-22 08:57:12 -07:00
|
|
|
jitted_f(1, np.asarray(1))
|
|
|
|
|
|
|
|
class HashableWithoutEq:
|
|
|
|
|
|
|
|
def __hash__(self):
|
|
|
|
return 1
|
|
|
|
|
|
|
|
def __eq__(self, other):
|
|
|
|
raise NotImplementedError(
|
|
|
|
"A Python error is as is, without stack trace")
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError,
|
|
|
|
re.escape("static arguments should be comparable using __eq__")):
|
|
|
|
jitted_f(1, HashableWithoutEq())
|
|
|
|
|
2022-01-07 07:58:30 -08:00
|
|
|
@unittest.skipIf(jax._src.lib._xla_extension_version < 50,
|
|
|
|
"requires jaxlib >= 0.1.76")
|
|
|
|
def test_cpp_jit_raises_other_exceptions_when_hashing_fails(self):
|
|
|
|
class A:
|
|
|
|
def __hash__(self):
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
f = jax.jit(lambda x: x + 1, static_argnums=(0,))
|
|
|
|
a = A()
|
|
|
|
with self.assertRaisesRegex(ValueError, '^$'): # no extra message
|
|
|
|
f(a)
|
|
|
|
|
2020-12-07 06:36:02 -08:00
|
|
|
def test_cpp_jitted_function_returns_PyBuffer(self):
|
2021-04-13 09:42:54 -07:00
|
|
|
if self.jit != api._cpp_jit:
|
2020-12-07 06:36:02 -08:00
|
|
|
raise unittest.SkipTest("this test only applies to _cpp_jit")
|
|
|
|
|
|
|
|
jitted_f = self.jit(lambda a: a + 1)
|
|
|
|
jitted_f(1)
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertIsInstance(jitted_f(2), device_array.Buffer)
|
2020-12-07 06:36:02 -08:00
|
|
|
|
2020-12-21 10:39:59 -08:00
|
|
|
@jtu.skip_on_devices("cpu")
|
|
|
|
def test_explicit_backend(self):
|
|
|
|
f = lambda x: x + 1
|
|
|
|
jitted_f = jit(f, backend=jtu.device_under_test())
|
|
|
|
jitted_f_cpu = jit(f, backend="cpu")
|
|
|
|
|
|
|
|
result = jitted_f(1.)
|
|
|
|
result_cpu = jitted_f_cpu(1.)
|
|
|
|
self.assertEqual(result.device_buffer.platform(), jtu.device_under_test())
|
|
|
|
self.assertEqual(result_cpu.device_buffer.platform(), "cpu")
|
|
|
|
|
2021-05-21 14:35:57 -07:00
|
|
|
@jtu.skip_on_devices("cpu")
|
|
|
|
def test_device_to_device_copy_between_backends(self):
|
|
|
|
# b/186624243
|
|
|
|
f = lambda x: x + 1
|
|
|
|
jitted_f = jit(f, backend=jtu.device_under_test())
|
|
|
|
jitted_f_cpu = jit(f, backend="cpu")
|
|
|
|
|
|
|
|
x = np.arange(30).reshape(1, 10, 3)
|
|
|
|
result = jitted_f(x)
|
|
|
|
result_cpu = jitted_f_cpu(result)
|
|
|
|
result_2 = jitted_f(result_cpu)
|
|
|
|
result_cpu_2 = jitted_f_cpu(result_2)
|
|
|
|
self.assertAllClose(result_2, x + 3)
|
|
|
|
self.assertAllClose(result_cpu_2, x + 4)
|
|
|
|
|
2020-12-21 10:39:59 -08:00
|
|
|
@jtu.skip_on_devices("cpu")
|
|
|
|
def test_mismatched_nested_backends(self):
|
|
|
|
@partial(jit, backend=jtu.device_under_test())
|
|
|
|
def f(x):
|
|
|
|
return jit(lambda x: x + 1, backend="cpu")(x)
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError,
|
|
|
|
f"Outer-jit backend specification {jtu.device_under_test()} must match "
|
|
|
|
f"explicit inner-jit backend specification cpu."):
|
|
|
|
f(1.)
|
|
|
|
|
2021-01-05 08:14:16 -08:00
|
|
|
def test_omnistaging(self):
|
|
|
|
# See https://github.com/google/jax/issues/5206
|
2021-08-15 08:09:30 -07:00
|
|
|
|
|
|
|
# TODO(frostig): remove once we always enable_custom_prng
|
|
|
|
def _prng_key_as_array(key):
|
2021-10-11 21:21:37 -07:00
|
|
|
return key.unsafe_raw_array() if config.jax_enable_custom_prng else key
|
2021-08-15 08:09:30 -07:00
|
|
|
|
|
|
|
# TODO(frostig): remove once we always enable_custom_prng
|
|
|
|
def _array_as_prng_key(arr):
|
|
|
|
arr = np.array(arr, dtype=np.uint32)
|
|
|
|
if config.jax_enable_custom_prng:
|
|
|
|
return jax._src.prng.PRNGKeyArray(
|
|
|
|
jax._src.prng.threefry_prng_impl, arr)
|
|
|
|
else:
|
|
|
|
return arr
|
|
|
|
|
2021-01-05 08:14:16 -08:00
|
|
|
key_list = [None]
|
|
|
|
|
|
|
|
def init():
|
|
|
|
key, subkey = jax.random.split(key_list[0])
|
|
|
|
key_list[0] = key
|
|
|
|
return jax.random.normal(subkey, ())
|
|
|
|
|
2021-08-15 08:09:30 -07:00
|
|
|
key_list[0] = _array_as_prng_key([2384771982, 3928867769])
|
2021-01-05 08:14:16 -08:00
|
|
|
init()
|
|
|
|
self.jit(init)()
|
2021-08-15 08:09:30 -07:00
|
|
|
self.assertIsInstance(_prng_key_as_array(key_list[0]), core.Tracer)
|
2020-10-12 08:49:14 -07:00
|
|
|
|
2021-02-08 11:31:53 -08:00
|
|
|
def test_jit_wrapped_attributes(self):
|
|
|
|
def f(x: int) -> int:
|
|
|
|
"""docstring of f."""
|
|
|
|
return x + 1
|
|
|
|
f.some_value = 4
|
|
|
|
jf = self.jit(f)
|
|
|
|
for attr in ["doc", "name", "module", "qualname", "annotations"]:
|
|
|
|
self.assertEqual(
|
|
|
|
{attr: getattr(f, f"__{attr}__")},
|
|
|
|
{attr: getattr(jf, f"__{attr}__")})
|
|
|
|
self.assertEqual(f.some_value, jf.some_value)
|
|
|
|
|
2021-04-07 13:47:39 -07:00
|
|
|
def test_jit_python_builtin(self):
|
|
|
|
x = jnp.array([1, 2])
|
|
|
|
expected = x + 1
|
|
|
|
jit_add = self.jit(operator.add, static_argnums=(1,))
|
|
|
|
actual = jit_add(x, 1)
|
|
|
|
self.assertArraysEqual(expected, actual)
|
|
|
|
|
2021-03-29 13:52:39 -07:00
|
|
|
def test__infer_argnums_and_argnames(self):
|
|
|
|
def f(x, y=1):
|
|
|
|
pass
|
|
|
|
|
|
|
|
argnums, argnames = api._infer_argnums_and_argnames(
|
|
|
|
f, argnums=None, argnames=None)
|
|
|
|
assert argnums == ()
|
|
|
|
assert argnames == ()
|
|
|
|
|
|
|
|
argnums, argnames = api._infer_argnums_and_argnames(
|
|
|
|
f, argnums=0, argnames=None)
|
|
|
|
assert argnums == (0,)
|
|
|
|
assert argnames == ('x',)
|
|
|
|
|
|
|
|
argnums, argnames = api._infer_argnums_and_argnames(
|
|
|
|
f, argnums=None, argnames='y')
|
|
|
|
assert argnums == (1,)
|
|
|
|
assert argnames == ('y',)
|
|
|
|
|
|
|
|
argnums, argnames = api._infer_argnums_and_argnames(
|
|
|
|
f, argnums=0, argnames='y') # no validation
|
|
|
|
assert argnums == (0,)
|
|
|
|
assert argnames == ('y',)
|
|
|
|
|
|
|
|
def g(x, y, *args):
|
|
|
|
pass
|
|
|
|
|
|
|
|
argnums, argnames = api._infer_argnums_and_argnames(
|
|
|
|
g, argnums=(1, 2), argnames=None)
|
|
|
|
assert argnums == (1, 2)
|
|
|
|
assert argnames == ('y',)
|
|
|
|
|
|
|
|
def h(x, y, **kwargs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
argnums, argnames = api._infer_argnums_and_argnames(
|
|
|
|
h, argnums=None, argnames=('foo', 'bar'))
|
|
|
|
assert argnums == ()
|
|
|
|
assert argnames == ('foo', 'bar')
|
|
|
|
|
|
|
|
def test_jit_with_static_argnames(self):
|
|
|
|
|
|
|
|
def f(x):
|
|
|
|
assert x == 'foo'
|
|
|
|
return 1
|
|
|
|
|
|
|
|
f_nums = self.jit(f, static_argnums=0)
|
|
|
|
assert f_nums('foo') == 1
|
|
|
|
assert f_nums(x='foo') == 1
|
|
|
|
|
|
|
|
f_names = self.jit(f, static_argnames='x')
|
|
|
|
assert f_names('foo') == 1
|
|
|
|
assert f_names(x='foo') == 1
|
|
|
|
|
|
|
|
def test_new_static_argnum_on_keyword_arguments(self):
|
|
|
|
f = self.jit(lambda x: x, static_argnums=0)
|
|
|
|
y = f(x=4)
|
|
|
|
assert y == 4
|
|
|
|
|
|
|
|
def test_new_static_argnum_with_default_arguments(self):
|
|
|
|
f = self.jit(lambda x=4: x, static_argnums=0)
|
|
|
|
y = f()
|
|
|
|
assert y == 4
|
|
|
|
|
2021-04-09 07:10:02 -07:00
|
|
|
def test_jit_with_mismatched_static_argnames(self):
|
|
|
|
x_is_tracer, y_is_tracer = False, False
|
|
|
|
def f(x, y):
|
|
|
|
assert isinstance(x, core.Tracer) == x_is_tracer
|
|
|
|
assert isinstance(y, core.Tracer) == y_is_tracer
|
|
|
|
return 1
|
|
|
|
|
|
|
|
# If both static_argnums and static_argnames are provided, they are allowed
|
|
|
|
# to disagree and `jit` will respect the user's choices.
|
|
|
|
f_nums = self.jit(f, static_argnums=1, static_argnames=())
|
|
|
|
x_is_tracer, y_is_tracer = True, False
|
|
|
|
assert f_nums(2, 'foo') == 1
|
|
|
|
x_is_tracer, y_is_tracer = True, True
|
|
|
|
assert f_nums(1, y=2) == 1
|
|
|
|
|
|
|
|
f_names = self.jit(f, static_argnums=(), static_argnames='y')
|
|
|
|
x_is_tracer, y_is_tracer = True, True
|
|
|
|
assert f_names(2, 3) == 1
|
|
|
|
x_is_tracer, y_is_tracer = True, False
|
|
|
|
assert f_names(1, y='foo') == 1
|
|
|
|
|
|
|
|
f_mixed = self.jit(f, static_argnums=(1,), static_argnames='x')
|
|
|
|
x_is_tracer, y_is_tracer = True, False
|
|
|
|
assert f_mixed(2, 'foo') == 1
|
|
|
|
x_is_tracer, y_is_tracer = True, True
|
|
|
|
assert f_mixed(1, y=3) == 1
|
|
|
|
x_is_tracer, y_is_tracer = False, True
|
|
|
|
assert f_mixed(x='foo', y=3) == 1
|
|
|
|
|
2021-05-03 11:40:59 -07:00
|
|
|
# TODO(zhangqiaorjc): Test pruning constants after DCE pass prunes primitive
|
|
|
|
# applications.
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
|
|
{"testcase_name": "_num_args={}".format(num_args),
|
|
|
|
"num_args": num_args}
|
|
|
|
for num_args in [2, 3, 4]))
|
|
|
|
def test_jit_with_pruned_args(self, num_args):
|
|
|
|
def f(*args):
|
|
|
|
used = np.array(2)
|
|
|
|
return args[1] + used
|
|
|
|
f_pruned = self.jit(f)
|
|
|
|
args = range(num_args)
|
|
|
|
with jtu.count_device_put() as count:
|
|
|
|
np.testing.assert_allclose(f_pruned(*args), 3)
|
|
|
|
self.assertEqual(count[0], 1)
|
|
|
|
|
2021-08-31 11:36:40 -07:00
|
|
|
def testBuffersAreFreedPromptly(self):
|
|
|
|
# Regression test for a bug where garbage collection was delayed too long
|
|
|
|
# for NumPy buffers that are aliased zero-copy by the runtime.
|
|
|
|
@self.jit
|
|
|
|
def f(x):
|
|
|
|
return x + 1
|
|
|
|
|
|
|
|
refs = []
|
|
|
|
x = np.ones((10000,), np.float32)
|
|
|
|
for step in range(1000):
|
|
|
|
x = f(x)
|
|
|
|
refs.append(weakref.ref(x))
|
|
|
|
x = np.asarray(x)
|
|
|
|
|
|
|
|
# We expect most of the input buffers to have been garbage
|
|
|
|
# collected in parallel with the execution. We can't call
|
|
|
|
# block_until_ready() here because it would force a garbage collection.
|
|
|
|
live_refs = len([ref for ref in refs if ref() is not None])
|
|
|
|
self.assertLessEqual(live_refs, 100)
|
2021-04-09 07:10:02 -07:00
|
|
|
|
2021-10-08 21:19:37 -07:00
|
|
|
def test_jit_lower_compile(self):
|
2021-09-23 18:15:15 -07:00
|
|
|
def f(x):
|
|
|
|
return jnp.sqrt(x ** 2) + 1.
|
|
|
|
|
|
|
|
f_jit = self.jit(f)
|
|
|
|
f_low = f_jit.lower(1.)
|
|
|
|
f_exe = f_low.compile()
|
|
|
|
self.assertAllClose(f_exe(1.), 2.)
|
|
|
|
|
2021-10-27 20:27:09 -07:00
|
|
|
def test_jit_lower_duck_typing(self):
|
|
|
|
f_jit = self.jit(lambda x: 2 * x)
|
|
|
|
f_low = f_jit.lower(jax.ShapeDtypeStruct((), 'float32')) # doesn't crash
|
|
|
|
f_exe = f_low.compile()
|
|
|
|
self.assertAllClose(f_exe(jnp.float32(1.)), jnp.float32(2.))
|
|
|
|
|
2021-10-08 21:19:37 -07:00
|
|
|
def test_jit_lower_compile_in_tree_mismatch(self):
|
2021-09-23 18:15:15 -07:00
|
|
|
def f(x):
|
|
|
|
return jnp.sqrt(x ** 2) + 1.
|
|
|
|
|
|
|
|
f_jit = self.jit(f)
|
|
|
|
f_low = f_jit.lower(1.)
|
|
|
|
f_exe = f_low.compile()
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError, "function compiled for .*, called with .*",
|
|
|
|
lambda: f_exe([1.]))
|
|
|
|
|
2021-10-08 21:19:37 -07:00
|
|
|
def test_jit_lower_compile_trivial(self):
|
2021-09-23 18:15:15 -07:00
|
|
|
def f(x): return x
|
|
|
|
out = self.jit(f).lower(1.).compile()(4.)
|
|
|
|
self.assertAllClose(out, 4.)
|
|
|
|
|
2021-10-08 21:19:37 -07:00
|
|
|
def test_jit_lower_compile_trivial_in_tree_mismatch(self):
|
2021-09-23 18:15:15 -07:00
|
|
|
def f(x): return x
|
|
|
|
f_exe = self.jit(f).lower(1.).compile()
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError, "function compiled for .*, called with .*",
|
|
|
|
lambda: f_exe([4.]))
|
|
|
|
|
2021-10-13 08:59:52 -07:00
|
|
|
def test_jit_lower_compile_arg_type_mismatch(self):
|
|
|
|
def f(x):
|
|
|
|
return jnp.sqrt(x ** 2) + 1.
|
|
|
|
|
|
|
|
x = jnp.array(1, dtype=int)
|
|
|
|
x_f32 = x.astype(jnp.float32)
|
|
|
|
x_i32 = x.astype(jnp.int32)
|
|
|
|
f_exe = self.jit(f).lower(x_f32).compile()
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
"Computation compiled for input types:\n.*float32.*\n"
|
|
|
|
"called with:\n.*int32.*",
|
|
|
|
lambda: f_exe(x_i32))
|
|
|
|
|
2021-10-15 16:12:05 -07:00
|
|
|
def test_jit_lower_compile_multi_arg(self):
|
|
|
|
def f(*args):
|
|
|
|
x, *_ = args
|
|
|
|
return jnp.sqrt(x ** 2) + 1.
|
|
|
|
f_exe = self.jit(f).lower(1., 1.).compile()
|
|
|
|
self.assertAllClose(f_exe(1., 1.), 2.)
|
|
|
|
|
|
|
|
def test_jit_lower_compile_trivial_multi_arg(self):
|
|
|
|
def f(*args):
|
|
|
|
x, *_ = args
|
|
|
|
return x
|
|
|
|
f_exe = self.jit(f).lower(1., 1.).compile()
|
|
|
|
self.assertAllClose(f_exe(1., 1.), 1.)
|
|
|
|
|
2021-11-16 11:21:27 -08:00
|
|
|
def test_jit_lower_donate_argnums_available(self):
|
|
|
|
def f(*args):
|
|
|
|
x, *_ = args
|
|
|
|
return x
|
|
|
|
f_low = self.jit(f, donate_argnums=(0,)).lower(1., 1.)
|
|
|
|
f_com = f_low.compile()
|
|
|
|
f_low.donate_argnums == f_com.donate_argnums == (0,)
|
|
|
|
|
2021-12-07 17:09:37 -08:00
|
|
|
def test_jit_lower_compile_vmap(self):
|
|
|
|
f = self.jit(lambda x: x + 4).lower(1.).compile()
|
|
|
|
def err():
|
|
|
|
return jax.vmap(lambda x: f(x) + 2)(jnp.ones(3))
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
"Cannot apply JAX transformations to a function lowered and compiled "
|
|
|
|
"for a particular signature. Detected .*BatchTracer",
|
|
|
|
err)
|
|
|
|
|
2021-11-30 08:49:33 -08:00
|
|
|
@unittest.skipIf(jax._src.lib._xla_extension_version < 45,
|
|
|
|
"requires jaxlib >= 0.1.75")
|
|
|
|
def test_jit_enum_as_dict_keys_fails(self):
|
|
|
|
class E(enum.Enum):
|
|
|
|
A = 0
|
|
|
|
B = 1
|
|
|
|
|
|
|
|
@self.jit
|
|
|
|
def f(d) -> float:
|
|
|
|
return d[E.A]
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(TypeError, "'<' not supported.*"):
|
|
|
|
f({E.A: 1.0, E.B: 2.0})
|
|
|
|
|
2021-09-23 18:15:15 -07:00
|
|
|
|
2021-04-09 07:10:02 -07:00
|
|
|
class PythonJitTest(CPPJitTest):
|
|
|
|
|
|
|
|
@property
|
|
|
|
def jit(self):
|
2021-04-13 09:42:54 -07:00
|
|
|
return api._python_jit
|
2021-04-09 07:10:02 -07:00
|
|
|
|
2021-03-29 13:52:39 -07:00
|
|
|
|
2020-08-18 10:43:52 +02:00
|
|
|
class APITest(jtu.JaxTestCase):
|
|
|
|
|
2021-12-15 16:22:24 -08:00
|
|
|
def test_grad_item(self):
|
|
|
|
def f(x):
|
|
|
|
if x.astype(bool).item():
|
|
|
|
return x ** 2
|
|
|
|
else:
|
|
|
|
return x
|
|
|
|
out = jax.grad(f)(2.0)
|
|
|
|
self.assertEqual(out, 4)
|
|
|
|
|
|
|
|
def test_jit_item(self):
|
|
|
|
def f(x):
|
|
|
|
return x.item()
|
|
|
|
x = jnp.array(1.0)
|
|
|
|
self.assertEqual(f(x), x)
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, "Abstract tracer value"):
|
|
|
|
jax.jit(f)(x)
|
|
|
|
|
2020-09-01 09:34:47 +02:00
|
|
|
def test_grad_bad_input(self):
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError, ".* 'foo' of type <.*'str'> is not a valid JAX type",
|
|
|
|
lambda: grad(f)("foo"))
|
|
|
|
|
2020-08-18 10:43:52 +02:00
|
|
|
def test_grad_argnums(self):
|
|
|
|
def f(x, y, z, flag=False):
|
|
|
|
assert flag
|
|
|
|
return 1.0 * x + 2.0 * y + 3.0 * z
|
|
|
|
|
|
|
|
assert grad(f)(1.0, 1.0, 1.0, flag=True) == 1.0
|
|
|
|
assert grad(f, argnums=1)(1.0, 1.0, 1.0, flag=True) == 2.0
|
|
|
|
assert grad(f, argnums=(2, 0))(1.0, 1.0, 1.0, flag=True) == (3.0, 1.0)
|
|
|
|
|
|
|
|
def test_value_and_grad_argnums(self):
|
|
|
|
def f(x, y, z, flag=False):
|
|
|
|
assert flag
|
|
|
|
return 1.0 * x + 2.0 * y + 3.0 * z
|
|
|
|
|
|
|
|
y = f(1.0, 1.0, 1.0, flag=True)
|
|
|
|
assert api.value_and_grad(f)(1.0, 1.0, 1.0, flag=True) == (y, 1.0)
|
|
|
|
assert api.value_and_grad(f, argnums=1)(1.0, 1.0, 1.0, flag=True) == (y, 2.0)
|
|
|
|
assert api.value_and_grad(f, argnums=(2, 0))(1.0, 1.0, 1.0, flag=True) == (y, (3.0, 1.0))
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def test_grad_of_jit(self):
|
|
|
|
side = []
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def f(x):
|
|
|
|
side.append(None)
|
|
|
|
return x * x
|
|
|
|
|
|
|
|
assert grad(f)(1.0) == 2.0
|
|
|
|
assert len(side) == 1
|
|
|
|
assert grad(f)(2.0) == 4.0
|
|
|
|
assert len(side) == 1
|
|
|
|
|
|
|
|
def test_jit_of_grad(self):
|
|
|
|
side = []
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def f(x):
|
|
|
|
side.append(None)
|
|
|
|
return x * x
|
|
|
|
|
|
|
|
g = jit(grad(f))
|
|
|
|
assert g(1.0) == 2.0
|
|
|
|
assert len(side) == 1
|
|
|
|
assert g(2.0) == 4.0
|
|
|
|
assert len(side) == 1
|
|
|
|
|
2021-11-23 15:04:08 -08:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"_{transform.__name__}", "transform": transform}
|
|
|
|
for transform in [grad, jacfwd, jacrev])
|
|
|
|
def test_ad_weak_types(self, transform):
|
|
|
|
out = transform(lambda x: x)(1.0)
|
|
|
|
self.assertTrue(dtypes.is_weakly_typed(out))
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def test_bad_input(self):
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
|
2019-11-28 08:48:10 +01:00
|
|
|
self.assertRaisesRegex(
|
2019-11-14 16:00:55 -05:00
|
|
|
TypeError, ".* 'foo' of type <.*'str'> is not a valid JAX type",
|
|
|
|
lambda: grad(f)("foo"))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2019-11-28 08:48:10 +01:00
|
|
|
self.assertRaisesRegex(
|
2019-11-14 16:00:55 -05:00
|
|
|
TypeError, ".* 'foo' of type <.*'str'> is not a valid JAX type",
|
|
|
|
lambda: jit(f)("foo"))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def test_grad_tuple_output(self):
|
|
|
|
jtu.check_raises(lambda: grad(lambda x: (x,x))(1.0), TypeError,
|
2018-12-06 21:47:47 -05:00
|
|
|
"Gradient only defined for scalar-output functions. ")
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def test_grad_unit_output(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
jtu.check_raises(lambda: grad(lambda x: ())(np.zeros(3)), TypeError,
|
2018-12-06 21:47:47 -05:00
|
|
|
"Gradient only defined for scalar-output functions. ")
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def test_grad_nonscalar_output(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
jtu.check_raises(lambda: grad(lambda x: x)(np.zeros(3)), TypeError,
|
2018-12-06 21:47:47 -05:00
|
|
|
"Gradient only defined for scalar-output functions. ")
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def test_unwrapped_numpy(self):
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return np.exp(x)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2020-05-20 19:09:44 -07:00
|
|
|
with self.assertRaisesRegex(Exception, "The numpy.ndarray conversion .*"):
|
|
|
|
grad(f)(np.zeros(3))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def test_binop_mismatch(self):
|
|
|
|
def f(x, y):
|
|
|
|
return x + y
|
|
|
|
|
2019-08-23 17:05:32 -07:00
|
|
|
jtu.check_raises(
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: f(jnp.zeros(3), jnp.zeros(4)),
|
2019-08-23 17:05:32 -07:00
|
|
|
TypeError,
|
|
|
|
"add got incompatible shapes for broadcasting: (3,), (4,).")
|
|
|
|
|
|
|
|
jtu.check_raises(
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: grad(f)(np.zeros(3), np.zeros(4)),
|
2019-08-23 17:05:32 -07:00
|
|
|
TypeError,
|
|
|
|
"add got incompatible shapes for broadcasting: (3,), (4,).")
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def test_dot_mismatch(self):
|
|
|
|
def f(x, y):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.dot(x, y)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2019-11-28 08:48:10 +01:00
|
|
|
self.assertRaisesRegex(
|
2019-11-14 16:00:55 -05:00
|
|
|
TypeError, "Incompatible shapes for dot: got \\(3L?,\\) and \\(4L?,\\).",
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: grad(f)(np.zeros(3), np.zeros(4)))
|
2020-04-03 21:33:32 -07:00
|
|
|
|
2020-01-27 15:44:33 -08:00
|
|
|
def test_abstract_error_message(self):
|
|
|
|
for castfun in [float, complex, int]:
|
|
|
|
def f(x):
|
|
|
|
return castfun(x)
|
|
|
|
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
2020-09-15 08:06:46 -07:00
|
|
|
f"[Tt]ry using `x.astype\\({castfun.__name__}\\)`",
|
2020-01-27 15:44:33 -08:00
|
|
|
lambda: jit(f)(1.0))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def test_switch_value_jit(self):
|
|
|
|
def f(x):
|
|
|
|
y = x > 0
|
|
|
|
if y:
|
|
|
|
return x
|
|
|
|
else:
|
|
|
|
return -x
|
|
|
|
|
|
|
|
assert grad(f)(1.0) == 1.0
|
|
|
|
assert grad(f)(-1.0) == -1.0
|
2020-04-22 10:25:06 +03:00
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError,
|
2020-07-30 12:59:36 -07:00
|
|
|
"Abstract tracer value"):
|
2020-04-22 10:25:06 +03:00
|
|
|
jit(f)(1)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2021-02-25 13:35:41 -08:00
|
|
|
def test_list_index_err(self):
|
|
|
|
L = [1, 2, 3]
|
|
|
|
def f(n):
|
|
|
|
return L[n]
|
|
|
|
|
|
|
|
assert jit(f, static_argnums=(0,))(0) == L[0]
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
2021-03-02 09:29:59 -08:00
|
|
|
r"The __index__\(\) method was called on the JAX Tracer object.*",
|
2021-02-25 13:35:41 -08:00
|
|
|
lambda: jit(f)(0))
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def test_range_err(self):
|
|
|
|
def f(x, n):
|
|
|
|
for i in range(n):
|
|
|
|
x = x + i
|
|
|
|
return x
|
|
|
|
|
|
|
|
assert jit(f, static_argnums=(1,))(0, 5) == 10
|
2019-11-28 08:48:10 +01:00
|
|
|
self.assertRaisesRegex(
|
2019-11-14 16:00:55 -05:00
|
|
|
TypeError,
|
2021-03-02 09:29:59 -08:00
|
|
|
r"The __index__\(\) method was called on the JAX Tracer object.*",
|
2019-11-14 16:00:55 -05:00
|
|
|
lambda: jit(f)(0, 5))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2021-02-25 13:35:41 -08:00
|
|
|
def test_cast_int(self):
|
|
|
|
f = lambda x: int(x)
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
"('(?:JaxprTracer|DynamicJaxprTracer)' object cannot be interpreted as an integer"
|
|
|
|
"|Abstract tracer value encountered where concrete value is expected.*)", lambda: jit(f)(0))
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def test_casts(self):
|
2021-02-25 13:35:41 -08:00
|
|
|
for castfun in [hex, oct]:
|
2018-11-17 18:03:33 -08:00
|
|
|
f = lambda x: castfun(x)
|
2019-11-28 08:48:10 +01:00
|
|
|
self.assertRaisesRegex(
|
2019-11-14 16:00:55 -05:00
|
|
|
TypeError,
|
2021-03-02 09:29:59 -08:00
|
|
|
r"The __index__\(\) method was called on the JAX Tracer object.*", lambda: jit(f)(0))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def test_unimplemented_interpreter_rules(self):
|
2019-12-06 22:28:41 -08:00
|
|
|
foo_p = Primitive('foo')
|
2018-11-17 18:03:33 -08:00
|
|
|
def foo(x):
|
|
|
|
return foo_p.bind(x)
|
|
|
|
|
|
|
|
jtu.check_raises(lambda: foo(1.0), NotImplementedError,
|
|
|
|
"Evaluation rule for 'foo' not implemented")
|
|
|
|
|
|
|
|
jtu.check_raises(lambda: jit(foo)(1.0), NotImplementedError,
|
|
|
|
"Abstract evaluation for 'foo' not implemented")
|
|
|
|
|
|
|
|
jtu.check_raises(lambda: grad(foo)(1.0), NotImplementedError,
|
2020-06-23 09:39:45 -07:00
|
|
|
"Differentiation rule for 'foo' not implemented")
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2019-02-22 07:56:13 -08:00
|
|
|
foo_p.def_abstract_eval(lambda x: x)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2021-11-30 06:08:26 -08:00
|
|
|
jtu.check_raises_regexp(lambda: jit(foo)(1.0), NotImplementedError,
|
|
|
|
".* rule for primitive 'foo' not found.*")
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
foo_p.def_impl(lambda x: x)
|
2019-06-03 07:17:37 -07:00
|
|
|
ad.defjvp(foo_p, lambda g, x: foo(g))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
jtu.check_raises(lambda: grad(foo)(1.0), NotImplementedError,
|
2020-01-15 15:00:38 -08:00
|
|
|
"Transpose rule (for reverse-mode differentiation) for 'foo' not implemented")
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2021-09-15 15:12:19 -04:00
|
|
|
def test_is_subclass(self):
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertTrue(issubclass(device_array.DeviceArray, jnp.ndarray))
|
|
|
|
self.assertTrue(issubclass(device_array.Buffer, jnp.ndarray))
|
2021-09-15 15:12:19 -04:00
|
|
|
self.assertTrue(issubclass(pxla.ShardedDeviceArray, jnp.ndarray))
|
|
|
|
self.assertTrue(issubclass(pxla._ShardedDeviceArray, jnp.ndarray))
|
|
|
|
self.assertFalse(issubclass(np.ndarray, jnp.ndarray))
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertFalse(issubclass(device_array.DeviceArray, np.ndarray))
|
|
|
|
self.assertFalse(issubclass(device_array.Buffer, np.ndarray))
|
2021-09-15 15:12:19 -04:00
|
|
|
self.assertFalse(issubclass(pxla.ShardedDeviceArray, np.ndarray))
|
|
|
|
self.assertFalse(issubclass(pxla._ShardedDeviceArray, np.ndarray))
|
|
|
|
|
|
|
|
def test_is_instance(self):
|
|
|
|
def f(x):
|
|
|
|
self.assertIsInstance(x, jnp.ndarray)
|
|
|
|
self.assertNotIsInstance(x, np.ndarray)
|
|
|
|
return x + 2
|
|
|
|
jit(f)(3)
|
|
|
|
jax.vmap(f)(np.arange(3))
|
|
|
|
|
2018-11-21 18:07:24 -08:00
|
|
|
def test_device_put_and_get(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
x = np.arange(12.).reshape((3, 4)).astype("float32")
|
2019-07-27 15:46:14 -07:00
|
|
|
dx = api.device_put(x)
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertIsInstance(dx, device_array.DeviceArray)
|
2021-09-15 15:12:19 -04:00
|
|
|
self.assertIsInstance(dx, jnp.ndarray)
|
|
|
|
self.assertNotIsInstance(dx, np.ndarray)
|
2019-07-27 15:46:14 -07:00
|
|
|
x2 = api.device_get(dx)
|
2021-09-15 15:12:19 -04:00
|
|
|
self.assertNotIsInstance(x2, jnp.ndarray)
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertIsInstance(x2, np.ndarray)
|
|
|
|
assert np.all(x == x2)
|
2018-11-21 18:07:24 -08:00
|
|
|
|
|
|
|
y = [x, (2 * x, 3 * x)]
|
2019-07-27 15:46:14 -07:00
|
|
|
dy = api.device_put(y)
|
|
|
|
y2 = api.device_get(dy)
|
2019-07-23 02:48:53 -07:00
|
|
|
self.assertIsInstance(y2, list)
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertIsInstance(y2[0], np.ndarray)
|
|
|
|
assert np.all(y2[0] == x)
|
2019-07-23 02:48:53 -07:00
|
|
|
self.assertIsInstance(y2[1], tuple)
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertIsInstance(y2[1][0], np.ndarray)
|
|
|
|
assert np.all(y2[1][0] == 2 * x)
|
|
|
|
self.assertIsInstance(y2[1][1], np.ndarray)
|
|
|
|
assert np.all(y2[1][1] == 3 * x)
|
2018-11-21 18:07:24 -08:00
|
|
|
|
2020-09-15 02:35:41 +01:00
|
|
|
def test_device_get_scalar(self):
|
|
|
|
x = np.arange(12.).reshape((3, 4)).astype("float32")
|
|
|
|
x = api.device_put(x)
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertIsInstance(x, device_array.DeviceArray)
|
2020-09-15 02:35:41 +01:00
|
|
|
y = [x, 2]
|
|
|
|
y2 = api.device_get(y)
|
|
|
|
self.assertIsInstance(y2, list)
|
|
|
|
self.assertIsInstance(y2[0], np.ndarray)
|
|
|
|
assert np.all(y2[0] == x)
|
|
|
|
self.assertIsInstance(y2[1], int)
|
|
|
|
self.assertEqual(y2[1], 2)
|
|
|
|
|
2020-03-13 13:35:18 -04:00
|
|
|
@parameterized.parameters([(3,)], [(2, 0)])
|
|
|
|
def test_device_put_across_devices(self, shape):
|
|
|
|
if len(api.local_devices()) < 2:
|
2019-10-11 14:07:16 -07:00
|
|
|
raise unittest.SkipTest("this test requires multiple devices")
|
2020-03-13 13:35:18 -04:00
|
|
|
d1, d2 = api.local_devices()[:2]
|
2021-12-10 10:32:09 -08:00
|
|
|
data = self.rng().randn(*shape).astype(np.float32)
|
2020-03-13 13:35:18 -04:00
|
|
|
x = api.device_put(data, device=d1)
|
2019-10-11 14:07:16 -07:00
|
|
|
self.assertEqual(x.device_buffer.device(), d1)
|
|
|
|
y = api.device_put(x, device=d2)
|
|
|
|
self.assertEqual(y.device_buffer.device(), d2)
|
2020-05-05 14:59:16 -04:00
|
|
|
np.testing.assert_array_equal(data, np.array(y))
|
2019-10-11 14:07:16 -07:00
|
|
|
# Make sure these don't crash
|
|
|
|
api.device_put(x)
|
|
|
|
api.device_put(y)
|
|
|
|
|
2019-11-25 16:23:40 -08:00
|
|
|
@jtu.skip_on_devices("cpu")
|
|
|
|
def test_device_put_across_platforms(self):
|
|
|
|
default_device = jax.devices()[0]
|
|
|
|
cpu_device = jax.devices("cpu")[0]
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
np_arr = np.array([1,2,3])
|
2019-11-25 16:23:40 -08:00
|
|
|
scalar = 1
|
2020-05-05 14:59:16 -04:00
|
|
|
device_arr = jnp.array([1,2,3])
|
2019-11-25 16:23:40 -08:00
|
|
|
assert device_arr.device_buffer.device() is default_device
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
for val in [np_arr, device_arr, scalar]:
|
2019-11-25 16:23:40 -08:00
|
|
|
x = api.device_put(val, device=cpu_device)
|
|
|
|
self.assertEqual(x.device_buffer.device(), cpu_device)
|
|
|
|
|
2018-12-12 09:00:39 -08:00
|
|
|
@jtu.skip_on_devices("tpu")
|
2018-12-11 16:24:20 -08:00
|
|
|
def test_jacobian(self):
|
2021-12-10 10:32:09 -08:00
|
|
|
R = self.rng().randn
|
2018-12-11 16:24:20 -08:00
|
|
|
A = R(4, 3)
|
|
|
|
x = R(3)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
f = lambda x: jnp.dot(A, x)
|
|
|
|
assert np.allclose(jacfwd(f)(x), A)
|
|
|
|
assert np.allclose(jacrev(f)(x), A)
|
2018-12-11 16:24:20 -08:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
f = lambda x: jnp.tanh(jnp.dot(A, x))
|
|
|
|
assert np.allclose(jacfwd(f)(x), jacrev(f)(x))
|
2018-12-11 16:24:20 -08:00
|
|
|
|
2019-01-07 08:54:14 -08:00
|
|
|
@jtu.skip_on_devices("tpu")
|
|
|
|
def test_hessian(self):
|
2021-12-10 10:32:09 -08:00
|
|
|
R = self.rng().randn
|
2019-01-07 08:54:14 -08:00
|
|
|
A = R(4, 4)
|
|
|
|
x = R(4)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
f = lambda x: jnp.dot(x, jnp.dot(A, x))
|
|
|
|
assert np.allclose(hessian(f)(x), A + A.T)
|
2019-01-07 08:54:14 -08:00
|
|
|
|
2019-01-06 11:59:33 -08:00
|
|
|
def test_std_basis(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
basis = api._std_basis(jnp.zeros(3))
|
2019-01-06 11:59:33 -08:00
|
|
|
assert getattr(basis, "shape", None) == (3, 3)
|
2020-05-05 14:59:16 -04:00
|
|
|
assert np.allclose(basis, np.eye(3))
|
2019-01-06 11:59:33 -08:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
basis = api._std_basis(jnp.zeros((3, 3)))
|
2019-01-06 11:59:33 -08:00
|
|
|
assert getattr(basis, "shape", None) == (9, 3, 3)
|
2020-05-05 14:59:16 -04:00
|
|
|
assert np.allclose(basis, np.eye(9).reshape(9, 3, 3))
|
2019-01-06 11:59:33 -08:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
basis = api._std_basis([0., (jnp.zeros(3), jnp.zeros((3, 4)))])
|
2019-01-06 11:59:33 -08:00
|
|
|
assert isinstance(basis, list) and len(basis) == 2
|
|
|
|
assert getattr(basis[0], "shape", None) == (16,)
|
|
|
|
assert isinstance(basis[1], tuple) and len(basis[1]) == 2
|
|
|
|
assert getattr(basis[1][0], "shape", None) == (16, 3)
|
|
|
|
assert getattr(basis[1][1], "shape", None) == (16, 3, 4)
|
|
|
|
|
2019-01-07 08:54:14 -08:00
|
|
|
@jtu.skip_on_devices("tpu")
|
|
|
|
def test_jacobian_on_pytrees(self):
|
|
|
|
for jacfun in [jacfwd, jacrev]:
|
|
|
|
ans = jacfun(lambda x, y: (x, y))(0., 1.)
|
|
|
|
expected = (1., 0.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = jacfun(lambda x, y: (x, y), 1)(0., 1.)
|
|
|
|
expected = (0., 1.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = jacfun(lambda x, y: (x, y), (0, 1))(0., 1.)
|
|
|
|
expected = ((1., 0.),
|
|
|
|
(0., 1.),)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = jacfun(lambda x: x[:2])((1., 2., 3.))
|
|
|
|
expected = ((1., 0., 0.),
|
|
|
|
(0., 1., 0.))
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2021-12-10 10:32:09 -08:00
|
|
|
R = self.rng().randn
|
2019-01-07 08:54:14 -08:00
|
|
|
x = R(2)
|
|
|
|
y = R(3)
|
2020-05-05 14:59:16 -04:00
|
|
|
ans = jacfun(lambda x, y: {'x': x, 'xy': jnp.outer(x, y)})(x, y)
|
|
|
|
expected = {'x': np.eye(2),
|
|
|
|
'xy': np.kron(np.eye(2), y[:, None]).reshape(2, 3, 2)}
|
2019-01-07 08:54:14 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
@jtu.skip_on_devices("tpu")
|
|
|
|
def test_hessian_on_pytrees(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
ans = hessian(lambda x: jnp.array(x)**2)((1., 2.))
|
|
|
|
expected = ((np.array([2., 0.]), np.array([0., 0.])),
|
|
|
|
(np.array([0., 0.]), np.array([0., 2.])))
|
2019-01-07 08:54:14 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2019-09-23 13:35:52 -07:00
|
|
|
@jtu.skip_on_devices("tpu")
|
|
|
|
def test_issue1372(self):
|
|
|
|
def quad(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.dot(x, x)
|
2019-09-23 13:35:52 -07:00
|
|
|
|
|
|
|
def f(x, u):
|
|
|
|
return quad(x) + quad(u)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x, u = jnp.ones(5), jnp.ones(2)
|
2019-09-23 13:35:52 -07:00
|
|
|
|
|
|
|
rev = jacrev
|
|
|
|
fwd = jacfwd
|
|
|
|
|
|
|
|
# Diagonal entries
|
|
|
|
self.assertEqual(rev(rev(f, 0), 0)(x, u).shape, (5, 5))
|
|
|
|
self.assertEqual(rev(fwd(f, 0), 0)(x, u).shape, (5, 5))
|
|
|
|
self.assertEqual(fwd(rev(f, 0), 0)(x, u).shape, (5, 5))
|
|
|
|
self.assertEqual(fwd(fwd(f, 0), 0)(x, u).shape, (5, 5))
|
|
|
|
self.assertEqual(rev(rev(f, 1), 1)(x, u).shape, (2, 2))
|
|
|
|
self.assertEqual(rev(fwd(f, 1), 1)(x, u).shape, (2, 2))
|
|
|
|
self.assertEqual(fwd(rev(f, 1), 1)(x, u).shape, (2, 2))
|
|
|
|
self.assertEqual(fwd(fwd(f, 1), 1)(x, u).shape, (2, 2))
|
|
|
|
|
|
|
|
# Off-diagonal entries by reverse-mode on the outside
|
|
|
|
self.assertEqual(rev(rev(f, 1), 0)(x, u).shape, (2, 5))
|
|
|
|
self.assertEqual(rev(fwd(f, 1), 0)(x, u).shape, (2, 5))
|
|
|
|
self.assertEqual(rev(rev(f, 0), 1)(x, u).shape, (5, 2))
|
|
|
|
self.assertEqual(rev(fwd(f, 0), 1)(x, u).shape, (5, 2))
|
|
|
|
|
|
|
|
# Off-diagonal entries by forward-mode on the outside
|
|
|
|
self.assertEqual(fwd(rev(f, 1), 0)(x, u).shape, (2, 5))
|
|
|
|
self.assertEqual(fwd(fwd(f, 1), 0)(x, u).shape, (2, 5))
|
|
|
|
self.assertEqual(fwd(rev(f, 0), 1)(x, u).shape, (5, 2))
|
|
|
|
self.assertEqual(fwd(fwd(f, 0), 1)(x, u).shape, (5, 2))
|
|
|
|
|
2019-02-06 19:44:12 -08:00
|
|
|
|
2019-02-25 13:48:01 -08:00
|
|
|
def test_large_device_constant(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
ans = jit(lambda x: 2 * x)(jnp.ones(int(2e6))) # doesn't crash
|
|
|
|
self.assertAllClose(ans, np.ones(int(2e6)) * 2., check_dtypes=False)
|
2019-02-25 13:48:01 -08:00
|
|
|
|
2019-03-07 14:08:02 -08:00
|
|
|
def test_grad_and_aux_basic(self):
|
|
|
|
g, aux = grad(lambda x: (x**3, [x**2]), has_aux=True)(3.)
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(g, grad(lambda x: x**3)(3.))
|
2019-12-09 21:18:39 -05:00
|
|
|
self.assertAllClose(aux, [9.], check_dtypes=False)
|
2019-03-07 14:08:02 -08:00
|
|
|
|
2021-02-18 09:46:16 -08:00
|
|
|
def test_grad_and_aux_error(self):
|
|
|
|
with self.assertRaisesRegex(TypeError, "two-element tuple"):
|
|
|
|
grad(lambda x: (1, 2, 3), has_aux=True)(1.)
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(TypeError, "two-element tuple"):
|
|
|
|
grad(lambda x: x, has_aux=True)(1.)
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(TypeError, "two-element tuple"):
|
|
|
|
grad(lambda x: (x,), has_aux=True)(1.)
|
|
|
|
|
2019-03-07 14:08:02 -08:00
|
|
|
def test_grad_and_aux_nested(self):
|
|
|
|
def f(x):
|
|
|
|
g, aux = grad(lambda x: (x**3, [x**3]), has_aux=True)(x)
|
|
|
|
return aux[0]
|
|
|
|
|
|
|
|
f2 = lambda x: x**3
|
|
|
|
|
|
|
|
self.assertEqual(grad(f)(4.), grad(f2)(4.))
|
|
|
|
self.assertEqual(jit(grad(f))(4.), grad(f2)(4.))
|
|
|
|
self.assertEqual(jit(grad(jit(f)))(4.), grad(f2)(4.))
|
|
|
|
|
|
|
|
def f(x):
|
|
|
|
g, aux = grad(lambda x: (x**3, [x**3]), has_aux=True)(x)
|
2020-05-05 14:59:16 -04:00
|
|
|
return aux[0] * jnp.sin(x)
|
2019-03-07 14:08:02 -08:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
f2 = lambda x: x**3 * jnp.sin(x)
|
2019-03-07 14:08:02 -08:00
|
|
|
|
|
|
|
self.assertEqual(grad(f)(4.), grad(f2)(4.))
|
|
|
|
self.assertEqual(jit(grad(f))(4.), grad(f2)(4.))
|
|
|
|
self.assertEqual(jit(grad(jit(f)))(4.), grad(f2)(4.))
|
|
|
|
|
2019-03-07 14:48:05 -08:00
|
|
|
def test_grad_and_aux_constant(self):
|
|
|
|
g, aux = grad(lambda x: (x**3, [4.]), has_aux=True)(4.)
|
|
|
|
self.assertEqual(g, grad(lambda x: x**3)(4.))
|
|
|
|
self.assertEqual(aux, [4.])
|
|
|
|
|
2019-03-07 14:49:29 -08:00
|
|
|
g, aux = grad(lambda x: (x**3, [x**2, 4.]), has_aux=True)(4.)
|
|
|
|
self.assertEqual(g, grad(lambda x: x**3)(4.))
|
|
|
|
self.assertEqual(aux, [4.**2, 4.])
|
|
|
|
|
2020-01-06 18:08:00 -08:00
|
|
|
def test_grad_and_aux_no_tracers(self):
|
|
|
|
# see https://github.com/google/jax/issues/1950
|
|
|
|
def f(x):
|
|
|
|
aux = dict(identity=x, p1=x+1)
|
|
|
|
return x ** 2, aux
|
|
|
|
|
|
|
|
_, aux = jax.grad(f, has_aux=True)(3.)
|
|
|
|
self.assertIsInstance(aux, dict)
|
|
|
|
for val in aux.values():
|
|
|
|
self.assertNotIsInstance(val, core.Tracer)
|
|
|
|
|
2019-11-14 15:37:33 -05:00
|
|
|
def test_jvp_mismatched_arguments(self):
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
("primal and tangent arguments to jax.jvp must have the same tree "
|
|
|
|
"structure"),
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: api.jvp(lambda x, y: x * y, (np.float32(2),), ()))
|
2019-11-27 14:24:41 +01:00
|
|
|
# If primals and tangents must both be tuples or both lists
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
("primal and tangent arguments to jax.jvp must have the same tree "
|
|
|
|
"structure"),
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: api.jvp(lambda x, y: x * y, (np.float32(2),), [np.float32(2)]))
|
2019-11-14 15:37:33 -05:00
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
2020-09-24 16:29:57 +01:00
|
|
|
"primal and tangent arguments to jax.jvp do not match.",
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: api.jvp(lambda x: -x, (np.float16(2),), (np.float32(4),)))
|
2021-01-17 00:35:45 -05:00
|
|
|
# If primals and tangents are not of the same shape then raise error
|
2021-01-18 23:21:33 -05:00
|
|
|
fun = lambda x: x+1
|
2021-01-19 09:12:11 -05:00
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError, "jvp called with different primal and tangent shapes"):
|
2021-01-18 23:21:33 -05:00
|
|
|
api.jvp(fun, (jnp.array([1.,2.,3.]),), (jnp.array([1.,2.,3.,4.]),))
|
2021-01-19 09:12:11 -05:00
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError, "jvp called with different primal and tangent shapes"):
|
2021-01-19 09:49:28 -05:00
|
|
|
api.jvp(fun, (jnp.float32(10.),), (jnp.array([1.,2.,3.], dtype=jnp.float32),))
|
2021-01-19 09:12:11 -05:00
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError, "jvp called with different primal and tangent shapes"):
|
2021-01-19 09:49:28 -05:00
|
|
|
api.jvp(fun, (jnp.array([1.,2.,3.], dtype=jnp.float32),), (jnp.float32(20.),))
|
2021-01-20 21:47:18 -05:00
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError, "jvp called with different primal and tangent shapes"):
|
|
|
|
api.jvp(fun, (jnp.array([1.,2.,3.]),), (20.,))
|
2019-11-14 15:37:33 -05:00
|
|
|
|
2019-11-27 13:12:24 +01:00
|
|
|
def test_jvp_non_tuple_arguments(self):
|
|
|
|
def f(x, y): return x + y
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
2019-11-27 14:24:41 +01:00
|
|
|
"primal and tangent arguments to jax.jvp must be tuples or lists; found float and tuple.",
|
2020-01-18 08:26:23 -05:00
|
|
|
lambda: api.jvp(f, 0., (1.,)))
|
2019-11-27 13:12:24 +01:00
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
2019-11-27 14:24:41 +01:00
|
|
|
"primal and tangent arguments to jax.jvp must be tuples or lists; found tuple and ndarray.",
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: api.jvp(f, (0.,), np.array([1., 2.])))
|
2019-11-27 13:12:24 +01:00
|
|
|
|
2019-11-14 15:37:33 -05:00
|
|
|
def test_vjp_mismatched_arguments(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
_, pullback = api.vjp(lambda x, y: x * y, np.float32(3), np.float32(4))
|
2019-11-14 15:37:33 -05:00
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
"Tree structure of cotangent input.*does not match",
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: pullback((np.float32(7), np.float32(100))))
|
2019-11-14 15:37:33 -05:00
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
2020-09-24 16:29:57 +01:00
|
|
|
"Type of cotangent input to vjp pullback.*is not the expected tangent type",
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: pullback((np.float16(42))))
|
2019-11-14 15:37:33 -05:00
|
|
|
|
2021-07-10 19:08:15 +03:00
|
|
|
def test_vjp_bad_cotangent_shape(self):
|
|
|
|
x = np.ones((2, 5), dtype=np.float32)
|
|
|
|
y = np.ones((5, 3), dtype=np.float32)
|
|
|
|
def f_jax(x, y):
|
|
|
|
return jnp.matmul(x, y)
|
|
|
|
res, pullback = jax.vjp(f_jax, x, y)
|
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError,
|
2021-07-11 09:40:42 +03:00
|
|
|
"Shape of cotangent input to vjp pullback function .* must be the same as the shape of corresponding primal input .*"):
|
2021-07-10 19:08:15 +03:00
|
|
|
pullback(np.ones((2, 4), dtype=np.float32))
|
|
|
|
|
2020-01-05 04:32:48 +01:00
|
|
|
def test_jvp_jit_cached(self):
|
|
|
|
"""Bug in caching in presence of JVP and JIT."""
|
|
|
|
|
|
|
|
def func(x):
|
|
|
|
def inner(y):
|
|
|
|
return y * x
|
|
|
|
|
|
|
|
# Must have two calls to the inner jit (the second one hits the cache)
|
|
|
|
res1 = api.jit(inner)(4.)
|
|
|
|
res2 = api.jit(inner)(5.)
|
|
|
|
return res1 + res2
|
|
|
|
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose((45., 9.), api.jvp(func, (5.,), (1.,)))
|
2020-01-05 04:32:48 +01:00
|
|
|
|
2020-09-16 20:29:19 -07:00
|
|
|
def test_linear_transpose_abstract(self):
|
2021-06-22 15:58:29 -04:00
|
|
|
x = types.SimpleNamespace(shape=(3,), dtype=np.dtype(np.float32))
|
2020-09-16 20:29:19 -07:00
|
|
|
y = jnp.arange(3, dtype=np.float32)
|
|
|
|
transpose_fun = api.linear_transpose(lambda x: 2 * x, x)
|
|
|
|
z, = transpose_fun(y)
|
|
|
|
self.assertArraysEqual(2 * y, z, check_dtypes=True)
|
|
|
|
|
2021-03-26 11:14:43 +00:00
|
|
|
def test_linear_transpose_integer(self):
|
|
|
|
f = lambda x: 2 * x
|
|
|
|
transpose = api.linear_transpose(f, 1)
|
|
|
|
actual, = transpose(3)
|
|
|
|
expected = 6
|
|
|
|
self.assertEqual(actual, expected)
|
|
|
|
|
2020-09-16 20:29:19 -07:00
|
|
|
def test_linear_transpose_error(self):
|
|
|
|
with self.assertRaisesRegex(
|
2021-03-26 11:14:43 +00:00
|
|
|
TypeError, "linear_transpose only supports"):
|
|
|
|
api.linear_transpose(lambda x: 2. * x, 1)
|
2020-09-16 20:29:19 -07:00
|
|
|
transpose_fun = api.linear_transpose(lambda x: [x, x], 1.0)
|
|
|
|
with self.assertRaisesRegex(TypeError, "cotangent tree does not match"):
|
|
|
|
transpose_fun(1.0)
|
|
|
|
|
|
|
|
transpose_fun = api.linear_transpose(lambda x: jnp.stack([x, x]), 1.0)
|
|
|
|
with self.assertRaisesRegex(TypeError, "cotangent type does not match"):
|
|
|
|
transpose_fun(1.0)
|
|
|
|
|
|
|
|
transpose_fun = api.linear_transpose(lambda x: 1j * x, 1.0)
|
|
|
|
with self.assertRaisesRegex(TypeError, "cotangent type does not match"):
|
|
|
|
transpose_fun(1.0)
|
|
|
|
|
|
|
|
transpose_fun = api.linear_transpose(lambda x: x, 1.0)
|
|
|
|
with self.assertRaisesRegex(TypeError, "cotangent type does not match"):
|
|
|
|
transpose_fun(1j)
|
|
|
|
|
|
|
|
def test_linear_transpose_complex(self):
|
|
|
|
f = lambda x: (1 + 2j) * x
|
|
|
|
transpose = api.linear_transpose(f, 1j)
|
|
|
|
actual, = transpose(3 + 4j)
|
|
|
|
expected = -5 + 10j
|
|
|
|
self.assertEqual(actual, expected)
|
2021-03-26 10:50:24 +00:00
|
|
|
|
|
|
|
def test_linear_transpose_zeros(self):
|
|
|
|
f = lambda x: x[0]
|
|
|
|
transpose = api.linear_transpose(f, [1., 2.])
|
|
|
|
actual, = transpose(3.)
|
|
|
|
expected = [3., 0.]
|
|
|
|
self.assertEqual(actual, expected)
|
2020-01-05 04:32:48 +01:00
|
|
|
|
2019-04-12 12:01:19 -07:00
|
|
|
def test_complex_grad_raises_error(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertRaises(TypeError, lambda: grad(lambda x: jnp.sin(x))(1 + 2j))
|
2019-04-12 12:01:19 -07:00
|
|
|
|
2019-04-13 13:22:45 -07:00
|
|
|
def test_holomorphic_grad(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
out = grad(lambda x: jnp.sin(x), holomorphic=True)(1 + 2j)
|
2019-04-13 13:22:45 -07:00
|
|
|
expected = 2.0327230070196656 - 3.0518977991518j
|
|
|
|
self.assertAllClose(out, expected, check_dtypes=False)
|
2019-04-12 12:01:19 -07:00
|
|
|
|
2019-04-13 13:22:45 -07:00
|
|
|
def test_nonholomorphic_grad(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
zs = 0.5j * np.arange(5) + np.arange(5)
|
2019-04-12 12:01:19 -07:00
|
|
|
|
2019-04-13 13:22:45 -07:00
|
|
|
def f(z):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sum(jnp.cos(jnp.abs(z)))
|
2019-04-13 13:22:45 -07:00
|
|
|
|
|
|
|
ans = grad(f)(zs)
|
2021-07-29 09:51:41 -04:00
|
|
|
expected = np.array([ 0. + 0.j,
|
|
|
|
-0.80430663 + 0.40215331j,
|
|
|
|
-0.70368982 + 0.35184491j,
|
|
|
|
0.1886467 - 0.09432335j,
|
|
|
|
0.86873727 - 0.43436864j])
|
2019-11-16 13:51:42 -05:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False,
|
|
|
|
atol=jtu.default_gradient_tolerance,
|
|
|
|
rtol=jtu.default_gradient_tolerance)
|
2019-04-12 12:01:19 -07:00
|
|
|
|
2019-04-13 13:22:45 -07:00
|
|
|
def test_complex_output_jacrev_raises_error(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertRaises(TypeError, lambda: jacrev(lambda x: jnp.sin(x))(1 + 2j))
|
2019-04-12 12:01:19 -07:00
|
|
|
|
2019-04-13 13:22:45 -07:00
|
|
|
def test_nonholomorphic_jacrev(self):
|
2019-04-12 12:01:19 -07:00
|
|
|
# code based on https://github.com/google/jax/issues/603
|
2020-05-05 14:59:16 -04:00
|
|
|
zs = 0.5j * np.arange(5) + np.arange(5)
|
2019-04-13 13:22:45 -07:00
|
|
|
|
2019-04-12 12:01:19 -07:00
|
|
|
def f(z):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.cos(jnp.linalg.norm(2 * z))
|
2019-04-13 13:22:45 -07:00
|
|
|
|
|
|
|
ans = jacrev(f)(zs)
|
|
|
|
expected = grad(f)(zs)
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(ans, expected)
|
2019-04-13 13:22:45 -07:00
|
|
|
|
2021-07-01 11:43:08 -04:00
|
|
|
def test_heterogeneous_jacfwd(self):
|
|
|
|
# See https://github.com/google/jax/issues/7157
|
|
|
|
# See https://github.com/google/jax/issues/7780
|
|
|
|
x = np.array([2.0], dtype=np.float16)
|
|
|
|
y = np.array([3.0], dtype=np.float32)
|
|
|
|
a = (x, y)
|
|
|
|
|
|
|
|
def f(tup):
|
|
|
|
jtu._check_dtypes_match(tup, a)
|
|
|
|
x, y = tup
|
|
|
|
return x, y, x + y
|
|
|
|
|
|
|
|
actual = jacfwd(f)(a)
|
|
|
|
desired = ((np.array(1., dtype=np.float16), np.array(0., dtype=np.float16)),
|
|
|
|
(np.array(0., dtype=np.float32), np.array(1., dtype=np.float32)),
|
|
|
|
(np.array(1., dtype=np.float32), np.array(1., dtype=np.float32)))
|
|
|
|
jtu._check_dtypes_match(actual, desired)
|
|
|
|
jtu.check_eq(actual, desired)
|
|
|
|
|
|
|
|
def test_heterogeneous_jacrev(self):
|
|
|
|
# See https://github.com/google/jax/issues/7157
|
|
|
|
# See https://github.com/google/jax/issues/7780
|
|
|
|
x = np.array([2.0], dtype=np.float16)
|
|
|
|
y = np.array([3.0], dtype=np.float32)
|
|
|
|
a = (x, y)
|
|
|
|
|
|
|
|
def f(tup):
|
|
|
|
jtu._check_dtypes_match(tup, a)
|
|
|
|
x, y = tup
|
|
|
|
return x, y, x + y
|
|
|
|
|
|
|
|
actual = jacrev(f)(a)
|
|
|
|
desired = ((np.array(1., dtype=np.float16), np.array(0., dtype=np.float32)),
|
|
|
|
(np.array(0., dtype=np.float16), np.array(1., dtype=np.float32)),
|
|
|
|
(np.array(1., dtype=np.float16), np.array(1., dtype=np.float32)))
|
|
|
|
jtu._check_dtypes_match(actual, desired)
|
|
|
|
jtu.check_eq(actual, desired)
|
|
|
|
|
|
|
|
def test_heterogeneous_grad(self):
|
|
|
|
# See https://github.com/google/jax/issues/7157
|
|
|
|
x = np.array(1.0+1j)
|
|
|
|
y = np.array(2.0)
|
|
|
|
a = (x, y)
|
|
|
|
|
|
|
|
def f(tup):
|
|
|
|
jtu._check_dtypes_match(tup, a)
|
|
|
|
x, y = tup
|
|
|
|
return jnp.square(jnp.abs(x)) + y
|
|
|
|
|
|
|
|
actual = grad(f)(a)
|
|
|
|
desired = (np.array(2 - 2j), np.array(1.))
|
|
|
|
jtu._check_dtypes_match(actual, desired)
|
|
|
|
jtu.check_eq(actual, desired)
|
|
|
|
|
2019-04-13 13:22:45 -07:00
|
|
|
def test_complex_input_jacfwd_raises_error(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertRaises(TypeError, lambda: jacfwd(lambda x: jnp.sin(x))(1 + 2j))
|
2019-04-12 12:01:19 -07:00
|
|
|
|
2019-05-03 08:14:03 -07:00
|
|
|
def test_legacy_devicearray_repr(self):
|
|
|
|
dx = device_put(3.)
|
|
|
|
str(dx.item()) # doesn't crash
|
|
|
|
|
2019-05-02 19:27:22 -07:00
|
|
|
def test_devicearray_repr(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
x = device_put(jnp.zeros(3))
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertIsInstance(x, device_array.DeviceArray)
|
2019-05-02 19:27:22 -07:00
|
|
|
repr(x) # doesn't crash
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = device_put(jnp.ones(3) + 1j * jnp.ones(3))
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertIsInstance(x, device_array.DeviceArray)
|
2019-05-02 19:27:22 -07:00
|
|
|
repr(x) # doesn't crash
|
|
|
|
|
2019-05-30 09:48:38 -04:00
|
|
|
def test_devicearray_delete(self):
|
|
|
|
x = device_put(1.)
|
|
|
|
x.delete()
|
2020-11-14 00:03:35 +01:00
|
|
|
self.assertRaisesRegex(RuntimeError, "DeviceArray has been deleted.",
|
|
|
|
lambda: repr(x))
|
2019-05-30 09:48:38 -04:00
|
|
|
|
2019-06-03 12:05:28 -04:00
|
|
|
def test_devicearray_block_until_ready(self):
|
|
|
|
x = device_put(1.)
|
2019-09-05 10:16:20 -04:00
|
|
|
y = x.block_until_ready()
|
|
|
|
# Tests mostly that block_until_ready() does not produce an error.
|
|
|
|
self.assertTrue(y is x)
|
2019-06-03 12:05:28 -04:00
|
|
|
|
2021-12-14 11:02:14 -08:00
|
|
|
def test_block_until_ready_function(self):
|
|
|
|
# Just tests that we don't error...
|
|
|
|
pytree = (device_put(1.), np.ones(3))
|
|
|
|
pytree = jax.block_until_ready(pytree)
|
|
|
|
self.assertAllClose(pytree[0], jnp.array(1.), check_dtypes=False)
|
|
|
|
self.assertAllClose(pytree[1], np.ones(3), check_dtypes=False)
|
|
|
|
|
2020-11-02 22:39:45 +01:00
|
|
|
def test_devicearray_weakref_friendly(self):
|
|
|
|
x = device_put(1.)
|
|
|
|
y = weakref.ref(x)
|
|
|
|
self.assertEqual(y(), 1.)
|
|
|
|
del x
|
|
|
|
self.assertIsNone(y())
|
|
|
|
|
2019-05-20 10:15:20 -07:00
|
|
|
def test_namedtuple_transparency(self):
|
|
|
|
# See https://github.com/google/jax/issues/446
|
|
|
|
Point = collections.namedtuple("Point", ["x", "y"])
|
|
|
|
|
|
|
|
def f(pt):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sqrt(pt.x ** 2 + pt.y ** 2)
|
2019-05-20 10:15:20 -07:00
|
|
|
|
|
|
|
pt = Point(1., 2.)
|
|
|
|
|
|
|
|
f(pt) # doesn't crash
|
|
|
|
g = api.grad(f)(pt)
|
|
|
|
self.assertIsInstance(g, Point)
|
|
|
|
|
|
|
|
f_jit = api.jit(f)
|
|
|
|
self.assertAllClose(f(pt), f_jit(pt), check_dtypes=False)
|
|
|
|
|
2019-06-03 07:22:32 -07:00
|
|
|
def test_namedtuple_subclass_transparency(self):
|
|
|
|
# See https://github.com/google/jax/issues/806
|
|
|
|
Point = collections.namedtuple("Point", ["x", "y"])
|
|
|
|
|
|
|
|
class ZeroPoint(Point):
|
|
|
|
def is_zero(self):
|
|
|
|
return (self.x == 0) and (self.y == 0)
|
|
|
|
|
|
|
|
pt = ZeroPoint(0., 0.)
|
|
|
|
|
|
|
|
def f(pt):
|
2020-05-05 14:59:16 -04:00
|
|
|
return 0. if pt.is_zero() else jnp.sqrt(pt.x ** 2 + pt.y ** 2)
|
2019-06-03 07:22:32 -07:00
|
|
|
|
|
|
|
f(pt) # doesn't crash
|
2020-06-02 19:25:47 -07:00
|
|
|
_ = api.grad(f)(pt)
|
2019-06-03 07:22:32 -07:00
|
|
|
self.assertIsInstance(pt, ZeroPoint)
|
|
|
|
|
2020-02-11 14:11:48 +00:00
|
|
|
@parameterized.parameters(1, 2, 3)
|
|
|
|
def test_shape_dtype_struct(self, i):
|
2020-05-05 14:59:16 -04:00
|
|
|
s = api.ShapeDtypeStruct(shape=(i, 2, 3), dtype=jnp.float32)
|
2020-02-11 14:11:48 +00:00
|
|
|
self.assertEqual(s.shape, (i, 2, 3))
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertEqual(s.dtype, jnp.float32)
|
2020-02-11 14:11:48 +00:00
|
|
|
self.assertEqual(s.ndim, 3)
|
|
|
|
self.assertEqual(s.size, i * 2 * 3)
|
|
|
|
self.assertLen(s, i)
|
|
|
|
for f in (str, repr):
|
|
|
|
self.assertEqual(
|
|
|
|
f(s), "ShapeDtypeStruct(shape=({}, 2, 3), dtype=float32)".format(i))
|
|
|
|
|
|
|
|
def test_shape_dtype_struct_scalar(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
s = api.ShapeDtypeStruct(shape=(), dtype=jnp.float32)
|
2020-02-11 14:11:48 +00:00
|
|
|
self.assertEmpty(s.shape)
|
|
|
|
self.assertEqual(s.size, 1)
|
|
|
|
self.assertEqual(s.ndim, 0)
|
|
|
|
with self.assertRaisesRegex(TypeError, "len[(][)] of unsized object"):
|
|
|
|
_ = len(s)
|
|
|
|
|
2021-10-12 12:01:02 -07:00
|
|
|
def test_shape_dtype_struct_hash(self):
|
|
|
|
s1 = api.ShapeDtypeStruct(shape=(2, 3), dtype=jnp.float32)
|
|
|
|
s2 = api.ShapeDtypeStruct(shape=(2, 3), dtype=jnp.float32)
|
|
|
|
s3 = api.ShapeDtypeStruct(shape=(2, 4), dtype=jnp.float32)
|
|
|
|
self.assertEqual(hash(s1), hash(s2))
|
|
|
|
self.assertNotEqual(hash(s1), hash(s3))
|
|
|
|
|
2019-06-01 09:34:33 -07:00
|
|
|
def test_eval_shape(self):
|
|
|
|
def fun(x, y):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.tanh(jnp.dot(x, y) + 3.)
|
2019-06-01 09:34:33 -07:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = jnp.ones((2, 3))
|
|
|
|
y = jnp.ones((3, 4))
|
2019-06-01 09:34:33 -07:00
|
|
|
out_shape = api.eval_shape(fun, x, y)
|
|
|
|
|
2019-08-21 20:36:47 -07:00
|
|
|
self.assertEqual(out_shape.shape, (2, 4))
|
2019-06-01 09:34:33 -07:00
|
|
|
|
|
|
|
def test_eval_shape_constants(self):
|
|
|
|
def fun():
|
2020-05-05 14:59:16 -04:00
|
|
|
x = jnp.ones((2, 3))
|
|
|
|
y = jnp.ones((3, 4))
|
|
|
|
return jnp.tanh(jnp.dot(x, y) + 3.)
|
2019-06-01 09:34:33 -07:00
|
|
|
|
|
|
|
out_shape = api.eval_shape(fun)
|
|
|
|
|
2019-08-21 20:36:47 -07:00
|
|
|
self.assertEqual(out_shape.shape, (2, 4))
|
2019-06-01 09:34:33 -07:00
|
|
|
|
|
|
|
def test_eval_shape_tuple_unpacking(self):
|
|
|
|
def fun(x, y):
|
|
|
|
a, b = x
|
|
|
|
return a + b + y
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = (jnp.ones(2), jnp.ones(2))
|
2019-06-01 09:34:33 -07:00
|
|
|
y = 3.
|
|
|
|
out_shape = api.eval_shape(fun, x, y)
|
|
|
|
|
2019-08-21 20:36:47 -07:00
|
|
|
self.assertEqual(out_shape.shape, (2,))
|
2019-06-01 09:34:33 -07:00
|
|
|
|
|
|
|
def test_eval_shape_tuple_itemgetting(self):
|
|
|
|
def fun(x, y):
|
|
|
|
return x[0] + x[1] + y
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = (jnp.ones(2), jnp.ones(2))
|
2019-06-01 09:34:33 -07:00
|
|
|
y = 3.
|
|
|
|
out_shape = api.eval_shape(fun, x, y)
|
|
|
|
|
2019-08-21 20:36:47 -07:00
|
|
|
self.assertEqual(out_shape.shape, (2,))
|
2019-06-01 09:34:33 -07:00
|
|
|
|
|
|
|
def test_eval_shape_output_dict(self):
|
2019-06-01 09:48:28 -07:00
|
|
|
def fun(x, y):
|
2019-06-01 09:34:33 -07:00
|
|
|
return {'hi': x[0] + x[1] + y}
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = (jnp.ones(2), jnp.ones(2))
|
2019-06-01 09:34:33 -07:00
|
|
|
y = 3.
|
2019-06-01 09:48:28 -07:00
|
|
|
out_shape = api.eval_shape(fun, x, y)
|
2020-05-05 14:59:16 -04:00
|
|
|
out_shape = tree_util.tree_map(np.shape, out_shape)
|
2019-06-01 09:34:33 -07:00
|
|
|
|
|
|
|
self.assertEqual(out_shape, {'hi': (2,)})
|
|
|
|
|
|
|
|
def test_eval_shape_shape_error(self):
|
|
|
|
def fun(x, y):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.tanh(jnp.dot(x, y) + 3.)
|
2019-06-01 09:34:33 -07:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = jnp.ones((3, 3))
|
|
|
|
y = jnp.ones((4, 4))
|
2019-06-01 09:34:33 -07:00
|
|
|
|
|
|
|
self.assertRaises(TypeError, lambda: api.eval_shape(fun, x, y))
|
|
|
|
|
2019-06-01 09:48:28 -07:00
|
|
|
def test_eval_shape_duck_typing(self):
|
|
|
|
def fun(A, b, x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.dot(A, x) + b
|
2019-06-01 09:48:28 -07:00
|
|
|
|
|
|
|
class MyArgArray(object):
|
|
|
|
def __init__(self, shape, dtype):
|
|
|
|
self.shape = shape
|
2021-06-22 15:58:29 -04:00
|
|
|
self.dtype = np.dtype(dtype)
|
2019-06-01 09:48:28 -07:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
A = MyArgArray((3, 4), jnp.float32)
|
|
|
|
b = MyArgArray((5,), jnp.float32)
|
|
|
|
x = MyArgArray((4, 5), jnp.float32)
|
2019-06-01 09:48:28 -07:00
|
|
|
out_shape = api.eval_shape(fun, A, b, x)
|
|
|
|
|
2019-08-21 20:36:47 -07:00
|
|
|
self.assertEqual(out_shape.shape, (3, 5))
|
2019-06-01 09:48:28 -07:00
|
|
|
|
2021-02-09 11:19:09 -08:00
|
|
|
def test_eval_shape_duck_typing2(self):
|
|
|
|
# https://github.com/google/jax/issues/5683
|
|
|
|
class EasyDict(dict):
|
|
|
|
def __init__(self, *args, **kwargs):
|
2021-03-25 19:00:29 -07:00
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.__dict__ = self
|
2021-02-09 11:19:09 -08:00
|
|
|
|
|
|
|
x = EasyDict(shape=(3,), dtype=np.dtype('float32'))
|
|
|
|
out_shape = api.eval_shape(lambda x: x, x) # doesn't crash
|
|
|
|
self.assertEqual(out_shape.shape, (3,))
|
|
|
|
|
2021-03-09 13:48:15 -08:00
|
|
|
def test_eval_shape_names(self):
|
|
|
|
def fun(x, y):
|
|
|
|
return lax.psum(x, 'i') + y
|
|
|
|
|
|
|
|
class MyArgArray(object):
|
|
|
|
def __init__(self, shape, dtype, named_shape):
|
|
|
|
self.shape = shape
|
2021-06-22 15:58:29 -04:00
|
|
|
self.dtype = jnp.dtype(dtype)
|
2021-03-09 13:48:15 -08:00
|
|
|
self.named_shape = named_shape
|
|
|
|
|
|
|
|
x = MyArgArray((3, 2), jnp.float32, {'i': 10})
|
|
|
|
y = MyArgArray((3, 2), jnp.float32, {'j': 5})
|
|
|
|
with core.extend_axis_env('i', 10, None):
|
|
|
|
with core.extend_axis_env('j', 5, None):
|
|
|
|
out_shape = api.eval_shape(fun, x, y)
|
|
|
|
|
|
|
|
self.assertEqual(out_shape.named_shape, {'j': 5})
|
|
|
|
|
2019-06-18 09:18:44 -07:00
|
|
|
def test_issue_871(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
T = jnp.array([[1., 2.], [3., 4.], [5., 6.]])
|
|
|
|
x = jnp.array([1, 2, 3])
|
2020-10-16 20:48:57 -07:00
|
|
|
msg = ("linearized function called on tangent values inconsistent with "
|
|
|
|
"the original primal values")
|
2019-06-18 09:18:44 -07:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
y, f_jvp = api.linearize(jnp.sum, x)
|
2020-10-16 20:48:57 -07:00
|
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
|
|
f_jvp(T)
|
2019-06-18 09:18:44 -07:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
y, f_jvp = api.linearize(api.jit(jnp.sum), x)
|
2020-10-16 20:48:57 -07:00
|
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
|
|
f_jvp(T)
|
2019-06-18 09:18:44 -07:00
|
|
|
|
2019-06-24 10:45:42 -04:00
|
|
|
def test_grad_of_int_errors(self):
|
2020-09-24 16:29:57 +01:00
|
|
|
# Errors without allow_int=True
|
2019-06-24 10:45:42 -04:00
|
|
|
dfn = grad(lambda x: x ** 2)
|
2019-11-28 08:48:10 +01:00
|
|
|
self.assertRaisesRegex(
|
2019-11-14 16:00:55 -05:00
|
|
|
TypeError,
|
2020-05-19 15:17:03 -07:00
|
|
|
(r"grad requires real- or complex-valued inputs \(input dtype that is a "
|
2021-07-01 11:43:08 -04:00
|
|
|
r"sub-dtype of np.inexact\), but got int.*."),
|
2020-05-19 15:17:03 -07:00
|
|
|
lambda: dfn(3))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_jvp_of_int_identity(self):
|
|
|
|
primals = (1,)
|
|
|
|
tangents = (np.zeros(shape=(), dtype=float0),)
|
|
|
|
|
|
|
|
_, out = api.jvp(lambda x: x, primals, tangents)
|
|
|
|
self.assertEqual(out, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_jvp_of_int_add(self):
|
|
|
|
primals = (2,)
|
|
|
|
tangents = (np.zeros(shape=(), dtype=float0),)
|
|
|
|
|
|
|
|
_, out_tangent = api.jvp(lambda x: x+1, primals, tangents)
|
|
|
|
self.assertEqual(out_tangent, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_jit_jvp_of_int(self):
|
|
|
|
primals = (2,)
|
|
|
|
tangents = (np.zeros(shape=(), dtype=float0),)
|
|
|
|
|
|
|
|
_, out_tangent = api.jvp(jax.jit(lambda x: x+1), primals, tangents)
|
|
|
|
self.assertEqual(out_tangent, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_vjp_of_int_index(self):
|
|
|
|
primal, fn_vjp = api.vjp(lambda x, i: x[i], np.ones(2)*2, 1)
|
|
|
|
tangent_x, tangent_i = fn_vjp(1.)
|
|
|
|
self.assertEqual(primal, 2.)
|
|
|
|
self.assertAllClose(tangent_x, jnp.array([0., 1.]))
|
|
|
|
self.assertEqual(tangent_i, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_vjp_of_int_shapes(self):
|
|
|
|
out, fn_vjp = api.vjp(lambda x: lax.reshape(x, (2, 2)), np.ones((4, 1),
|
|
|
|
dtype=int))
|
|
|
|
tangent, = fn_vjp(out)
|
|
|
|
self.assertArraysEqual(tangent, np.zeros(shape=(4, 1), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_jit_vjp_of_int(self):
|
|
|
|
primal, fn_vjp = api.vjp(lambda x, y: x+y, 2, 1)
|
|
|
|
tangent_x, tangent_i = jax.jit(fn_vjp)(1)
|
|
|
|
self.assertEqual(primal, 3)
|
|
|
|
self.assertEqual(tangent_x, np.zeros(shape=(), dtype=float0))
|
|
|
|
self.assertEqual(tangent_i, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_vjp_of_int_fulllike(self):
|
|
|
|
# Regression test for tangent and cotangent mismatch in convert_element_type
|
|
|
|
# transpose rule wrt a ConstVar
|
|
|
|
f = lax.full_like
|
|
|
|
out, vjp = api.vjp(f, np.zeros((2, 2)), 1)
|
|
|
|
self.assertAllClose(out, jnp.ones((2, 2)))
|
|
|
|
tangent_x, tangent_y = vjp(out)
|
|
|
|
self.assertAllClose(tangent_x, jnp.zeros((2, 2)))
|
|
|
|
self.assertEqual(tangent_y, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_grad_of_int(self):
|
|
|
|
# Need real-valued output, but testing integer input.
|
|
|
|
out = api.grad(lambda x: x+0., allow_int=True)(1)
|
|
|
|
self.assertEqual(out, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_grad_of_bool(self):
|
|
|
|
def cond(pred):
|
|
|
|
return lax.cond(pred, lambda _: 1., lambda _: 2., 1.)
|
|
|
|
value, grd = api.value_and_grad(cond, allow_int=True)(True)
|
|
|
|
self.assertEqual(value, 1.)
|
|
|
|
self.assertEqual(grd, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_grad_of_int_index(self):
|
|
|
|
grad_x, grad_i = api.grad(lambda x, i: x[i], argnums=(0, 1),
|
|
|
|
allow_int=True)(np.ones(2), 1)
|
|
|
|
self.assertAllClose(grad_x, jnp.array([0., 1.]))
|
|
|
|
self.assertEqual(grad_i, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_jit_grad_of_int(self):
|
|
|
|
grad_f = api.grad(lambda x, i: x[i], argnums=(0, 1), allow_int=True)
|
|
|
|
grad_x, grad_i = jax.jit(grad_f)(np.ones(2), 1)
|
|
|
|
self.assertAllClose(grad_x, jnp.array([0., 1.]))
|
|
|
|
self.assertEqual(grad_i, np.zeros(shape=(), dtype=float0))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-09-24 16:29:57 +01:00
|
|
|
def test_float0_reshape(self):
|
|
|
|
# dtype-agnostic operations are supported
|
|
|
|
float0_array = jax.grad(lambda x: jnp.sum(x+0.),
|
|
|
|
allow_int=True)(np.ones((2, 4), dtype=int))
|
|
|
|
|
|
|
|
self.assertArraysEqual(float0_array.reshape((4, 2)),
|
|
|
|
np.zeros((4, 2), dtype=float0))
|
|
|
|
self.assertArraysEqual(float0_array.transpose(),
|
|
|
|
np.zeros((4, 2), dtype=float0))
|
|
|
|
|
|
|
|
def test_float0_error(self):
|
|
|
|
# float0 is incompatible with other dtypes
|
|
|
|
float0_array = jax.grad(lambda x: x+0., allow_int=True)(1)
|
|
|
|
error_text = "float0s do not support any operations by design"
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(TypeError, error_text):
|
|
|
|
# dispatch via DeviceArray
|
|
|
|
_ = float0_array + jnp.zeros(())
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(TypeError, error_text):
|
|
|
|
# dispatch via lax
|
|
|
|
_ = lax.add(float0_array, jnp.zeros(()))
|
|
|
|
|
2020-05-19 15:17:03 -07:00
|
|
|
def test_grad_complex_result_errors(self):
|
|
|
|
dfn = grad(lambda x: x ** 2 + 1j)
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
(r"grad requires real-valued outputs \(output dtype that is a "
|
|
|
|
r"sub-dtype of np.floating\), but got complex.*"),
|
|
|
|
lambda: dfn(3.))
|
|
|
|
|
|
|
|
def test_holomorphic_grad_of_float_errors(self):
|
|
|
|
dfn = grad(lambda x: x ** 2, holomorphic=True)
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
(r"grad with holomorphic=True requires inputs with complex dtype, "
|
|
|
|
r"but got float.*"),
|
|
|
|
lambda: dfn(3.))
|
|
|
|
|
|
|
|
def test_holomorphic_jacrev_of_float_errors(self):
|
|
|
|
dfn = jacrev(lambda x: x ** 2, holomorphic=True)
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
(r"jacrev with holomorphic=True requires inputs with complex dtype, "
|
|
|
|
r"but got float.*"),
|
|
|
|
lambda: dfn(3.))
|
|
|
|
|
|
|
|
def test_holomorphic_jacfwd_of_float_errors(self):
|
|
|
|
dfn = jacfwd(lambda x: x ** 2, holomorphic=True)
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
(r"jacfwd with holomorphic=True requires inputs with complex dtype, "
|
|
|
|
r"but got float.*"),
|
|
|
|
lambda: dfn(3.))
|
|
|
|
|
|
|
|
def test_jacfwd_of_complex_errors(self):
|
|
|
|
dfn = jacfwd(lambda x: x ** 2)
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
(r"jacfwd requires real-valued inputs \(input dtype that is a "
|
|
|
|
r"sub-dtype of np.floating\), but got complex.*"),
|
|
|
|
lambda: dfn(3. + 1j))
|
2019-06-24 10:45:42 -04:00
|
|
|
|
enable jit+pmap by merging pxla.py and xla.py
This change is essentially de-duplicating the XLA lowering logic between
xla.py and pxla.py. Only the latter was capable of handling collectives
(aka pmap primitives), which meant that these didn't work:
1. some compositions of jit and pmap, like jit-of-pmap
2. collectives inside initial-style control flow like scan
3. jax.xla_computation on a function involving collectives
By merging the logic into xla.py, now all the lowering machinery works
with everything. Woo!
The pxla.py file still exists and contains mostly dynamic/runtime
components for pmap and functions used only by pmap and collectives
translations. In particular, pxla.py has
* the pmap impl, particularly the dispatching logic for top-level pmaps,
including argument sharding and lazy sharded result persistence
* the ShardedDeviceArray / ShardedDeviceTuple classes
* the dynamic (trace-time) axis environment data structures and logic
and the special axis_index primitive
* the split-axis transformation for soft_pmap
* the PmapPrimitive (just a tagged version of Primitive)
* the static sharding/unsharding logic for pmap-inside-jit/pmap
These things moved over to xla.py
* the logic for lowering pmap primitives, especially the static axis
environment used during xla lowering
This change refactors the translation rule tables a bit. Instead of just
having one table, there are now four, and they contain rules with
slightly different type signatures:
* the `translations` table has rules with the same signatures as always,
i.e. `CompBuilder -> [XlaOperands] -> ParamsDict -> XlaOperandOut`
* the `backend_specific_translations` table is keyed by platform name
strings and has dict values that each have the same type as `translations`
* the `parallel_translations` table is used for primitives modeling
parallel collectives, and so it has rules with signature
`CompBuilder -> [XlaOperands] -> ReplicaGroups -> ParamsDict -> XlaOpOut`
* the `initial_style_translations` table is for the initial-style
control flow primitives (like `scan`), for which the translation rules
themselves lower jaxprs to XLA computations and thus require the static axis
env to be passed in; the rules there have signature
`CompBuilder -> AxisEnv -> [XlaOperands] -> ParamsDict -> XlaOpOut`
* the `call_translations` table is sued for `xla_call` and `xla_pmap`,
i.e. the primitives underlying `jit` and `pmap` respectively, and has
rules with signature
`CompBuilder -> Jaxpr -> AxisEnv -> [XlaOp] -> [XlaOp] -> ParamsDict -> XlaOp`
Having these as separate tables is an uninteresting implementation
detail. The lowering function `_jaxpr_computation` just does a case analysis
on whether the primitive being translated has an entry in any table
(where the `backend_specific_translations` table must be checked before
the `translations` table, since some primitives may be entered in both).
This change fixes #804 also addresses #852, in that the lax control flow
impls for those primitives are now based on Python-level jaxpr
interpreters rather than XLA compilation, but we should probably wait to
close the latter issue until we benchmark and improve things more. This
change at least seems not to be a performance regression: on my machine
the lax control flow tests go from running in ~20s to running in ~14s.
This change also adds a docstring for `jax.xla_computation` and some
basic tests.
2019-07-02 13:17:31 -07:00
|
|
|
def test_xla_computation(self):
|
|
|
|
# these tests basically check the examples in the xla_computation docstring
|
|
|
|
|
2020-05-08 14:00:34 -07:00
|
|
|
def e(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(jnp.cos(x))
|
2020-05-08 14:00:34 -07:00
|
|
|
c = api.xla_computation(e)(2.)
|
2020-05-11 17:43:55 -04:00
|
|
|
self.assertIn('cosine', c.as_hlo_text())
|
|
|
|
self.assertIn('sine', c.as_hlo_text())
|
enable jit+pmap by merging pxla.py and xla.py
This change is essentially de-duplicating the XLA lowering logic between
xla.py and pxla.py. Only the latter was capable of handling collectives
(aka pmap primitives), which meant that these didn't work:
1. some compositions of jit and pmap, like jit-of-pmap
2. collectives inside initial-style control flow like scan
3. jax.xla_computation on a function involving collectives
By merging the logic into xla.py, now all the lowering machinery works
with everything. Woo!
The pxla.py file still exists and contains mostly dynamic/runtime
components for pmap and functions used only by pmap and collectives
translations. In particular, pxla.py has
* the pmap impl, particularly the dispatching logic for top-level pmaps,
including argument sharding and lazy sharded result persistence
* the ShardedDeviceArray / ShardedDeviceTuple classes
* the dynamic (trace-time) axis environment data structures and logic
and the special axis_index primitive
* the split-axis transformation for soft_pmap
* the PmapPrimitive (just a tagged version of Primitive)
* the static sharding/unsharding logic for pmap-inside-jit/pmap
These things moved over to xla.py
* the logic for lowering pmap primitives, especially the static axis
environment used during xla lowering
This change refactors the translation rule tables a bit. Instead of just
having one table, there are now four, and they contain rules with
slightly different type signatures:
* the `translations` table has rules with the same signatures as always,
i.e. `CompBuilder -> [XlaOperands] -> ParamsDict -> XlaOperandOut`
* the `backend_specific_translations` table is keyed by platform name
strings and has dict values that each have the same type as `translations`
* the `parallel_translations` table is used for primitives modeling
parallel collectives, and so it has rules with signature
`CompBuilder -> [XlaOperands] -> ReplicaGroups -> ParamsDict -> XlaOpOut`
* the `initial_style_translations` table is for the initial-style
control flow primitives (like `scan`), for which the translation rules
themselves lower jaxprs to XLA computations and thus require the static axis
env to be passed in; the rules there have signature
`CompBuilder -> AxisEnv -> [XlaOperands] -> ParamsDict -> XlaOpOut`
* the `call_translations` table is sued for `xla_call` and `xla_pmap`,
i.e. the primitives underlying `jit` and `pmap` respectively, and has
rules with signature
`CompBuilder -> Jaxpr -> AxisEnv -> [XlaOp] -> [XlaOp] -> ParamsDict -> XlaOp`
Having these as separate tables is an uninteresting implementation
detail. The lowering function `_jaxpr_computation` just does a case analysis
on whether the primitive being translated has an entry in any table
(where the `backend_specific_translations` table must be checked before
the `translations` table, since some primitives may be entered in both).
This change fixes #804 also addresses #852, in that the lax control flow
impls for those primitives are now based on Python-level jaxpr
interpreters rather than XLA compilation, but we should probably wait to
close the latter issue until we benchmark and improve things more. This
change at least seems not to be a performance regression: on my machine
the lax control flow tests go from running in ~20s to running in ~14s.
This change also adds a docstring for `jax.xla_computation` and some
basic tests.
2019-07-02 13:17:31 -07:00
|
|
|
|
|
|
|
def f(x):
|
|
|
|
return x - lax.psum(x, 'i')
|
|
|
|
axis_env = [('i', 4)]
|
|
|
|
c = api.xla_computation(f, axis_env=axis_env)(2)
|
2020-05-11 17:43:55 -04:00
|
|
|
self.assertIn('all-reduce', c.as_hlo_text())
|
|
|
|
self.assertIn('replica_groups={{0,1,2,3}}', c.as_hlo_text())
|
enable jit+pmap by merging pxla.py and xla.py
This change is essentially de-duplicating the XLA lowering logic between
xla.py and pxla.py. Only the latter was capable of handling collectives
(aka pmap primitives), which meant that these didn't work:
1. some compositions of jit and pmap, like jit-of-pmap
2. collectives inside initial-style control flow like scan
3. jax.xla_computation on a function involving collectives
By merging the logic into xla.py, now all the lowering machinery works
with everything. Woo!
The pxla.py file still exists and contains mostly dynamic/runtime
components for pmap and functions used only by pmap and collectives
translations. In particular, pxla.py has
* the pmap impl, particularly the dispatching logic for top-level pmaps,
including argument sharding and lazy sharded result persistence
* the ShardedDeviceArray / ShardedDeviceTuple classes
* the dynamic (trace-time) axis environment data structures and logic
and the special axis_index primitive
* the split-axis transformation for soft_pmap
* the PmapPrimitive (just a tagged version of Primitive)
* the static sharding/unsharding logic for pmap-inside-jit/pmap
These things moved over to xla.py
* the logic for lowering pmap primitives, especially the static axis
environment used during xla lowering
This change refactors the translation rule tables a bit. Instead of just
having one table, there are now four, and they contain rules with
slightly different type signatures:
* the `translations` table has rules with the same signatures as always,
i.e. `CompBuilder -> [XlaOperands] -> ParamsDict -> XlaOperandOut`
* the `backend_specific_translations` table is keyed by platform name
strings and has dict values that each have the same type as `translations`
* the `parallel_translations` table is used for primitives modeling
parallel collectives, and so it has rules with signature
`CompBuilder -> [XlaOperands] -> ReplicaGroups -> ParamsDict -> XlaOpOut`
* the `initial_style_translations` table is for the initial-style
control flow primitives (like `scan`), for which the translation rules
themselves lower jaxprs to XLA computations and thus require the static axis
env to be passed in; the rules there have signature
`CompBuilder -> AxisEnv -> [XlaOperands] -> ParamsDict -> XlaOpOut`
* the `call_translations` table is sued for `xla_call` and `xla_pmap`,
i.e. the primitives underlying `jit` and `pmap` respectively, and has
rules with signature
`CompBuilder -> Jaxpr -> AxisEnv -> [XlaOp] -> [XlaOp] -> ParamsDict -> XlaOp`
Having these as separate tables is an uninteresting implementation
detail. The lowering function `_jaxpr_computation` just does a case analysis
on whether the primitive being translated has an entry in any table
(where the `backend_specific_translations` table must be checked before
the `translations` table, since some primitives may be entered in both).
This change fixes #804 also addresses #852, in that the lax control flow
impls for those primitives are now based on Python-level jaxpr
interpreters rather than XLA compilation, but we should probably wait to
close the latter issue until we benchmark and improve things more. This
change at least seems not to be a performance regression: on my machine
the lax control flow tests go from running in ~20s to running in ~14s.
This change also adds a docstring for `jax.xla_computation` and some
basic tests.
2019-07-02 13:17:31 -07:00
|
|
|
|
|
|
|
def g(x):
|
|
|
|
rowsum = lax.psum(x, 'i')
|
|
|
|
colsum = lax.psum(x, 'j')
|
|
|
|
allsum = lax.psum(x, ('i', 'j'))
|
|
|
|
return rowsum, colsum, allsum
|
|
|
|
axis_env = [('i', 4), ('j', 2)]
|
|
|
|
c = api.xla_computation(g, axis_env=axis_env)(5.)
|
2020-05-11 17:43:55 -04:00
|
|
|
self.assertIn('all-reduce', c.as_hlo_text())
|
|
|
|
self.assertIn('replica_groups={{0,2,4,6},{1,3,5,7}}', c.as_hlo_text())
|
|
|
|
self.assertIn('replica_groups={{0,1},{2,3},{4,5},{6,7}}', c.as_hlo_text())
|
|
|
|
self.assertIn('replica_groups={{0,1,2,3,4,5,6,7}}', c.as_hlo_text())
|
enable jit+pmap by merging pxla.py and xla.py
This change is essentially de-duplicating the XLA lowering logic between
xla.py and pxla.py. Only the latter was capable of handling collectives
(aka pmap primitives), which meant that these didn't work:
1. some compositions of jit and pmap, like jit-of-pmap
2. collectives inside initial-style control flow like scan
3. jax.xla_computation on a function involving collectives
By merging the logic into xla.py, now all the lowering machinery works
with everything. Woo!
The pxla.py file still exists and contains mostly dynamic/runtime
components for pmap and functions used only by pmap and collectives
translations. In particular, pxla.py has
* the pmap impl, particularly the dispatching logic for top-level pmaps,
including argument sharding and lazy sharded result persistence
* the ShardedDeviceArray / ShardedDeviceTuple classes
* the dynamic (trace-time) axis environment data structures and logic
and the special axis_index primitive
* the split-axis transformation for soft_pmap
* the PmapPrimitive (just a tagged version of Primitive)
* the static sharding/unsharding logic for pmap-inside-jit/pmap
These things moved over to xla.py
* the logic for lowering pmap primitives, especially the static axis
environment used during xla lowering
This change refactors the translation rule tables a bit. Instead of just
having one table, there are now four, and they contain rules with
slightly different type signatures:
* the `translations` table has rules with the same signatures as always,
i.e. `CompBuilder -> [XlaOperands] -> ParamsDict -> XlaOperandOut`
* the `backend_specific_translations` table is keyed by platform name
strings and has dict values that each have the same type as `translations`
* the `parallel_translations` table is used for primitives modeling
parallel collectives, and so it has rules with signature
`CompBuilder -> [XlaOperands] -> ReplicaGroups -> ParamsDict -> XlaOpOut`
* the `initial_style_translations` table is for the initial-style
control flow primitives (like `scan`), for which the translation rules
themselves lower jaxprs to XLA computations and thus require the static axis
env to be passed in; the rules there have signature
`CompBuilder -> AxisEnv -> [XlaOperands] -> ParamsDict -> XlaOpOut`
* the `call_translations` table is sued for `xla_call` and `xla_pmap`,
i.e. the primitives underlying `jit` and `pmap` respectively, and has
rules with signature
`CompBuilder -> Jaxpr -> AxisEnv -> [XlaOp] -> [XlaOp] -> ParamsDict -> XlaOp`
Having these as separate tables is an uninteresting implementation
detail. The lowering function `_jaxpr_computation` just does a case analysis
on whether the primitive being translated has an entry in any table
(where the `backend_specific_translations` table must be checked before
the `translations` table, since some primitives may be entered in both).
This change fixes #804 also addresses #852, in that the lax control flow
impls for those primitives are now based on Python-level jaxpr
interpreters rather than XLA compilation, but we should probably wait to
close the latter issue until we benchmark and improve things more. This
change at least seems not to be a performance regression: on my machine
the lax control flow tests go from running in ~20s to running in ~14s.
This change also adds a docstring for `jax.xla_computation` and some
basic tests.
2019-07-02 13:17:31 -07:00
|
|
|
|
2020-05-08 14:00:34 -07:00
|
|
|
def h(x):
|
|
|
|
rowsum = lax.psum(x, 'i', axis_index_groups=[[0, 1], [2, 3]])
|
|
|
|
colsum = lax.psum(x, 'j')
|
|
|
|
return rowsum, colsum
|
|
|
|
axis_env = [('i', 4), ('j', 2)]
|
|
|
|
c = api.xla_computation(h, axis_env=axis_env)(5.)
|
2020-05-11 17:43:55 -04:00
|
|
|
self.assertIn('all-reduce', c.as_hlo_text())
|
|
|
|
self.assertIn('replica_groups={{0,2},{4,6},{1,3},{5,7}}', c.as_hlo_text())
|
|
|
|
self.assertIn('replica_groups={{0,1},{2,3},{4,5},{6,7}}', c.as_hlo_text())
|
2020-05-08 14:00:34 -07:00
|
|
|
|
2019-09-27 17:37:44 -07:00
|
|
|
def test_xla_computation_args(self):
|
|
|
|
def foo(x, y, z):
|
|
|
|
return x + y + z
|
|
|
|
|
|
|
|
c = api.xla_computation(foo)(1., 2., 3.)
|
2020-05-11 17:43:55 -04:00
|
|
|
self.assertEqual(len(c.program_shape().parameter_shapes()), 3)
|
2019-09-27 17:37:44 -07:00
|
|
|
|
|
|
|
c = api.xla_computation(foo, tuple_args=True)(1., 2., 3.)
|
2020-05-11 17:43:55 -04:00
|
|
|
param_shapes = c.program_shape().parameter_shapes()
|
2019-09-27 17:37:44 -07:00
|
|
|
self.assertEqual(len(param_shapes), 1)
|
|
|
|
self.assertEqual(param_shapes[0].xla_element_type(),
|
2021-09-23 06:33:25 -07:00
|
|
|
xla_client.PrimitiveType.TUPLE)
|
2019-09-27 17:37:44 -07:00
|
|
|
|
2020-03-30 11:31:29 -07:00
|
|
|
def test_xla_computation_duck_typing(self):
|
|
|
|
def foo(x, y, z):
|
|
|
|
return x + y + z
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = jax.ShapeDtypeStruct((), np.float32)
|
|
|
|
y = jax.ShapeDtypeStruct((), np.float32)
|
|
|
|
z = jax.ShapeDtypeStruct((), np.float32)
|
2020-03-30 11:31:29 -07:00
|
|
|
|
|
|
|
c = api.xla_computation(foo)(x, y, z)
|
2020-05-11 17:43:55 -04:00
|
|
|
self.assertEqual(len(c.program_shape().parameter_shapes()), 3)
|
2020-03-30 11:31:29 -07:00
|
|
|
|
|
|
|
c = api.xla_computation(foo, tuple_args=True)(1., 2., 3.)
|
2020-05-11 17:43:55 -04:00
|
|
|
param_shapes = c.program_shape().parameter_shapes()
|
2020-03-30 11:31:29 -07:00
|
|
|
self.assertEqual(len(param_shapes), 1)
|
|
|
|
self.assertEqual(param_shapes[0].xla_element_type(),
|
2021-09-23 06:33:25 -07:00
|
|
|
xla_client.PrimitiveType.TUPLE)
|
2020-03-30 11:31:29 -07:00
|
|
|
|
2021-12-10 13:01:51 -08:00
|
|
|
def test_compiler_ir(self):
|
|
|
|
# TODO(phawkins): merge these tests with the `xla_computation` tests.
|
|
|
|
def e(x):
|
|
|
|
return jnp.sin(jnp.cos(x))
|
|
|
|
hlo = api.jit(e).lower(2.).compiler_ir(dialect="hlo").as_hlo_text()
|
|
|
|
self.assertIn(' cosine', hlo)
|
|
|
|
self.assertIn(' sine', hlo)
|
[JAX] Change signature of .mhlo() method on compiler IR objects to return an ir.Module object instead of its string representation.
It isn't free to pretty-print IR, so it's best to avoid it unless necessary. In addition, by returning an IR object, the user is now free to, say, print it with different options.
For example, one can now write things like:
```
In [1]: import numpy as np, jax, jax.numpy as jnp
In [2]: m = jax.jit(lambda x: x + jnp.array(np.arange(1000))).lower(7.).compiler_ir(dialect='mhlo')
In [3]: m.operation.print(large_elements_limit=10)
module @jit__lambda_.4 {
func public @main(%arg0: tensor<f32>) -> tensor<1000xf32> {
%0 = mhlo.constant opaque<"_", "0xDEADBEEF"> : tensor<1000xi32>
%1 = "mhlo.convert"(%0) : (tensor<1000xi32>) -> tensor<1000xf32>
%2 = "mhlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor<f32>) -> tensor<1000xf32>
%3 = mhlo.add %2, %1 : tensor<1000xf32>
return %3 : tensor<1000xf32>
}
}
```
Fixes https://github.com/google/jax/issues/9226
PiperOrigin-RevId: 422855649
2022-01-19 11:01:03 -08:00
|
|
|
mhlo = str(api.jit(e).lower(2.).compiler_ir(dialect="mhlo"))
|
2021-12-10 13:01:51 -08:00
|
|
|
self.assertIn('mhlo.cosine', mhlo)
|
|
|
|
self.assertIn('mhlo.sine', mhlo)
|
|
|
|
|
2019-07-09 15:12:02 -07:00
|
|
|
def test_staging_out_multi_replica(self):
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return api.pmap(jnp.mean)(x)
|
2019-07-09 15:12:02 -07:00
|
|
|
xla_comp = api.xla_computation(f)
|
2020-05-11 17:43:55 -04:00
|
|
|
xla_comp(jnp.arange(8)).as_hlo_text() # doesn't crash
|
2019-07-09 15:12:02 -07:00
|
|
|
|
2019-12-04 09:50:29 -08:00
|
|
|
def test_xla_computation_instantiate_constant_outputs(self):
|
|
|
|
def f():
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.zeros((3, 4))
|
2019-12-04 09:50:29 -08:00
|
|
|
|
2021-03-29 13:58:04 -07:00
|
|
|
xla_comp = api.xla_computation(f)()
|
2020-05-11 17:43:55 -04:00
|
|
|
out_shape, = xla_comp.program_shape().result_shape().tuple_shapes()
|
2019-12-04 09:50:29 -08:00
|
|
|
self.assertEqual(out_shape.dimensions(), (3, 4))
|
|
|
|
|
2020-04-23 18:07:51 -07:00
|
|
|
def test_xla_computation_static_argnums(self):
|
|
|
|
def f(x, y):
|
|
|
|
return x + y
|
|
|
|
|
|
|
|
xla_comp = api.xla_computation(f, static_argnums=(1,))(2, 3)
|
2020-08-01 00:15:51 +02:00
|
|
|
hlo_text = xla_comp.as_hlo_text()
|
|
|
|
self.assertIn("constant(3)", hlo_text)
|
|
|
|
# The static arguments should be removed from the function being compiled,
|
|
|
|
# thus the function should have only a single argument.
|
|
|
|
self.assertIn("parameter.1", hlo_text)
|
|
|
|
self.assertNotIn("parameter.2", hlo_text)
|
2020-04-23 18:07:51 -07:00
|
|
|
|
2020-07-23 19:38:56 -07:00
|
|
|
def test_xla_computation_return_shape(self):
|
|
|
|
_, shape_tree = api.xla_computation(lambda x: (x + 1, jnp.zeros(2, jnp.float32)),
|
|
|
|
return_shape=True)(np.int32(1))
|
|
|
|
expected = (api.ShapeDtypeStruct(shape=(), dtype=jnp.int32),
|
|
|
|
api.ShapeDtypeStruct(shape=(2,), dtype=jnp.float32))
|
|
|
|
self.assertEqual(shape_tree, expected)
|
|
|
|
|
2020-08-14 13:05:58 -07:00
|
|
|
def test_xla_computation_partitioned(self):
|
|
|
|
def f(x, y):
|
|
|
|
return jnp.dot(x, y) + 1
|
|
|
|
|
|
|
|
x = jax.ShapeDtypeStruct((8, 8), np.float32)
|
|
|
|
y = jax.ShapeDtypeStruct((8, 16), np.float32)
|
|
|
|
xla_comp = api.xla_computation(f, in_parts=(P(2, 2), None),
|
|
|
|
out_parts=P(4, 1))(x, y)
|
|
|
|
hlo_text = xla_comp.as_hlo_text()
|
|
|
|
self.assertIn('sharding={devices=[2,2]0,1,2,3}', hlo_text)
|
|
|
|
self.assertIn('sharding={replicated}', hlo_text)
|
|
|
|
self.assertIn('sharding={{devices=[4,1]0,1,2,3}}', hlo_text)
|
|
|
|
|
|
|
|
def test_xla_computation_replicated_and_partitioned(self):
|
|
|
|
def f(x, y):
|
|
|
|
return jnp.dot(x, y), lax.psum(x, 'i')
|
|
|
|
|
|
|
|
x = jax.ShapeDtypeStruct((8, 8), np.float32)
|
|
|
|
y = jax.ShapeDtypeStruct((8, 16), np.float32)
|
|
|
|
axis_env = [('i', 4)]
|
|
|
|
xla_comp = api.xla_computation(f, axis_env=axis_env,
|
|
|
|
in_parts=(P(2, 2), None),
|
|
|
|
out_parts=(P(4, 1), None))(x, y)
|
|
|
|
hlo_text = xla_comp.as_hlo_text()
|
|
|
|
self.assertIn('all-reduce', hlo_text)
|
|
|
|
self.assertIn('replica_groups={{0,1,2,3}}', hlo_text)
|
|
|
|
self.assertIn('sharding={devices=[2,2]0,1,2,3}', hlo_text)
|
|
|
|
self.assertIn('sharding={replicated}', hlo_text)
|
|
|
|
self.assertIn('sharding={{devices=[4,1]0,1,2,3}, {replicated}}', hlo_text)
|
|
|
|
|
2020-08-16 20:00:40 -07:00
|
|
|
def test_xla_computation_psum_constant(self):
|
|
|
|
f = lambda: jax.lax.psum(1, "i")
|
|
|
|
api.xla_computation(f, axis_env=[("i", 2)])() # doesn't crash
|
|
|
|
|
2020-09-18 19:54:37 -07:00
|
|
|
@jtu.skip_on_devices("cpu", "gpu")
|
2021-03-02 19:39:01 -08:00
|
|
|
@jtu.ignore_warning(message="Some donated buffers were not usable")
|
2020-09-18 19:54:37 -07:00
|
|
|
def test_xla_computation_donate_argnums(self):
|
|
|
|
api.xla_computation(lambda x: None, donate_argnums=(0,))(3) # doesn't crash
|
|
|
|
|
2021-07-21 21:14:40 -07:00
|
|
|
def test_xla_computation_lower_fun_axis_env(self):
|
|
|
|
axis_name = 'i'
|
|
|
|
def fn(x):
|
|
|
|
y = lax.all_gather(
|
|
|
|
x, axis_name=axis_name)
|
|
|
|
return y * lax.axis_index(axis_name).astype(jnp.float32)
|
|
|
|
|
|
|
|
input_x = jnp.ones((5,6,4))
|
|
|
|
axis_env = [(axis_name, api.local_device_count())]
|
|
|
|
_ = api.xla_computation(fn, axis_env=axis_env, backend='cpu')(input_x)
|
|
|
|
|
2021-10-01 11:12:14 +00:00
|
|
|
def test_xla_computation_axis_env(self):
|
|
|
|
def fn(x):
|
|
|
|
z = x * jax.lax.axis_index('i').astype(jnp.float32)
|
|
|
|
def inner_fn(carry, a):
|
|
|
|
return carry + a, ()
|
|
|
|
return jax.lax.scan(inner_fn, jnp.zeros_like(z[0]), z)
|
|
|
|
|
|
|
|
x = jnp.ones((5, 6, 4))
|
|
|
|
_ = jax.xla_computation(fn, axis_env=(('i', 8),), backend='cpu')(x)
|
|
|
|
|
2019-08-09 13:12:44 -04:00
|
|
|
def test_concurrent_device_get_and_put(self):
|
|
|
|
def f(x):
|
|
|
|
for _ in range(100):
|
|
|
|
y = jax.device_put(x)
|
|
|
|
x = jax.device_get(y)
|
|
|
|
return x
|
|
|
|
|
2021-12-10 10:32:09 -08:00
|
|
|
xs = [self.rng().randn(i) for i in range(10)]
|
2019-08-09 13:12:44 -04:00
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
|
|
futures = [executor.submit(partial(f, x)) for x in xs]
|
|
|
|
ys = [f.result() for f in futures]
|
|
|
|
for x, y in zip(xs, ys):
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(x, y)
|
2019-08-09 13:12:44 -04:00
|
|
|
|
2019-08-24 12:34:44 -07:00
|
|
|
def test_dtype_warning(self):
|
|
|
|
# cf. issue #1230
|
2021-02-04 09:48:22 -08:00
|
|
|
if config.x64_enabled:
|
2020-10-23 07:34:32 -07:00
|
|
|
raise unittest.SkipTest("test only applies when x64 is disabled")
|
2019-08-22 09:22:57 -07:00
|
|
|
|
|
|
|
def check_warning(warn, nowarn):
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
|
|
warnings.simplefilter("always")
|
|
|
|
|
|
|
|
nowarn() # get rid of extra startup warning
|
|
|
|
|
|
|
|
prev_len = len(w)
|
|
|
|
nowarn()
|
|
|
|
assert len(w) == prev_len
|
|
|
|
|
|
|
|
warn()
|
|
|
|
assert len(w) > 0
|
|
|
|
msg = str(w[-1].message)
|
|
|
|
expected_prefix = "Explicitly requested dtype "
|
|
|
|
self.assertEqual(expected_prefix, msg[:len(expected_prefix)])
|
|
|
|
|
|
|
|
prev_len = len(w)
|
|
|
|
nowarn()
|
|
|
|
assert len(w) == prev_len
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
check_warning(lambda: jnp.array([1, 2, 3], dtype="float64"),
|
2020-11-25 14:59:30 -08:00
|
|
|
lambda: jnp.array([1, 2, 3], dtype="float32"))
|
|
|
|
check_warning(lambda: jnp.array([1, 2, 3], dtype="float64"),
|
|
|
|
lambda: jnp.array([1, 2, 3], dtype=float))
|
2020-05-05 14:59:16 -04:00
|
|
|
check_warning(lambda: jnp.ones(3, dtype=np.float64),
|
|
|
|
lambda: jnp.ones(3))
|
2020-11-25 14:59:30 -08:00
|
|
|
check_warning(lambda: jnp.ones(3, dtype=np.float64),
|
|
|
|
lambda: jnp.ones(3, dtype=float))
|
2020-05-05 14:59:16 -04:00
|
|
|
check_warning(lambda: jnp.ones_like(3, dtype=np.int64),
|
|
|
|
lambda: jnp.ones_like(3, dtype=np.int32))
|
|
|
|
check_warning(lambda: jnp.zeros(3, dtype="int64"),
|
|
|
|
lambda: jnp.zeros(3, dtype="int32"))
|
|
|
|
check_warning(lambda: jnp.zeros_like(3, dtype="float64"),
|
|
|
|
lambda: jnp.zeros_like(3, dtype="float32"))
|
|
|
|
check_warning(lambda: jnp.full((2, 3), 1, dtype="int64"),
|
|
|
|
lambda: jnp.full((2, 3), 1))
|
|
|
|
check_warning(lambda: jnp.ones(3).astype("float64"),
|
|
|
|
lambda: jnp.ones(3).astype("float32"))
|
|
|
|
check_warning(lambda: jnp.eye(3, dtype=np.float64),
|
|
|
|
lambda: jnp.eye(3))
|
|
|
|
check_warning(lambda: jnp.arange(3, dtype=np.float64),
|
|
|
|
lambda: jnp.arange(3, dtype=np.float32))
|
|
|
|
check_warning(lambda: jnp.linspace(0, 3, dtype=np.float64),
|
|
|
|
lambda: jnp.linspace(0, 3, dtype=np.float32))
|
|
|
|
check_warning(lambda: jnp.tri(2, dtype="float64"),
|
|
|
|
lambda: jnp.tri(2, dtype="float32"))
|
2020-11-25 14:59:30 -08:00
|
|
|
check_warning(lambda: jnp.arange(1).astype("float64"),
|
|
|
|
lambda: jnp.arange(1).astype(float))
|
|
|
|
check_warning(lambda: jnp.arange(1.0).astype("int64"),
|
|
|
|
lambda: jnp.arange(1.0).astype(int))
|
2019-08-22 09:22:57 -07:00
|
|
|
|
2021-05-10 11:52:12 -04:00
|
|
|
def test_error_for_invalid_dtype(self):
|
|
|
|
with self.assertRaisesRegex(TypeError, ".*not a valid JAX array type.*"):
|
|
|
|
lax.add(jnp.array(7), np.array("hello"))
|
|
|
|
|
2020-06-30 05:16:02 +01:00
|
|
|
def test_vmap_preserves_docstr(self):
|
|
|
|
def superfun(a):
|
|
|
|
"""Does things with stuff."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
self.assertRegex(api.vmap(superfun).__doc__, "\n".join([
|
|
|
|
"Vectorized version of superfun.*",
|
|
|
|
"",
|
|
|
|
"Original documentation:",
|
|
|
|
"",
|
|
|
|
superfun.__doc__,
|
|
|
|
]))
|
|
|
|
|
2020-03-22 19:50:06 +01:00
|
|
|
def test_vmap_in_axes_list(self):
|
|
|
|
# https://github.com/google/jax/issues/2367
|
2020-05-05 14:59:16 -04:00
|
|
|
dictionary = {'a': 5., 'b': jnp.ones(2)}
|
|
|
|
x = jnp.zeros(3)
|
|
|
|
y = jnp.arange(3.)
|
2020-03-22 19:50:06 +01:00
|
|
|
|
|
|
|
|
|
|
|
def f(dct, x, y):
|
|
|
|
return dct['a'] + dct['b'] + x + y
|
|
|
|
|
|
|
|
out1 = api.vmap(f, (None, 0, 0))(dictionary, x, y)
|
|
|
|
out2 = api.vmap(f, [None, 0, 0])(dictionary, x, y)
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(out1, out2)
|
2020-03-22 19:50:06 +01:00
|
|
|
|
2019-10-28 14:03:52 -07:00
|
|
|
def test_vmap_in_axes_tree_prefix_error(self):
|
|
|
|
# https://github.com/google/jax/issues/795
|
xla: improvement to string representation of PyTreeDef
The string representation of PyTreeDef was different to how the underlying
containers are represented in python. This sometimes made it harder to read
error messages. This commit modifies the representation of tuples, lists,
dicts, and None so that it matches the pythonic representation.
The representation of custom nodes and NamedTuples is left unchanged since
their structure is not easily accessible in C++. However, to avoid confusion
they are now labelled "CustomNode" instead of "PyTreeDef". The latter is now
only used to wrap the whole representation. See below for examples.
Tests that relied on a specific string representation of PyTreeDef in error
messages are modified to be agnostic to the representation. Instead, this
commit adds a separate test of the string representation in tree_util_test.
Examples:
```
OLD: PyTreeDef(dict[['a', 'b']], [*,*])
NEW: PyTreeDef({'a': *, 'b': *})
OLD: PyTreeDef(tuple, [PyTreeDef(tuple, [*,*]),PyTreeDef(list, [*,PyTreeDef(tuple, [*,PyTreeDef(None, []),*])])])
NEW: PyTreeDef(((*, *), [*, (*, None, *)]))
OLD: PyTreeDef(list, [PyTreeDef(<class '__main__.AnObject'>[[4, 'foo']], [*,PyTreeDef(None, [])])])
NEW: PyTreeDef([CustomNode(<class '__main__.AnObject'>[[4, 'foo']], [*, None])])
```
PiperOrigin-RevId: 369298267
2021-04-19 14:06:11 -07:00
|
|
|
value_tree = jnp.ones(3)
|
2019-11-28 08:48:10 +01:00
|
|
|
self.assertRaisesRegex(
|
2019-10-31 13:04:12 -07:00
|
|
|
ValueError,
|
2020-06-30 22:19:16 -07:00
|
|
|
"vmap in_axes specification must be a tree prefix of the corresponding "
|
|
|
|
r"value, got specification \(0, 0\) for value tree "
|
xla: improvement to string representation of PyTreeDef
The string representation of PyTreeDef was different to how the underlying
containers are represented in python. This sometimes made it harder to read
error messages. This commit modifies the representation of tuples, lists,
dicts, and None so that it matches the pythonic representation.
The representation of custom nodes and NamedTuples is left unchanged since
their structure is not easily accessible in C++. However, to avoid confusion
they are now labelled "CustomNode" instead of "PyTreeDef". The latter is now
only used to wrap the whole representation. See below for examples.
Tests that relied on a specific string representation of PyTreeDef in error
messages are modified to be agnostic to the representation. Instead, this
commit adds a separate test of the string representation in tree_util_test.
Examples:
```
OLD: PyTreeDef(dict[['a', 'b']], [*,*])
NEW: PyTreeDef({'a': *, 'b': *})
OLD: PyTreeDef(tuple, [PyTreeDef(tuple, [*,*]),PyTreeDef(list, [*,PyTreeDef(tuple, [*,PyTreeDef(None, []),*])])])
NEW: PyTreeDef(((*, *), [*, (*, None, *)]))
OLD: PyTreeDef(list, [PyTreeDef(<class '__main__.AnObject'>[[4, 'foo']], [*,PyTreeDef(None, [])])])
NEW: PyTreeDef([CustomNode(<class '__main__.AnObject'>[[4, 'foo']], [*, None])])
```
PiperOrigin-RevId: 369298267
2021-04-19 14:06:11 -07:00
|
|
|
+ re.escape(f"{tree_util.tree_structure((value_tree,))}."),
|
|
|
|
lambda: api.vmap(lambda x: x, in_axes=(0, 0))(value_tree)
|
2019-10-31 13:04:12 -07:00
|
|
|
)
|
2019-10-28 14:03:52 -07:00
|
|
|
|
2020-05-21 08:00:18 -07:00
|
|
|
def test_vmap_in_axes_leaf_types(self):
|
|
|
|
with self.assertRaisesRegex(
|
|
|
|
TypeError, r"vmap in_axes must be an int, None, or .*"):
|
|
|
|
api.vmap(lambda x: x, in_axes=(jnp.array([1., 2.]),))(jnp.array([1., 2.]))
|
|
|
|
|
|
|
|
def test_vmap_out_axes_leaf_types(self):
|
|
|
|
with self.assertRaisesRegex(
|
|
|
|
TypeError, r"vmap out_axes must be an int, None, or .*"):
|
|
|
|
api.vmap(lambda x: x, out_axes=(jnp.array([1., 2.]),))(jnp.array([1., 2.]))
|
|
|
|
|
2019-10-31 11:57:37 -07:00
|
|
|
def test_vmap_unbatched_object_passthrough_issue_183(self):
|
2019-10-28 15:20:49 -07:00
|
|
|
# https://github.com/google/jax/issues/183
|
|
|
|
fun = lambda f, x: f(x)
|
|
|
|
vfun = api.vmap(fun, (None, 0))
|
2020-05-05 14:59:16 -04:00
|
|
|
ans = vfun(lambda x: x + 1, jnp.arange(3))
|
|
|
|
self.assertAllClose(ans, np.arange(1, 4), check_dtypes=False)
|
2019-10-28 15:20:49 -07:00
|
|
|
|
2019-10-31 11:57:37 -07:00
|
|
|
def test_vmap_mismatched_axis_sizes_error_message_issue_705(self):
|
2019-10-30 17:31:37 -07:00
|
|
|
# https://github.com/google/jax/issues/705
|
|
|
|
def h(a, b):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sum(a) + jnp.sum(b)
|
2019-10-30 17:31:37 -07:00
|
|
|
|
2021-12-10 10:32:09 -08:00
|
|
|
X = self.rng().randn(10, 4)
|
|
|
|
U = self.rng().randn(10, 2)
|
2019-10-31 13:20:32 -07:00
|
|
|
|
2020-04-12 15:35:35 -04:00
|
|
|
with self.assertRaisesRegex(
|
2019-10-30 17:31:37 -07:00
|
|
|
ValueError,
|
|
|
|
"vmap got inconsistent sizes for array axes to be mapped:\n"
|
2019-10-31 12:01:37 -07:00
|
|
|
r"arg 0 has shape \(10, 4\) and axis 0 is to be mapped" "\n"
|
|
|
|
r"arg 1 has shape \(10, 2\) and axis 1 is to be mapped" "\n"
|
2019-10-30 17:31:37 -07:00
|
|
|
"so\n"
|
|
|
|
"arg 0 has an axis to be mapped of size 10\n"
|
2020-03-28 16:50:31 +01:00
|
|
|
"arg 1 has an axis to be mapped of size 2"):
|
|
|
|
api.vmap(h, in_axes=(0, 1))(X, U)
|
2019-10-30 17:31:37 -07:00
|
|
|
|
2020-04-12 15:35:35 -04:00
|
|
|
with self.assertRaisesRegex(
|
2019-10-31 13:20:32 -07:00
|
|
|
ValueError,
|
|
|
|
"vmap got inconsistent sizes for array axes to be mapped:\n"
|
|
|
|
r"arg 0 has shape \(10, 4\) and axis 0 is to be mapped" "\n"
|
|
|
|
r"arg 1 has shape \(10, 2\) and axis 1 is to be mapped" "\n"
|
|
|
|
r"arg 2 has shape \(10, 4\) and axis 0 is to be mapped" "\n"
|
|
|
|
"so\n"
|
|
|
|
"args 0, 2 have axes to be mapped of size 10\n"
|
2020-03-28 16:50:31 +01:00
|
|
|
"arg 1 has an axis to be mapped of size 2"):
|
|
|
|
api.vmap(lambda x, y, z: None, in_axes=(0, 1, 0))(X, U, X)
|
2019-10-31 13:20:32 -07:00
|
|
|
|
2020-04-12 15:35:35 -04:00
|
|
|
with self.assertRaisesRegex(
|
2019-10-30 17:31:37 -07:00
|
|
|
ValueError,
|
|
|
|
"vmap got inconsistent sizes for array axes to be mapped:\n"
|
2019-10-31 11:57:37 -07:00
|
|
|
"the tree of axis sizes is:\n"
|
2020-03-28 16:50:31 +01:00
|
|
|
r"\(10, \[2, 2\]\)"):
|
|
|
|
api.vmap(h, in_axes=(0, 1))(X, [U, U])
|
|
|
|
|
2021-07-14 11:39:52 +00:00
|
|
|
error = (r"vmap was requested to map its argument along axis 0, which "
|
|
|
|
r"implies that its rank should be at least 1, but is only 0 "
|
|
|
|
r"\(its shape is \(\)\)")
|
|
|
|
with self.assertRaisesRegex(ValueError, error):
|
2020-03-28 16:50:31 +01:00
|
|
|
# The mapped inputs cannot be scalars
|
|
|
|
api.vmap(lambda x: x)(1.)
|
|
|
|
|
2020-04-12 15:35:35 -04:00
|
|
|
with self.assertRaisesRegex(
|
2020-05-08 17:58:02 -07:00
|
|
|
ValueError, "vmap must have at least one non-None value in in_axes"):
|
2020-03-28 16:50:31 +01:00
|
|
|
# If the output is mapped, there must be a non-None in_axes
|
2020-05-05 14:59:16 -04:00
|
|
|
api.vmap(lambda x: x, in_axes=None)(jnp.array([1., 2.]))
|
2020-03-28 16:50:31 +01:00
|
|
|
|
2021-07-14 11:39:52 +00:00
|
|
|
error = (r"vmap was requested to map its argument along axis 1, which "
|
|
|
|
r"implies that its rank should be at least 2, but is only 1 "
|
|
|
|
r"\(its shape is \(2,\)\)")
|
|
|
|
with self.assertRaisesRegex(ValueError, error):
|
2020-05-05 14:59:16 -04:00
|
|
|
api.vmap(lambda x: x, in_axes=1)(jnp.array([1., 2.]))
|
2020-03-28 16:50:31 +01:00
|
|
|
|
|
|
|
# Error is: TypeError: only integer scalar arrays can be converted to a scalar index
|
2020-04-12 15:35:35 -04:00
|
|
|
with self.assertRaisesRegex(
|
2020-06-30 22:19:16 -07:00
|
|
|
ValueError,
|
|
|
|
"vmap out_axes specification must be a tree prefix of the "
|
|
|
|
"corresponding value.*"):
|
2020-05-05 14:59:16 -04:00
|
|
|
api.vmap(lambda x: x, in_axes=0, out_axes=(2, 3))(jnp.array([1., 2.]))
|
2020-03-28 16:50:31 +01:00
|
|
|
|
2020-04-12 15:35:35 -04:00
|
|
|
with self.assertRaisesRegex(
|
2021-04-08 14:08:51 +00:00
|
|
|
ValueError,
|
|
|
|
r"vmap has mapped output \(axis_name=foo\) but out_axes is None"):
|
|
|
|
# If the output is mapped (user-named axis), then there must be some
|
|
|
|
# out_axes specified.
|
|
|
|
api.vmap(lambda x: x, out_axes=None, axis_name="foo")(jnp.array([1., 2.]))
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError,
|
|
|
|
"vmap has mapped output but out_axes is None"):
|
|
|
|
# If the output is mapped (unnamed axis), then there must be some out_axes
|
|
|
|
# specified.
|
2020-05-05 14:59:16 -04:00
|
|
|
api.vmap(lambda x: x, out_axes=None)(jnp.array([1., 2.]))
|
2020-03-28 16:50:31 +01:00
|
|
|
|
2019-10-31 14:09:12 -07:00
|
|
|
def test_vmap_structured_in_axes(self):
|
|
|
|
|
|
|
|
A, B, C, D = 2, 3, 4, 5
|
|
|
|
K = 6 # batch size
|
2020-05-05 14:59:16 -04:00
|
|
|
x = np.ones((K, A, B)) # batch axis in different locations
|
|
|
|
y = np.ones((B, K, C))
|
|
|
|
z = np.ones((C, D, K))
|
2019-10-31 14:09:12 -07:00
|
|
|
|
|
|
|
def foo(tree_arg):
|
|
|
|
x, (y, z) = tree_arg
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.dot(x, jnp.dot(y, z))
|
2019-10-31 14:09:12 -07:00
|
|
|
|
|
|
|
tree = (x, (y, z))
|
|
|
|
vfoo = api.vmap(foo, in_axes=((0, (1, 2)),))
|
|
|
|
self.assertEqual(vfoo(tree).shape, (6, 2, 5))
|
|
|
|
|
|
|
|
Point = collections.namedtuple("Point", ["x", "y"])
|
|
|
|
tree = (x, Point(y, z))
|
|
|
|
vfoo = api.vmap(foo, in_axes=((0, Point(1, 2)),))
|
|
|
|
self.assertEqual(vfoo(tree).shape, (6, 2, 5))
|
|
|
|
|
|
|
|
def foo(tree_arg):
|
|
|
|
x, dct = tree_arg
|
|
|
|
y, z = dct['a'], dct['b']
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.dot(x, jnp.dot(y, z))
|
2019-10-31 14:09:12 -07:00
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
tree = (x, {'a': y, 'b': z})
|
|
|
|
vfoo = api.vmap(foo, in_axes=((0, {'a': 1, 'b': 2}),))
|
2019-10-31 14:09:12 -07:00
|
|
|
self.assertEqual(vfoo(tree).shape, (6, 2, 5))
|
|
|
|
|
|
|
|
tree = (x, collections.OrderedDict([('a', y), ('b', z)]))
|
|
|
|
vfoo = api.vmap(
|
|
|
|
foo, in_axes=((0, collections.OrderedDict([('a', 1), ('b', 2)])),))
|
|
|
|
self.assertEqual(vfoo(tree).shape, (6, 2, 5))
|
|
|
|
|
2021-04-09 14:43:13 -07:00
|
|
|
def test_vmap_in_axes_bool_error(self):
|
|
|
|
# https://github.com/google/jax/issues/6372
|
|
|
|
with self.assertRaisesRegex(TypeError, "must be an int"):
|
|
|
|
api.vmap(lambda x: x, in_axes=False)(jnp.zeros(3))
|
|
|
|
|
|
|
|
def test_pmap_in_axes_bool_error(self):
|
|
|
|
# https://github.com/google/jax/issues/6372
|
|
|
|
with self.assertRaisesRegex(TypeError, "must be an int"):
|
|
|
|
api.pmap(lambda x: x, in_axes=False)(jnp.zeros(1))
|
|
|
|
|
2021-10-29 12:43:57 -07:00
|
|
|
def test_vmap_empty_arguments(self):
|
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError,
|
|
|
|
"vmap wrapped function must be passed at least one argument "
|
|
|
|
r"containing an array, got empty \*args=\(\{\},\) and \*\*kwargs=\{\}"):
|
|
|
|
api.vmap(lambda x: x)({})
|
|
|
|
|
|
|
|
def test_pmap_empty_arguments(self):
|
|
|
|
with self.assertRaisesRegex(
|
|
|
|
ValueError,
|
|
|
|
"pmap wrapped function must be passed at least one argument "
|
|
|
|
r"containing an array, got empty \*args=\(\{\},\) and \*\*kwargs=\{\}"):
|
|
|
|
api.pmap(lambda x: x)({})
|
|
|
|
|
2019-10-30 14:57:00 -07:00
|
|
|
def test_pmap_global_cache(self):
|
Add support for non-zero (but still not-None) out_axes in pmap
Previously `pmap` didn't have the `out_axes` parameter (unlike `vmap`),
but its semantics would match the specification of `out_axes=0` (i.e.
all outputs should be stacked along the first axis). This patch makes it
possible to specify non-zero values for out_axes, but more importantly
it lays down the groundwork for `xmap` which will have to use some
extremely similar (if not the same) code paths.
One thing to note is that when I started this implementation I was also
planning to add support for `out_axes=None`, which would allow us to
stop using the `unbroadcast` hack, and most of the code is written with
that in mind. Unfortunately it turned out that the correct
implementation of the transpose rule for maps that do allow unmapped
outputs would require me to pretty much simulate what avals-with-names
is supposed to achieve. Technically replicated outputs should work
today, for as long as the user does not do reverse-mode AD of `pmap`.
But I decided that it's better to just disable them altogether until we
can get the full and correct behavior.
* Implementation details *
This patch is significantly more involved than the one that implemented
general `in_axes` support. That previous one at least had the foundation
of `mapped_invars` which already behaved pretty similarly to general
`in_axes`. From a quick glance one might think that `out_axes` should
behave similarly to `in_axes`, but it turns out that this is not the
case, at least not if we're interested in keeping those primitives
final-style.
** Thunking **
The biggest difficulty with handling `out_axes` in final style
primitives is that we want to treat them as a prefix of the output
pytree, but we don't know the structure of the output pytree until the
user function is evaluated! And the user function is not evaluated until
we've applied all transforms and reached the impl rule! The solution to
this problem is "straightforward": instead of putting `out_axes` as a
primitive parameter, we bundle an `out_axes_thunk` which can only be
called successfully after the wrapped function has been executed. The
thunk returns a list of flat `out_axes`, expanded to the output pytree.
However, the thunking presents us with two problems:
*** Transformations ***
Each transformation that modifies the number of outputs needs to ensure
that the thunk is updated to reflect the new values. To make things
worse a lot of the transforms can learn the number of added outputs
_only after the wrapped function is evaluated_, which leads to the
following "time travel" pattern that can be found in most `Trace`s:
```py
@lu.transformation_with_aux
def compute_output_statistic(*args, **kwargs):
outputs = yield args, kwargs
yield outputs, compute_statistic(outputs)
wrapped_fun, output_statistic = compute_output_statistic(wrapped_fun)
def new_out_axes_thunk():
old_out_axes = params['out_axes_thunk']()
return compute_new_out_axes(old_out_axes(), output_statistic())
primitive.bind(wrapped_fun, dict(params, out_axes_thunk=new_out_axes_thunk))
```
The reason why we have to structure the code this way is that we can
only specify a new `out_axes_thunk` before we bind the primitive, but we
need the outputs of bind to know how to update the `out_axes_thunk`. To
make things worse, the implementation of `bind` is allowed to make a
call to `out_axes_thunk` _immediately after `wrapped_fun` is evaluated_.
This means that we cannot compute the output statistic in the
implementation of the transformation, but we have to use an extra
`lu.transformation_with_aux` for that (this populates the statistic
store immediately after `wrapped_fun` is evaluated).
The `compute_statistic` function depends on the transform in question.
E.g. in the JVP trace it counts the number of non-zero tangent results.
The situation is of course further complicated when we take
`post_process_map` into account. The new `process_env_traces` now always
sets up this funny time travel trampoline just in case it ends up being
necessary, and `post_process_map` is now expected to return `(outputs,
(todo, out_axes_transform))` instead of just `(outputs, todo)`.
*** Compilation cache ***
Because the `out_axes_thunk`s are now arguments to a _global_
compilation cache (in the form of `lu.cache` decorator on
`parallel_callable`), we have to ensure that they implement `hash` and
`==`. This is what forces us to add some slightly weird helpers such as
`_hashable_function` and `_ignore_elem_list`. The code that uses those
makes an assumption that the output pytree depends deterministically on
the identity of the wrapped function, which I think is in line with
general JAX assumptions. Otherwise the cache would depend on the
identity of the thunk, which changes with every function invocation.
Relaxing the global constraint on the cache (e.g. allowing each
`pmap(f)` instance to have a separate cache) would make this easier too.
* Why final style? *
Now, making the primitives initial-style would remove the necessity for
thunking, because we could have obtained the output pytree right when
the function is wrapped. I assumed there is a good argument for making
`pmap` pretend that it's a final-style primitive, but I'm not sure why
that is? I hope it's something better than just avoiding a single jaxpr
tracing.
2020-11-09 17:23:16 +00:00
|
|
|
def f(x, y):
|
|
|
|
return x, y
|
2019-10-30 14:57:00 -07:00
|
|
|
|
Add support for non-zero (but still not-None) out_axes in pmap
Previously `pmap` didn't have the `out_axes` parameter (unlike `vmap`),
but its semantics would match the specification of `out_axes=0` (i.e.
all outputs should be stacked along the first axis). This patch makes it
possible to specify non-zero values for out_axes, but more importantly
it lays down the groundwork for `xmap` which will have to use some
extremely similar (if not the same) code paths.
One thing to note is that when I started this implementation I was also
planning to add support for `out_axes=None`, which would allow us to
stop using the `unbroadcast` hack, and most of the code is written with
that in mind. Unfortunately it turned out that the correct
implementation of the transpose rule for maps that do allow unmapped
outputs would require me to pretty much simulate what avals-with-names
is supposed to achieve. Technically replicated outputs should work
today, for as long as the user does not do reverse-mode AD of `pmap`.
But I decided that it's better to just disable them altogether until we
can get the full and correct behavior.
* Implementation details *
This patch is significantly more involved than the one that implemented
general `in_axes` support. That previous one at least had the foundation
of `mapped_invars` which already behaved pretty similarly to general
`in_axes`. From a quick glance one might think that `out_axes` should
behave similarly to `in_axes`, but it turns out that this is not the
case, at least not if we're interested in keeping those primitives
final-style.
** Thunking **
The biggest difficulty with handling `out_axes` in final style
primitives is that we want to treat them as a prefix of the output
pytree, but we don't know the structure of the output pytree until the
user function is evaluated! And the user function is not evaluated until
we've applied all transforms and reached the impl rule! The solution to
this problem is "straightforward": instead of putting `out_axes` as a
primitive parameter, we bundle an `out_axes_thunk` which can only be
called successfully after the wrapped function has been executed. The
thunk returns a list of flat `out_axes`, expanded to the output pytree.
However, the thunking presents us with two problems:
*** Transformations ***
Each transformation that modifies the number of outputs needs to ensure
that the thunk is updated to reflect the new values. To make things
worse a lot of the transforms can learn the number of added outputs
_only after the wrapped function is evaluated_, which leads to the
following "time travel" pattern that can be found in most `Trace`s:
```py
@lu.transformation_with_aux
def compute_output_statistic(*args, **kwargs):
outputs = yield args, kwargs
yield outputs, compute_statistic(outputs)
wrapped_fun, output_statistic = compute_output_statistic(wrapped_fun)
def new_out_axes_thunk():
old_out_axes = params['out_axes_thunk']()
return compute_new_out_axes(old_out_axes(), output_statistic())
primitive.bind(wrapped_fun, dict(params, out_axes_thunk=new_out_axes_thunk))
```
The reason why we have to structure the code this way is that we can
only specify a new `out_axes_thunk` before we bind the primitive, but we
need the outputs of bind to know how to update the `out_axes_thunk`. To
make things worse, the implementation of `bind` is allowed to make a
call to `out_axes_thunk` _immediately after `wrapped_fun` is evaluated_.
This means that we cannot compute the output statistic in the
implementation of the transformation, but we have to use an extra
`lu.transformation_with_aux` for that (this populates the statistic
store immediately after `wrapped_fun` is evaluated).
The `compute_statistic` function depends on the transform in question.
E.g. in the JVP trace it counts the number of non-zero tangent results.
The situation is of course further complicated when we take
`post_process_map` into account. The new `process_env_traces` now always
sets up this funny time travel trampoline just in case it ends up being
necessary, and `post_process_map` is now expected to return `(outputs,
(todo, out_axes_transform))` instead of just `(outputs, todo)`.
*** Compilation cache ***
Because the `out_axes_thunk`s are now arguments to a _global_
compilation cache (in the form of `lu.cache` decorator on
`parallel_callable`), we have to ensure that they implement `hash` and
`==`. This is what forces us to add some slightly weird helpers such as
`_hashable_function` and `_ignore_elem_list`. The code that uses those
makes an assumption that the output pytree depends deterministically on
the identity of the wrapped function, which I think is in line with
general JAX assumptions. Otherwise the cache would depend on the
identity of the thunk, which changes with every function invocation.
Relaxing the global constraint on the cache (e.g. allowing each
`pmap(f)` instance to have a separate cache) would make this easier too.
* Why final style? *
Now, making the primitives initial-style would remove the necessity for
thunking, because we could have obtained the output pytree right when
the function is wrapped. I assumed there is a good argument for making
`pmap` pretend that it's a final-style primitive, but I'm not sure why
that is? I hope it's something better than just avoiding a single jaxpr
tracing.
2020-11-09 17:23:16 +00:00
|
|
|
x = np.ones((1, 1, 1))
|
2019-10-30 14:57:00 -07:00
|
|
|
|
2020-12-02 14:13:05 +00:00
|
|
|
# All defaults
|
|
|
|
with jtu.assert_num_jit_and_pmap_compilations(1):
|
|
|
|
for _ in range(2):
|
|
|
|
api.pmap(f)(x, x)
|
2019-10-30 14:57:00 -07:00
|
|
|
|
2020-12-02 14:13:05 +00:00
|
|
|
# With axis name
|
|
|
|
with jtu.assert_num_jit_and_pmap_compilations(1):
|
|
|
|
for _ in range(2):
|
|
|
|
api.pmap(f, 'i')(x, x)
|
Add support for non-zero (but still not-None) out_axes in pmap
Previously `pmap` didn't have the `out_axes` parameter (unlike `vmap`),
but its semantics would match the specification of `out_axes=0` (i.e.
all outputs should be stacked along the first axis). This patch makes it
possible to specify non-zero values for out_axes, but more importantly
it lays down the groundwork for `xmap` which will have to use some
extremely similar (if not the same) code paths.
One thing to note is that when I started this implementation I was also
planning to add support for `out_axes=None`, which would allow us to
stop using the `unbroadcast` hack, and most of the code is written with
that in mind. Unfortunately it turned out that the correct
implementation of the transpose rule for maps that do allow unmapped
outputs would require me to pretty much simulate what avals-with-names
is supposed to achieve. Technically replicated outputs should work
today, for as long as the user does not do reverse-mode AD of `pmap`.
But I decided that it's better to just disable them altogether until we
can get the full and correct behavior.
* Implementation details *
This patch is significantly more involved than the one that implemented
general `in_axes` support. That previous one at least had the foundation
of `mapped_invars` which already behaved pretty similarly to general
`in_axes`. From a quick glance one might think that `out_axes` should
behave similarly to `in_axes`, but it turns out that this is not the
case, at least not if we're interested in keeping those primitives
final-style.
** Thunking **
The biggest difficulty with handling `out_axes` in final style
primitives is that we want to treat them as a prefix of the output
pytree, but we don't know the structure of the output pytree until the
user function is evaluated! And the user function is not evaluated until
we've applied all transforms and reached the impl rule! The solution to
this problem is "straightforward": instead of putting `out_axes` as a
primitive parameter, we bundle an `out_axes_thunk` which can only be
called successfully after the wrapped function has been executed. The
thunk returns a list of flat `out_axes`, expanded to the output pytree.
However, the thunking presents us with two problems:
*** Transformations ***
Each transformation that modifies the number of outputs needs to ensure
that the thunk is updated to reflect the new values. To make things
worse a lot of the transforms can learn the number of added outputs
_only after the wrapped function is evaluated_, which leads to the
following "time travel" pattern that can be found in most `Trace`s:
```py
@lu.transformation_with_aux
def compute_output_statistic(*args, **kwargs):
outputs = yield args, kwargs
yield outputs, compute_statistic(outputs)
wrapped_fun, output_statistic = compute_output_statistic(wrapped_fun)
def new_out_axes_thunk():
old_out_axes = params['out_axes_thunk']()
return compute_new_out_axes(old_out_axes(), output_statistic())
primitive.bind(wrapped_fun, dict(params, out_axes_thunk=new_out_axes_thunk))
```
The reason why we have to structure the code this way is that we can
only specify a new `out_axes_thunk` before we bind the primitive, but we
need the outputs of bind to know how to update the `out_axes_thunk`. To
make things worse, the implementation of `bind` is allowed to make a
call to `out_axes_thunk` _immediately after `wrapped_fun` is evaluated_.
This means that we cannot compute the output statistic in the
implementation of the transformation, but we have to use an extra
`lu.transformation_with_aux` for that (this populates the statistic
store immediately after `wrapped_fun` is evaluated).
The `compute_statistic` function depends on the transform in question.
E.g. in the JVP trace it counts the number of non-zero tangent results.
The situation is of course further complicated when we take
`post_process_map` into account. The new `process_env_traces` now always
sets up this funny time travel trampoline just in case it ends up being
necessary, and `post_process_map` is now expected to return `(outputs,
(todo, out_axes_transform))` instead of just `(outputs, todo)`.
*** Compilation cache ***
Because the `out_axes_thunk`s are now arguments to a _global_
compilation cache (in the form of `lu.cache` decorator on
`parallel_callable`), we have to ensure that they implement `hash` and
`==`. This is what forces us to add some slightly weird helpers such as
`_hashable_function` and `_ignore_elem_list`. The code that uses those
makes an assumption that the output pytree depends deterministically on
the identity of the wrapped function, which I think is in line with
general JAX assumptions. Otherwise the cache would depend on the
identity of the thunk, which changes with every function invocation.
Relaxing the global constraint on the cache (e.g. allowing each
`pmap(f)` instance to have a separate cache) would make this easier too.
* Why final style? *
Now, making the primitives initial-style would remove the necessity for
thunking, because we could have obtained the output pytree right when
the function is wrapped. I assumed there is a good argument for making
`pmap` pretend that it's a final-style primitive, but I'm not sure why
that is? I hope it's something better than just avoiding a single jaxpr
tracing.
2020-11-09 17:23:16 +00:00
|
|
|
|
2020-12-02 14:13:05 +00:00
|
|
|
# With in_axes and out_axes
|
2021-03-29 13:58:04 -07:00
|
|
|
for x_in, y_in, x_out, y_out in it.product(*((0, 1, 2) for _ in range(4))):
|
|
|
|
with jtu.assert_num_jit_and_pmap_compilations(1):
|
|
|
|
for _ in range(2):
|
|
|
|
api.pmap(f, 'i', in_axes=(x_in, y_in), out_axes=(x_out, y_out))(x, x)
|
2020-12-02 14:13:05 +00:00
|
|
|
|
|
|
|
# Forward-mode AD on the outside
|
|
|
|
with jtu.assert_num_jit_and_pmap_compilations(1):
|
|
|
|
for _ in range(2):
|
|
|
|
api.jvp(api.pmap(f), (x, x), (x, x))
|
|
|
|
|
|
|
|
# Reverse-mode AD on the outside. One compilation for forward, one for backward.
|
|
|
|
with jtu.assert_num_jit_and_pmap_compilations(2):
|
|
|
|
for _ in range(2):
|
|
|
|
api.vjp(api.pmap(f), x, x)[1]((x, x))
|
2019-10-30 14:57:00 -07:00
|
|
|
|
implement lazy sublanguage
Before this commit, this computation would avoid materializing the iota
array at trace time:
@jit
def f(x):
m, n = x.shape
return x + np.arange(n)
But this one would materialize the iota array at trace time and stage it
into the computation as a potentially large array constant:
@jit
def f(x):
m, n = x.shape
return x + np.arange(m)[:, None]
The difference is that previously operations like broadcasts,
transposes, and reshapes that add singleton dimensions (as above) would
force otherwise lazy values to be materialized, while after this commit
broadcasts, transposes, and reshapes are all lazy operations that only
update metadata on their input rather than compiling and executing XLA
computations and producing new buffers.
Also, np.eye and np.tri become lazy (in addition to np.zeros, np.ones, np.full).
This commit replaces the ad-hoc "lazy device constant" system, which was
used to get the simpler behavior in the first example above.
Incidentally fixes #1431
See https://github.com/google/jax/pull/1668 for more.
2020-01-03 15:46:19 -08:00
|
|
|
def test_device_array_repr(self):
|
2020-12-13 03:17:32 +01:00
|
|
|
rep = jnp.ones(()) + 1.
|
|
|
|
self.assertStartsWith(repr(rep), "DeviceArray")
|
|
|
|
|
|
|
|
def test_device_array_hash(self):
|
2020-07-22 12:10:43 -07:00
|
|
|
rep = jnp.ones((1,)) + 1.
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertIsInstance(rep, device_array.DeviceArray)
|
2021-10-05 15:25:28 -04:00
|
|
|
self.assertNotIsInstance(rep, collections.abc.Hashable)
|
2021-07-21 16:12:52 -04:00
|
|
|
with self.assertRaisesRegex(TypeError, 'unhashable type'):
|
|
|
|
hash(rep)
|
2019-06-01 09:34:33 -07:00
|
|
|
|
2019-11-14 21:18:23 -08:00
|
|
|
def test_grad_without_enough_args_error_message(self):
|
|
|
|
# https://github.com/google/jax/issues/1696
|
|
|
|
def f(x, y): return x + y
|
|
|
|
df = api.grad(f, argnums=0)
|
2019-11-28 08:48:10 +01:00
|
|
|
self.assertRaisesRegex(
|
2019-11-14 21:18:23 -08:00
|
|
|
TypeError,
|
|
|
|
"differentiating with respect to argnums=0 requires at least 1 "
|
|
|
|
"positional arguments to be passed by the caller, but got only 0 "
|
|
|
|
"positional arguments.",
|
|
|
|
lambda: partial(df, x=0.)(y=1.))
|
|
|
|
|
2021-12-13 22:11:38 -08:00
|
|
|
def test_jit_compilation_time_logging(self):
|
|
|
|
@api.jit
|
|
|
|
def f(x):
|
|
|
|
return x * 2
|
|
|
|
|
|
|
|
# make sure some initial warnings & cached operations already happen.
|
|
|
|
f(jnp.ones(2))
|
|
|
|
|
|
|
|
prev_level = logging.get_verbosity()
|
|
|
|
try:
|
|
|
|
logging.set_verbosity('DEBUG')
|
|
|
|
with self.assertLogs(level=logging.DEBUG) as l:
|
|
|
|
f(2.)
|
|
|
|
finally:
|
|
|
|
logging.set_verbosity(prev_level)
|
|
|
|
self.assertLen(l.output, 3) # 3 lines
|
|
|
|
self.assertIn('Finished tracing', l.output[0])
|
|
|
|
self.assertIn('Compiling f', l.output[1])
|
|
|
|
self.assertIn('Finished XLA compilation', l.output[2])
|
|
|
|
|
2019-11-26 07:56:48 -08:00
|
|
|
def test_grad_of_jit_compilation_caching(self):
|
|
|
|
if not hasattr(self, "assertLogs"):
|
|
|
|
raise unittest.SkipTest("test requires assertLogs (python 3)")
|
|
|
|
|
2021-11-23 15:04:08 -08:00
|
|
|
# make sure some initial warnings & cached operations already happen.
|
|
|
|
api.grad(api.jit(lambda x: x))(1.0)
|
2019-11-26 07:56:48 -08:00
|
|
|
|
2021-11-23 15:04:08 -08:00
|
|
|
@api.jit
|
|
|
|
def f(x):
|
|
|
|
return jnp.sin(x)
|
2019-11-26 07:56:48 -08:00
|
|
|
|
2019-11-26 17:06:57 -08:00
|
|
|
prev_level = logging.get_verbosity()
|
|
|
|
try:
|
|
|
|
logging.set_verbosity('DEBUG')
|
|
|
|
with self.assertLogs(level=logging.DEBUG) as l:
|
2021-11-23 15:04:08 -08:00
|
|
|
ans1 = api.grad(f)(2.)
|
|
|
|
ans2 = api.grad(f)(3.)
|
2019-11-26 17:06:57 -08:00
|
|
|
finally:
|
|
|
|
logging.set_verbosity(prev_level)
|
2021-12-13 22:11:38 -08:00
|
|
|
self.assertLen(l.output, 2 * 3) # one for fwd, one for bwd, 3 lines each
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertAllClose(ans1, np.cos(2.), check_dtypes=False)
|
|
|
|
self.assertAllClose(ans2, np.cos(3.), check_dtypes=False)
|
2019-11-26 07:56:48 -08:00
|
|
|
|
2021-10-13 11:06:17 -07:00
|
|
|
def test_grad_of_jit_compilation_caching2(self):
|
|
|
|
# Like the above test, but instead of logging use our compile counters.
|
2021-11-23 15:04:08 -08:00
|
|
|
|
|
|
|
# make sure some initial convert element type operations are pre-cached.
|
|
|
|
api.grad(api.jit(lambda x: x))(1.0)
|
|
|
|
|
2021-10-13 11:06:17 -07:00
|
|
|
@api.jit
|
|
|
|
def f(x):
|
|
|
|
return jnp.sin(x)
|
|
|
|
|
|
|
|
with jtu.count_jit_and_pmap_compiles() as count: # noqa: F841
|
|
|
|
_ = jax.grad(f)(3.)
|
|
|
|
self.assertEqual(count[0], 2) # one for fwd, one for bwd
|
|
|
|
|
|
|
|
with jtu.count_jit_and_pmap_compiles() as count: # noqa: F841
|
|
|
|
_ = jax.grad(f)(3.)
|
|
|
|
_ = jax.grad(f)(4.)
|
|
|
|
self.assertEqual(count[0], 0) # cache hits on both fwd and bwd
|
|
|
|
|
2021-08-09 15:27:50 +00:00
|
|
|
def test_grad_does_not_unflatten_tree_with_none(self):
|
|
|
|
# https://github.com/google/jax/issues/7546
|
|
|
|
class CustomNode(list):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def unflatten(unused_aux_data, children):
|
|
|
|
self.assertIsNotNone(children[0])
|
|
|
|
return CustomNode(children)
|
|
|
|
|
|
|
|
tree_util.register_pytree_node(CustomNode, lambda x: (x, None), unflatten)
|
|
|
|
grad(lambda x: x[0])(CustomNode([0.]))
|
|
|
|
|
2020-06-15 18:42:53 -07:00
|
|
|
def test_trivial_computations(self):
|
|
|
|
x = jnp.array([1, 2, 3])
|
|
|
|
y = api.jit(lambda x: x)(x)
|
|
|
|
self.assertIs(x, y)
|
|
|
|
|
|
|
|
z1, z2 = api.jit(lambda x: (x, x))(x)
|
|
|
|
self.assertIs(z1, z2)
|
|
|
|
|
|
|
|
x1, x2 = jnp.array([1, 2]), jnp.array([2, 3])
|
|
|
|
z1, z2, z3 = api.jit(lambda x, y: (y, 1, x))(x1, x2)
|
|
|
|
self.assertIs(z1, x2)
|
|
|
|
self.assertIs(z3, x1)
|
|
|
|
self.assertEqual(z2, 1)
|
|
|
|
|
|
|
|
def test_nested_jit_hoisting(self):
|
|
|
|
@api.jit
|
|
|
|
def f(x, y):
|
|
|
|
z = 2 * x
|
|
|
|
return y + z, 3
|
|
|
|
|
|
|
|
@api.jit
|
|
|
|
def g(x):
|
|
|
|
return f(2, x)
|
|
|
|
|
2021-11-30 06:08:26 -08:00
|
|
|
xla_jaxpr_subcomp = xla.jaxpr_subcomp
|
|
|
|
mlir_jaxpr_subcomp = mlir.jaxpr_subcomp
|
2020-06-15 18:42:53 -07:00
|
|
|
|
|
|
|
jaxprs = []
|
2021-11-30 06:08:26 -08:00
|
|
|
def xla_jaxpr_subcomp_and_collect(c, jaxpr, *args, **kwargs):
|
|
|
|
jaxprs.append(jaxpr)
|
|
|
|
return xla_jaxpr_subcomp(c, jaxpr, *args, **kwargs)
|
|
|
|
def mlir_jaxpr_subcomp_and_collect(c, jaxpr, *args, **kwargs):
|
2020-06-15 18:42:53 -07:00
|
|
|
jaxprs.append(jaxpr)
|
2021-11-30 06:08:26 -08:00
|
|
|
return mlir_jaxpr_subcomp(c, jaxpr, *args, **kwargs)
|
2020-06-15 18:42:53 -07:00
|
|
|
|
|
|
|
try:
|
2021-11-30 06:08:26 -08:00
|
|
|
xla.jaxpr_subcomp = xla_jaxpr_subcomp_and_collect
|
|
|
|
mlir.jaxpr_subcomp = mlir_jaxpr_subcomp_and_collect
|
2020-06-15 18:42:53 -07:00
|
|
|
ans = g(3)
|
|
|
|
finally:
|
2021-11-30 06:08:26 -08:00
|
|
|
xla.jaxpr_subcomp = xla_jaxpr_subcomp
|
|
|
|
mlir.jaxpr_subcomp = mlir_jaxpr_subcomp
|
2020-06-15 18:42:53 -07:00
|
|
|
|
|
|
|
self.assertEqual(ans, (7, 3))
|
|
|
|
self.assertLen(jaxprs, 2)
|
|
|
|
outer_jaxpr, inner_jaxpr = jaxprs
|
|
|
|
|
|
|
|
self.assertLen(outer_jaxpr.eqns, 1)
|
|
|
|
self.assertEqual(outer_jaxpr.eqns[0].primitive.name, 'xla_call')
|
|
|
|
subjaxpr_1 = outer_jaxpr.eqns[0].params["call_jaxpr"]
|
|
|
|
self.assertEqual(str(subjaxpr_1), str(inner_jaxpr))
|
2021-03-29 13:58:04 -07:00
|
|
|
self.assertLen(inner_jaxpr.eqns, 2)
|
2021-02-08 13:37:25 -08:00
|
|
|
self.assertEqual(inner_jaxpr.eqns[-2].primitive.name, 'mul')
|
|
|
|
self.assertEqual(inner_jaxpr.eqns[-1].primitive.name, 'add')
|
2020-06-15 18:42:53 -07:00
|
|
|
|
|
|
|
def test_primitive_compilation_cache(self):
|
|
|
|
with jtu.count_primitive_compiles() as count:
|
|
|
|
lax.add(1, 2)
|
|
|
|
lax.add(2, 3)
|
|
|
|
self.assertEqual(count[0], 1)
|
|
|
|
|
|
|
|
def test_arange_jit(self):
|
|
|
|
# see https://github.com/google/jax/issues/553
|
|
|
|
def fun(x):
|
|
|
|
r = jnp.arange(x.shape[0])[x]
|
|
|
|
return r
|
|
|
|
|
|
|
|
jit(fun)(jnp.array([0, 1, 2], dtype=jnp.int32)) # doesn't crash
|
|
|
|
|
|
|
|
def helper_save_tracer(self, x):
|
|
|
|
self._saved_tracer = x
|
|
|
|
return x
|
|
|
|
|
2020-09-16 23:59:58 -07:00
|
|
|
def test_escaped_tracers_different_top_level_traces(self):
|
2020-06-15 18:42:53 -07:00
|
|
|
api.jit(self.helper_save_tracer)(0.)
|
|
|
|
with self.assertRaisesRegex(
|
2021-06-30 10:46:37 +01:00
|
|
|
UnexpectedTracerError, "Encountered an unexpected tracer"):
|
2020-06-15 18:42:53 -07:00
|
|
|
api.jit(lambda x: self._saved_tracer)(0.)
|
|
|
|
|
|
|
|
def test_escaped_tracers_cant_lift_sublevels(self):
|
|
|
|
api.jit(self.helper_save_tracer)(0.)
|
|
|
|
with self.assertRaisesRegex(
|
2021-06-30 10:46:37 +01:00
|
|
|
UnexpectedTracerError,
|
2020-06-15 18:42:53 -07:00
|
|
|
re.compile(
|
2020-09-16 15:59:50 -07:00
|
|
|
"Encountered an unexpected tracer",
|
2020-06-15 18:42:53 -07:00
|
|
|
re.DOTALL)):
|
|
|
|
api.jit(lambda x: x)(self._saved_tracer)
|
|
|
|
|
|
|
|
def test_escaped_tracers_tracer_from_higher_level(self):
|
|
|
|
api.grad(self.helper_save_tracer)(0.)
|
|
|
|
with self.assertRaisesRegex(
|
2021-06-30 10:46:37 +01:00
|
|
|
UnexpectedTracerError,
|
2020-06-15 18:42:53 -07:00
|
|
|
re.compile(
|
|
|
|
"Encountered an unexpected tracer.*Tracer from a higher level",
|
|
|
|
re.DOTALL)):
|
|
|
|
api.grad(lambda x: x)(self._saved_tracer)
|
|
|
|
|
|
|
|
def test_escaped_tracers_incompatible_sublevel(self):
|
|
|
|
def func1(x):
|
|
|
|
api.jit(self.helper_save_tracer)(0.)
|
|
|
|
# Use the tracer
|
|
|
|
return x + self._saved_tracer
|
|
|
|
with self.assertRaisesRegex(
|
2021-06-30 10:46:37 +01:00
|
|
|
UnexpectedTracerError,
|
2020-07-30 12:59:36 -07:00
|
|
|
re.compile("Encountered an unexpected tracer",
|
2020-06-15 18:42:53 -07:00
|
|
|
re.DOTALL)):
|
|
|
|
api.jit(func1)(2.)
|
|
|
|
|
|
|
|
def test_escaped_tracers_cant_lift(self):
|
|
|
|
def func1(x):
|
|
|
|
api.grad(self.helper_save_tracer)(0.)
|
|
|
|
return x + self._saved_tracer
|
|
|
|
with self.assertRaisesRegex(
|
2021-06-30 10:46:37 +01:00
|
|
|
UnexpectedTracerError,
|
2020-06-15 18:42:53 -07:00
|
|
|
re.compile("Encountered an unexpected tracer.*Can't lift",
|
|
|
|
re.DOTALL)):
|
|
|
|
api.grad(func1)(2.)
|
|
|
|
|
|
|
|
def test_escaped_tracers_not_among_input_tracers(self):
|
|
|
|
def func1(x):
|
|
|
|
api.grad(self.helper_save_tracer)(x)
|
|
|
|
# Use the tracer
|
|
|
|
return x + self._saved_tracer
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(
|
2021-06-30 10:46:37 +01:00
|
|
|
UnexpectedTracerError,
|
2020-06-15 18:42:53 -07:00
|
|
|
re.compile(
|
|
|
|
"Encountered an unexpected tracer.*Tracer not among input tracers",
|
|
|
|
re.DOTALL)):
|
|
|
|
api.jit(func1)(2.)
|
|
|
|
|
2020-09-16 15:59:50 -07:00
|
|
|
def test_escaped_tracer_omnistaging(self):
|
|
|
|
count = 1
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def f():
|
|
|
|
nonlocal count
|
|
|
|
count = jnp.add(count, 1)
|
|
|
|
f() # leaked a tracer! but currently undetected
|
|
|
|
|
|
|
|
def f(x, c):
|
|
|
|
jnp.add(count, 1)
|
|
|
|
return None, None
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def g():
|
|
|
|
lax.scan(f, None, None, length=2)
|
|
|
|
|
2021-06-30 10:46:37 +01:00
|
|
|
with self.assertRaisesRegex(UnexpectedTracerError,
|
2021-01-05 14:52:54 -08:00
|
|
|
"was created on line"):
|
2020-09-16 15:59:50 -07:00
|
|
|
g()
|
|
|
|
|
2020-12-17 18:16:12 +01:00
|
|
|
def test_escaped_tracer_omnistaging_top_trace(self):
|
|
|
|
count = 1
|
|
|
|
|
|
|
|
def f(_, __):
|
|
|
|
nonlocal count
|
|
|
|
count = jnp.add(count, 1)
|
|
|
|
return None, None
|
|
|
|
|
|
|
|
lax.scan(f, None, None, length=2) # leaked a tracer! (of level 1!)
|
|
|
|
|
2021-06-30 10:46:37 +01:00
|
|
|
with self.assertRaisesRegex(UnexpectedTracerError,
|
2021-01-05 14:52:54 -08:00
|
|
|
"was created on line"):
|
2020-12-17 18:16:12 +01:00
|
|
|
# The following call will try and raise the ones array to the count tracer
|
|
|
|
# level, which is no longer live.
|
|
|
|
jax.jit(jnp.add)(jnp.ones(()), count)
|
|
|
|
|
2021-03-23 19:47:58 +00:00
|
|
|
def test_escaped_tracer_transform_name(self):
|
2021-06-30 10:46:37 +01:00
|
|
|
with self.assertRaisesRegex(UnexpectedTracerError,
|
2021-05-01 12:28:12 -07:00
|
|
|
"for jit"):
|
2021-03-23 19:47:58 +00:00
|
|
|
jax.jit(self.helper_save_tracer)(1)
|
|
|
|
_ = self._saved_tracer+1
|
|
|
|
|
2021-06-30 10:46:37 +01:00
|
|
|
with self.assertRaisesRegex(UnexpectedTracerError,
|
2021-05-01 12:28:12 -07:00
|
|
|
"for pmap"):
|
2021-03-23 19:47:58 +00:00
|
|
|
jax.pmap(self.helper_save_tracer)(jnp.ones((1, 2)))
|
|
|
|
_ = self._saved_tracer+1
|
|
|
|
|
2021-06-30 10:46:37 +01:00
|
|
|
with self.assertRaisesRegex(UnexpectedTracerError,
|
2021-05-01 12:28:12 -07:00
|
|
|
"for eval_shape"):
|
2021-04-23 14:43:20 +01:00
|
|
|
jax.eval_shape(self.helper_save_tracer, 1)
|
|
|
|
_ = self._saved_tracer+1
|
|
|
|
|
2021-07-21 10:29:46 +01:00
|
|
|
def test_escaped_tracer_shape_dtype(self):
|
|
|
|
with self.assertRaisesRegex(core.UnexpectedTracerError,
|
|
|
|
r"shape \(4, 3\) and dtype int32"):
|
|
|
|
jax.jit(self.helper_save_tracer)(jnp.ones((4, 3), dtype=jnp.int32))
|
|
|
|
_ = self._saved_tracer+1
|
|
|
|
|
2020-06-15 18:42:53 -07:00
|
|
|
def test_pmap_static_kwarg_error_message(self):
|
|
|
|
# https://github.com/google/jax/issues/3007
|
|
|
|
def f(a, b):
|
|
|
|
return a + b
|
|
|
|
|
|
|
|
g = jax.pmap(f, static_broadcasted_argnums=(1,))
|
|
|
|
|
|
|
|
msg = (r"pmapped function has static_broadcasted_argnums=\(1,\) but was "
|
|
|
|
r"called with only 1 positional argument. All static broadcasted "
|
|
|
|
r"arguments must be passed positionally.")
|
|
|
|
with self.assertRaisesRegex(ValueError, msg):
|
|
|
|
g(jnp.ones((1, 1)), b=1)
|
|
|
|
|
|
|
|
def test_vmap_unmapped_last(self):
|
2020-09-10 09:38:14 -04:00
|
|
|
@partial(jax.vmap, out_axes=-1)
|
2020-06-15 18:42:53 -07:00
|
|
|
def f(x):
|
|
|
|
return np.zeros((2,))
|
|
|
|
f(np.zeros((5,)))
|
|
|
|
|
2020-12-07 09:10:34 -08:00
|
|
|
# TODO(jakevdp): re-enable this if possible.
|
|
|
|
@unittest.skipIf(True, "broken by convert_element_type change.")
|
2020-06-11 17:15:23 -07:00
|
|
|
def test_xla_constant_dedup(self):
|
|
|
|
y = np.array([7, 14], dtype=np.float32)
|
|
|
|
def f(x):
|
|
|
|
return x + y + y
|
|
|
|
|
|
|
|
x = np.array([1, 2], dtype=np.float32)
|
|
|
|
hlo_lines = jax.xla_computation(f)(x).as_hlo_text().split('\n')
|
|
|
|
hlo_lines = set([s.strip() for s in hlo_lines])
|
|
|
|
self.assertIn('constant.1 = f32[2]{0} constant({7, 14})', hlo_lines)
|
|
|
|
self.assertNotIn('constant.2 = f32[2]{0} constant({7, 14})', hlo_lines)
|
|
|
|
|
2020-09-17 09:57:43 -07:00
|
|
|
def test_eval_context(self):
|
|
|
|
@jit
|
|
|
|
def f():
|
|
|
|
with core.eval_context():
|
|
|
|
assert jnp.add(1, 1) == 2
|
|
|
|
|
|
|
|
f() # doesn't crash
|
|
|
|
|
2021-05-01 12:28:12 -07:00
|
|
|
def test_concrete_error_because_arg_unary(self):
|
|
|
|
@jax.jit
|
|
|
|
def f(x):
|
|
|
|
if x > 0:
|
|
|
|
return x
|
|
|
|
else:
|
|
|
|
return 0
|
|
|
|
|
|
|
|
msg = r"on the value of the argument 'x'"
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f(1)
|
|
|
|
|
|
|
|
def test_concrete_error_because_arg_binary(self):
|
2020-09-18 10:49:04 -07:00
|
|
|
@jax.jit
|
|
|
|
def f(x, y):
|
|
|
|
if x > y:
|
|
|
|
return x
|
|
|
|
else:
|
|
|
|
return y
|
|
|
|
|
2021-05-01 12:28:12 -07:00
|
|
|
msg = r"on the values of the arguments 'x' and 'y'"
|
2020-09-18 10:49:04 -07:00
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f(1, 2)
|
|
|
|
|
2021-05-01 12:28:12 -07:00
|
|
|
def test_concrete_error_because_arg_ternary(self):
|
|
|
|
@jax.jit
|
|
|
|
def f(x, y, z):
|
|
|
|
if x > z:
|
|
|
|
return x
|
|
|
|
else:
|
|
|
|
return y
|
|
|
|
|
|
|
|
msg = r"on the values of the arguments 'x' and 'z'"
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f(1, 2, 3)
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f(1, 2, z=3)
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f(1, y=2, z=3)
|
|
|
|
|
|
|
|
def test_concrete_error_because_arg_varargs(self):
|
|
|
|
@jax.jit
|
|
|
|
def f(*args):
|
|
|
|
x, y, z = args
|
|
|
|
if x > z:
|
|
|
|
return x
|
|
|
|
else:
|
|
|
|
return y
|
|
|
|
|
|
|
|
msg = r"on the values of the argument 'args'"
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f(1, 2, 3)
|
|
|
|
|
|
|
|
def test_concrete_error_because_arg_kwargs(self):
|
|
|
|
@jax.jit
|
|
|
|
def f(**kwargs):
|
|
|
|
x, y, z = kwargs['x'], kwargs['y'], kwargs['z']
|
|
|
|
if x > z:
|
|
|
|
return x
|
|
|
|
else:
|
|
|
|
return y
|
|
|
|
|
|
|
|
msg = r"on the values of the argument 'kwargs'"
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f(x=1, y=2, z=3)
|
|
|
|
|
|
|
|
def test_concrete_error_because_arg_pytree(self):
|
|
|
|
@jax.jit
|
|
|
|
def f(xy, z):
|
|
|
|
x, y = xy
|
|
|
|
if x > 0:
|
|
|
|
return x
|
|
|
|
else:
|
|
|
|
return y
|
|
|
|
|
|
|
|
msg = r"on the value of the argument 'xy'"
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f((1, 2), z=3)
|
|
|
|
|
2020-09-18 10:49:04 -07:00
|
|
|
def test_concrete_error_because_const(self):
|
|
|
|
@jax.jit
|
|
|
|
def f():
|
|
|
|
assert jnp.add(1, 1) > 0
|
|
|
|
|
|
|
|
msg = "on these lines"
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f()
|
|
|
|
|
2021-12-14 13:29:16 -08:00
|
|
|
def test_concrete_error_because_const_2(self):
|
|
|
|
@jax.jit
|
|
|
|
def f():
|
|
|
|
result = sum(jnp.add(1, 1) for _ in range(6))
|
|
|
|
assert result > 0
|
|
|
|
|
|
|
|
msg = "Additional originating lines are not shown."
|
|
|
|
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
|
|
|
|
f()
|
|
|
|
|
2020-09-21 17:55:30 -07:00
|
|
|
def test_xla_computation_zeros_doesnt_device_put(self):
|
2021-03-09 14:22:27 -08:00
|
|
|
with jtu.count_device_put() as count:
|
2020-09-21 17:55:30 -07:00
|
|
|
api.xla_computation(lambda: jnp.zeros(3))()
|
2021-03-09 14:22:27 -08:00
|
|
|
self.assertEqual(count[0], 0)
|
2020-09-21 17:55:30 -07:00
|
|
|
|
2020-10-16 21:00:18 -07:00
|
|
|
def test_join_concrete_arrays_with_omnistaging(self):
|
|
|
|
# https://github.com/google/jax/issues/4622
|
|
|
|
x = jnp.array([1., 2., 3.])
|
|
|
|
y = jnp.array([1., 2., 4.])
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def f():
|
2021-12-07 06:12:32 -08:00
|
|
|
core.lattice_join(core.ConcreteArray(x.dtype, x),
|
|
|
|
core.ConcreteArray(y.dtype, y))
|
2020-10-16 21:00:18 -07:00
|
|
|
|
|
|
|
f() # doesn't crash
|
|
|
|
|
|
|
|
def test_linearize_aval_error(self):
|
|
|
|
# https://github.com/google/jax/issues/4622
|
|
|
|
f = lambda x: x
|
|
|
|
|
|
|
|
# these should not error
|
|
|
|
_, f_jvp = api.linearize(f, 1.)
|
|
|
|
f_jvp(1.)
|
|
|
|
_, f_jvp = api.linearize(f, np.ones(2, np.int32))
|
|
|
|
f_jvp(np.zeros(2, float0))
|
|
|
|
|
|
|
|
# these should error
|
|
|
|
_, f_jvp = api.linearize(f, 1.)
|
|
|
|
with self.assertRaisesRegex(ValueError, "tangent values inconsistent"):
|
|
|
|
f_jvp(1)
|
|
|
|
_, f_jvp = api.linearize(f, np.ones(2, np.int32))
|
|
|
|
with self.assertRaisesRegex(ValueError, "tangent values inconsistent"):
|
|
|
|
f_jvp(np.ones(2, np.int32))
|
|
|
|
|
2021-01-22 10:57:33 -05:00
|
|
|
def test_grad_of_token_consuming_primitive(self):
|
|
|
|
# https://github.com/google/jax/issues/5463
|
|
|
|
tokentest_p = core.Primitive("tokentest")
|
|
|
|
tokentest_p.def_impl(partial(xla.apply_primitive, tokentest_p))
|
|
|
|
tokentest_p.def_abstract_eval(lambda x, y: x)
|
2021-10-19 09:47:55 -07:00
|
|
|
xla.register_translation(tokentest_p,
|
|
|
|
lambda ctx, avals_in, avals_out, x, y: [x])
|
2021-01-22 10:57:33 -05:00
|
|
|
ad.defjvp(tokentest_p, (lambda g, x, token: x), None)
|
|
|
|
|
|
|
|
token = jax.lax.create_token(123)
|
|
|
|
arr = jnp.ones((3, 2))
|
|
|
|
res, vjp_fun = jax.vjp(lambda x: tokentest_p.bind(x, token), arr)
|
|
|
|
# Should not crash.
|
|
|
|
vjp_fun(arr)
|
|
|
|
|
2021-03-10 10:18:38 -05:00
|
|
|
def test_jit_returning_token(self):
|
|
|
|
x = jax.jit(jax.lax.create_token)(1.0)
|
2021-11-22 08:22:10 -08:00
|
|
|
self.assertIsInstance(x, jax.core.Token)
|
2021-03-10 10:18:38 -05:00
|
|
|
|
2021-01-19 18:38:53 -08:00
|
|
|
def test_leak_checker_catches_a_jit_leak(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-01-19 18:38:53 -08:00
|
|
|
lst = []
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def f(x):
|
|
|
|
lst.append(x)
|
|
|
|
return x
|
|
|
|
|
2021-05-03 21:40:50 -07:00
|
|
|
with self.assertRaisesRegex(Exception, r"Leaked"):
|
2021-01-19 18:38:53 -08:00
|
|
|
f(3)
|
|
|
|
|
|
|
|
def test_leak_checker_catches_a_pmap_leak(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-01-19 18:38:53 -08:00
|
|
|
lst = []
|
|
|
|
|
|
|
|
@api.pmap
|
|
|
|
def f(x):
|
|
|
|
lst.append(x)
|
|
|
|
return x
|
|
|
|
|
2021-05-03 21:40:50 -07:00
|
|
|
with self.assertRaisesRegex(Exception, r"Leaked"):
|
2021-01-19 18:38:53 -08:00
|
|
|
f(np.ones(1))
|
|
|
|
|
|
|
|
def test_leak_checker_catches_a_grad_leak(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-01-19 18:38:53 -08:00
|
|
|
lst = []
|
|
|
|
|
|
|
|
def f(x):
|
|
|
|
lst.append(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(Exception, r"Leaked trace"):
|
|
|
|
api.grad(f)(3.)
|
|
|
|
|
|
|
|
def test_leak_checker_avoids_false_positives(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-10-06 14:18:07 -07:00
|
|
|
api.vmap(lambda x: x)(np.arange(3.)) # doesn't crash
|
|
|
|
|
2021-01-19 18:38:53 -08:00
|
|
|
@jit
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
f(3) # doesn't crash
|
|
|
|
api.vmap(f)(np.arange(3)) # doesn't crash
|
|
|
|
api.grad(f)(3.) # doesn't crash
|
|
|
|
|
|
|
|
@api.pmap
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
f(np.ones(1)) # doesn't crash
|
|
|
|
api.vmap(f)(np.ones((1, 1))) # doesn't crash
|
|
|
|
|
|
|
|
def test_leak_checker_catches_a_scan_leak(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-01-19 18:38:53 -08:00
|
|
|
lst = []
|
|
|
|
|
|
|
|
to_scan = lambda c, x: (lst.append(c) or jnp.sin(c), None)
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(Exception, r"Leaked trace"):
|
|
|
|
lax.scan(to_scan, 1., np.arange(3.))
|
|
|
|
|
|
|
|
def test_leak_checker_avoids_false_positives_scan(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-01-19 18:38:53 -08:00
|
|
|
to_scan = lambda c, x: (jnp.sin(c), None)
|
|
|
|
lax.scan(to_scan, 1., np.arange(3.)) # doesn't crash
|
|
|
|
|
|
|
|
def test_leak_checker_avoids_false_positives_scan_jvp(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-01-19 18:38:53 -08:00
|
|
|
to_scan = lambda c, x: (c, None)
|
|
|
|
|
|
|
|
def f(x):
|
|
|
|
lax.scan(to_scan, x, None, length=1)
|
|
|
|
api.jvp(f, (3.,), (1.,)) # doesn't crash
|
|
|
|
|
|
|
|
def test_leak_checker_avoids_false_positives_scan_vmap(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-01-19 18:38:53 -08:00
|
|
|
to_scan = lambda c, _: (1., None)
|
|
|
|
|
|
|
|
@api.vmap
|
|
|
|
def f(x):
|
|
|
|
lax.scan(to_scan, x, None, length=1)
|
|
|
|
f(np.arange(5.)) # doesn't crash
|
|
|
|
|
|
|
|
def test_leak_checker_avoids_false_positives_scan_vmap_2(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-01-19 18:38:53 -08:00
|
|
|
to_scan = lambda c, _: (c, None)
|
|
|
|
|
|
|
|
@api.vmap
|
|
|
|
def f(x):
|
|
|
|
lax.scan(to_scan, x, None, length=1)
|
|
|
|
f(np.arange(5.)) # doesn't crash
|
|
|
|
|
2021-03-18 17:32:33 +00:00
|
|
|
def test_leak_checker_catches_a_sublevel_leak(self):
|
2021-03-19 13:49:38 -07:00
|
|
|
with jax.checking_leaks():
|
2021-03-18 17:32:33 +00:00
|
|
|
@jit
|
|
|
|
def f(x):
|
|
|
|
lst = []
|
|
|
|
@jit
|
|
|
|
def g(x):
|
|
|
|
lst.append(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
x = g(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(Exception, r"Leaked sublevel"):
|
|
|
|
f(3)
|
|
|
|
|
2021-07-21 13:27:48 +01:00
|
|
|
def test_leak_checker_avoids_false_positive_custom_jvp(self):
|
|
|
|
# see https://github.com/google/jax/issues/5636
|
|
|
|
with jax.checking_leaks():
|
|
|
|
@api.custom_jvp
|
|
|
|
def t(y):
|
|
|
|
return y
|
|
|
|
|
|
|
|
def t_jvp(p, t):
|
|
|
|
pass
|
|
|
|
|
|
|
|
t.defjvp(t_jvp)
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def s(y):
|
|
|
|
return t(y)
|
|
|
|
s(3) # doesn't crash
|
|
|
|
|
2021-02-04 11:56:41 +00:00
|
|
|
def test_default_backend(self):
|
|
|
|
first_local_device = api.local_devices()[0]
|
|
|
|
self.assertEqual(first_local_device.platform, api.default_backend())
|
|
|
|
|
2021-02-05 20:30:14 -08:00
|
|
|
def test_dunder_jax_array(self):
|
|
|
|
# https://github.com/google/jax/pull/4725
|
|
|
|
|
|
|
|
class AlexArray:
|
|
|
|
def __init__(self, jax_val):
|
|
|
|
self.jax_val = jax_val
|
|
|
|
def __jax_array__(self):
|
|
|
|
return self.jax_val
|
|
|
|
dtype = property(lambda self: self.jax_val.dtype)
|
|
|
|
shape = property(lambda self: self.jax_val.shape)
|
|
|
|
|
|
|
|
x = AlexArray(jnp.array([1., 2., 3.]))
|
|
|
|
y = jnp.sin(x)
|
|
|
|
self.assertAllClose(y, jnp.sin(jnp.array([1., 2., 3.])))
|
|
|
|
y = api.grad(api.jit(lambda x: jnp.sin(x).sum()))(x)
|
|
|
|
self.assertAllClose(y, jnp.cos(jnp.array([1., 2., 3.])))
|
|
|
|
|
|
|
|
x = AlexArray(jnp.array([[1., 2., 3.]]))
|
|
|
|
y = api.pmap(jnp.sin)(x)
|
|
|
|
self.assertAllClose(y, jnp.sin(jnp.array([[1., 2., 3.]])))
|
|
|
|
|
|
|
|
x = jnp.array(1)
|
|
|
|
a = AlexArray(x)
|
|
|
|
for f in [jnp.isscalar, jnp.size, jnp.shape, jnp.dtype]:
|
|
|
|
self.assertEqual(f(x), f(a))
|
|
|
|
|
2021-03-18 18:05:22 -07:00
|
|
|
def test_constant_handler_mro(self):
|
|
|
|
# https://github.com/google/jax/issues/6129
|
|
|
|
|
|
|
|
class Foo(enum.IntEnum):
|
|
|
|
bar = 1
|
|
|
|
|
|
|
|
@api.pmap
|
|
|
|
def f(_):
|
|
|
|
return Foo.bar
|
|
|
|
|
|
|
|
ans = f(jnp.arange(1)) # doesn't crash
|
|
|
|
expected = jnp.arange(1) + 1
|
|
|
|
self.assertAllClose(ans, expected)
|
2020-06-15 18:42:53 -07:00
|
|
|
|
2021-08-10 06:48:55 -07:00
|
|
|
def test_large_python_ints(self):
|
|
|
|
with self.assertRaises(OverflowError):
|
|
|
|
jnp.multiply(2 ** 100, 3.)
|
|
|
|
|
2021-03-21 19:38:12 -07:00
|
|
|
out = lax.convert_element_type(2 ** 100, jnp.float32) # doesn't crash
|
|
|
|
self.assertArraysEqual(out, np.float32(2 ** 100))
|
2021-03-21 15:53:24 -07:00
|
|
|
|
2021-03-23 20:58:52 -07:00
|
|
|
def test_dot_precision_context_manager(self):
|
|
|
|
x = jnp.zeros((2, 2))
|
|
|
|
|
|
|
|
with jax.default_matmul_precision(None):
|
|
|
|
jnp.dot(x, x) # doesn't crash
|
|
|
|
jaxpr = jax.make_jaxpr(jnp.dot)(x, x)
|
|
|
|
self.assertIn('precision=None', str(jaxpr))
|
|
|
|
|
|
|
|
with jax.default_matmul_precision("bfloat16"):
|
|
|
|
x @ x # doesn't crash
|
|
|
|
jaxpr = jax.make_jaxpr(op.matmul)(x, x)
|
2021-05-12 02:29:51 -07:00
|
|
|
self.assertIn('Precision.DEFAULT', str(jaxpr))
|
2021-03-23 20:58:52 -07:00
|
|
|
|
|
|
|
with jax.default_matmul_precision("tensorfloat32"):
|
|
|
|
jnp.dot(x, x) # doesn't crash
|
|
|
|
jaxpr = jax.make_jaxpr(jnp.dot)(x, x)
|
2021-05-12 02:29:51 -07:00
|
|
|
self.assertIn('Precision.HIGH', str(jaxpr))
|
2021-03-23 20:58:52 -07:00
|
|
|
|
|
|
|
with jax.default_matmul_precision("float32"):
|
|
|
|
jnp.dot(x, x) # doesn't crash
|
|
|
|
jaxpr = jax.make_jaxpr(jnp.dot)(x, x)
|
2021-05-12 02:29:51 -07:00
|
|
|
self.assertIn('Precision.HIGHEST', str(jaxpr))
|
2021-03-23 20:58:52 -07:00
|
|
|
|
|
|
|
dot = partial(jnp.dot, precision=lax.Precision.HIGHEST)
|
|
|
|
with jax.default_matmul_precision("tensorfloat32"):
|
|
|
|
dot(x, x) # doesn't crash
|
|
|
|
jaxpr = jax.make_jaxpr(dot)(x, x)
|
2021-05-12 02:29:51 -07:00
|
|
|
self.assertIn('Precision.HIGHEST', str(jaxpr))
|
2021-03-23 20:58:52 -07:00
|
|
|
|
|
|
|
def test_dot_precision_flag(self):
|
|
|
|
x = jnp.zeros((2, 2))
|
|
|
|
|
|
|
|
prev_val = config._read("jax_default_matmul_precision")
|
|
|
|
try:
|
|
|
|
config.FLAGS.jax_default_matmul_precision = "tensorfloat32"
|
|
|
|
jnp.dot(x, x) # doesn't crash
|
|
|
|
jaxpr = jax.make_jaxpr(jnp.dot)(x, x)
|
|
|
|
finally:
|
|
|
|
config.FLAGS.jax_default_matmul_precision = prev_val
|
2021-05-12 02:29:51 -07:00
|
|
|
self.assertIn('Precision.HIGH', str(jaxpr))
|
2021-03-23 20:58:52 -07:00
|
|
|
self.assertEqual(prev_val, config._read("jax_default_matmul_precision"))
|
|
|
|
|
|
|
|
prev_val = config._read("jax_default_matmul_precision")
|
|
|
|
try:
|
|
|
|
config.update('jax_default_matmul_precision','tensorfloat32')
|
|
|
|
jnp.dot(x, x) # doesn't crash
|
|
|
|
jaxpr = jax.make_jaxpr(jnp.dot)(x, x)
|
|
|
|
finally:
|
|
|
|
config.update('jax_default_matmul_precision', prev_val)
|
2021-05-12 02:29:51 -07:00
|
|
|
self.assertIn('Precision.HIGH', str(jaxpr))
|
2021-03-23 20:58:52 -07:00
|
|
|
self.assertEqual(prev_val, config._read("jax_default_matmul_precision"))
|
|
|
|
|
2021-04-21 06:36:08 -07:00
|
|
|
def test_dot_precision_forces_retrace(self):
|
|
|
|
num_traces = 0
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
nonlocal num_traces
|
|
|
|
num_traces += 1
|
|
|
|
return jnp.dot(x, x)
|
|
|
|
def f_cond(x):
|
|
|
|
return lax.cond(True, g, g, x)
|
|
|
|
|
|
|
|
@jax.jit
|
|
|
|
def f_jit(x):
|
|
|
|
nonlocal num_traces
|
|
|
|
num_traces += 1
|
|
|
|
return jnp.dot(x, x)
|
|
|
|
|
|
|
|
for f in [f_jit, f_cond]:
|
|
|
|
precision = config.jax_default_matmul_precision
|
|
|
|
try:
|
|
|
|
num_traces = 0
|
|
|
|
x = jnp.zeros((2, 2))
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, 1)
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, 1)
|
|
|
|
with jax.default_matmul_precision("tensorfloat32"):
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, 2)
|
|
|
|
FLAGS.jax_default_matmul_precision = "float32"
|
|
|
|
f(x)
|
|
|
|
self.assertGreaterEqual(num_traces, 2)
|
|
|
|
nt = num_traces
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, nt + 1)
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, nt + 1)
|
|
|
|
finally:
|
|
|
|
FLAGS.jax_default_matmul_precision = precision
|
|
|
|
|
|
|
|
def test_rank_promotion_forces_retrace(self):
|
|
|
|
num_traces = 0
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
nonlocal num_traces
|
|
|
|
num_traces += 1
|
|
|
|
return x + x
|
|
|
|
def f_cond(x):
|
|
|
|
return lax.cond(True, g, g, x)
|
|
|
|
|
|
|
|
@jax.jit
|
|
|
|
def f_jit(x):
|
|
|
|
nonlocal num_traces
|
|
|
|
num_traces += 1
|
|
|
|
return x + x
|
|
|
|
|
|
|
|
for f in [f_jit, f_cond]:
|
|
|
|
allow_promotion = config.jax_numpy_rank_promotion
|
|
|
|
try:
|
|
|
|
num_traces = 0
|
|
|
|
@jax.jit
|
|
|
|
def f(x):
|
|
|
|
nonlocal num_traces
|
|
|
|
num_traces += 1
|
|
|
|
return x + x
|
|
|
|
x = jnp.zeros((2, 2))
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, 1)
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, 1)
|
|
|
|
with jax.numpy_rank_promotion("warn"):
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, 2)
|
|
|
|
FLAGS.jax_numpy_rank_promotion = "raise"
|
|
|
|
f(x)
|
|
|
|
self.assertGreaterEqual(num_traces, 2)
|
|
|
|
nt = num_traces
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, nt + 1)
|
|
|
|
f(x)
|
|
|
|
self.assertEqual(num_traces, nt + 1)
|
|
|
|
finally:
|
|
|
|
FLAGS.jax_numpy_rank_promotion = allow_promotion
|
|
|
|
|
2021-03-24 23:00:51 -07:00
|
|
|
def test_backward_pass_ref_dropping(self):
|
|
|
|
refs = []
|
|
|
|
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
def f_fwd(x):
|
|
|
|
return x, None
|
|
|
|
def f_rev(_, g):
|
|
|
|
assert len(refs) != 2 or refs[0]() is None
|
|
|
|
zero = np.zeros(())
|
|
|
|
refs.append(weakref.ref(zero))
|
|
|
|
return (zero,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
api.grad(lambda x: f(f(f(x))))(1.)
|
|
|
|
|
2021-05-03 21:40:50 -07:00
|
|
|
def test_jit_inline(self):
|
|
|
|
@partial(api.jit, inline=False)
|
|
|
|
def f(x):
|
|
|
|
return x * 2
|
|
|
|
|
|
|
|
jaxpr = api.make_jaxpr(f)(3)
|
|
|
|
self.assertIn('xla_call', str(jaxpr))
|
|
|
|
|
|
|
|
@partial(api.jit, inline=True)
|
|
|
|
def f(x):
|
|
|
|
return x * 2
|
|
|
|
|
|
|
|
jaxpr = api.make_jaxpr(f)(3)
|
|
|
|
self.assertNotIn('xla_call', str(jaxpr))
|
|
|
|
|
2021-07-12 14:42:05 -07:00
|
|
|
# Repro for https://github.com/google/jax/issues/7229.
|
|
|
|
def test_compute_with_large_transfer(self):
|
|
|
|
def f(x, delta):
|
|
|
|
return x + jnp.asarray(delta, x.dtype)
|
|
|
|
|
|
|
|
# A large and potentially unaligned array to trigger non-zero-copy and
|
|
|
|
# async device array copy.
|
2021-12-10 10:32:09 -08:00
|
|
|
xs = self.rng().uniform(0., 1., size=(10, 131, 111, 3)).astype(np.float32)
|
2021-07-12 14:42:05 -07:00
|
|
|
for x in xs:
|
2021-12-10 10:32:09 -08:00
|
|
|
delta = self.rng().uniform(-0.5, 0.5, size=())
|
2021-07-12 14:42:05 -07:00
|
|
|
jitted_f = api.jit(f)
|
|
|
|
np.testing.assert_allclose(jitted_f(x, delta), f(x, delta))
|
|
|
|
|
2021-07-21 15:31:09 +02:00
|
|
|
def test_vjp_fun_jit(self):
|
|
|
|
# test that the function returned by vjp can be returned
|
|
|
|
# from and passed to jitted functions
|
|
|
|
f = lambda x: 2. * x
|
|
|
|
|
|
|
|
@partial(jit, static_argnums=0)
|
|
|
|
def linearize_vjp(f, x):
|
|
|
|
_, vjp_fun = api.vjp(f, x)
|
|
|
|
return vjp_fun
|
|
|
|
|
|
|
|
linearized = linearize_vjp(f, 1.)
|
|
|
|
actual = jit(lambda f, x: f(x))(linearized, 3.)
|
|
|
|
expected = (6.,)
|
|
|
|
self.assertEqual(actual, expected)
|
|
|
|
|
|
|
|
def test_linearize_fun_jit(self):
|
|
|
|
# test that the function returned by linearize can be returned
|
|
|
|
# from and passed to jitted functions
|
|
|
|
f = lambda x: 2. * x
|
|
|
|
|
|
|
|
@partial(jit, static_argnums=0)
|
|
|
|
def linearize(f, x):
|
|
|
|
_, jvp_fun = api.linearize(f, x)
|
|
|
|
return jvp_fun
|
|
|
|
|
|
|
|
linearized = linearize(f, 1.)
|
|
|
|
actual = jit(lambda f, x: f(x))(linearized, 3.)
|
|
|
|
expected = 6.
|
|
|
|
self.assertEqual(actual, expected)
|
|
|
|
|
|
|
|
def test_linear_transpose_fun_jit(self):
|
|
|
|
# test that the function returned by linear_transpose can be returned
|
|
|
|
# from and passed to jitted functions
|
|
|
|
f = lambda x: 2. * x
|
|
|
|
|
|
|
|
@partial(jit, static_argnums=0)
|
|
|
|
def transpose(f, x):
|
|
|
|
return api.linear_transpose(f, x)
|
|
|
|
|
|
|
|
transposed = transpose(f, 1.)
|
|
|
|
actual = jit(lambda f, x: f(x))(transposed, 3.)
|
|
|
|
expected = (6.,)
|
|
|
|
self.assertEqual(actual, expected)
|
|
|
|
|
2021-08-12 21:49:17 -07:00
|
|
|
def test_leaked_tracer_issue_7613(self):
|
|
|
|
# from https://github.com/google/jax/issues/7613
|
|
|
|
import numpy.random as npr
|
|
|
|
|
|
|
|
def sigmoid(x):
|
|
|
|
return 1. / (1. + jnp.exp(-x))
|
|
|
|
|
|
|
|
x = jnp.ones((50,))
|
|
|
|
A = jnp.array(npr.randn(50, 50))
|
|
|
|
|
|
|
|
@jax.jit
|
|
|
|
def loss(A, x):
|
|
|
|
h = jax.nn.sigmoid(A * x)
|
|
|
|
return jnp.sum((h - x)**2)
|
|
|
|
|
|
|
|
with jax.checking_leaks():
|
|
|
|
_ = jax.grad(loss)(A, x) # doesn't crash
|
|
|
|
|
2021-08-13 14:47:45 -07:00
|
|
|
def test_vmap_caching(self):
|
|
|
|
# https://github.com/google/jax/issues/7621
|
|
|
|
|
|
|
|
f = lambda x: jnp.square(x).mean()
|
|
|
|
jf = jax.jit(f)
|
|
|
|
x = jax.random.uniform(jax.random.PRNGKey(0), shape=(8, 4))
|
|
|
|
|
|
|
|
with jtu.count_jit_and_pmap_compiles() as count: # noqa: F841
|
2021-09-09 06:32:16 -07:00
|
|
|
for _ in range(5):
|
|
|
|
jax.hessian(jf)(x).block_until_ready()
|
2021-08-13 14:47:45 -07:00
|
|
|
|
2021-09-09 06:32:16 -07:00
|
|
|
n = count[0]
|
|
|
|
# The exact number of compilations may vary depending on the number of
|
|
|
|
# jit decorators in the function above, but it should not grow after an
|
|
|
|
# initial warmup phase.
|
|
|
|
for _ in range(5):
|
|
|
|
jax.hessian(jf)(x).block_until_ready()
|
|
|
|
|
|
|
|
self.assertEqual(count[0], n)
|
2021-08-13 14:47:45 -07:00
|
|
|
|
2021-09-21 09:05:56 -07:00
|
|
|
def test_jnp_array_doesnt_device_put(self):
|
|
|
|
with jtu.count_device_put() as count:
|
|
|
|
api.make_jaxpr(lambda: jnp.array(3))()
|
|
|
|
self.assertEqual(count[0], 0)
|
|
|
|
|
2021-02-18 09:46:16 -08:00
|
|
|
|
2020-06-15 18:42:53 -07:00
|
|
|
class RematTest(jtu.JaxTestCase):
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_basic(self, remat):
|
|
|
|
@remat
|
2019-11-22 10:53:11 -08:00
|
|
|
def g(x):
|
2019-11-27 14:28:13 -08:00
|
|
|
return lax.sin(lax.sin(x)), 3.
|
2019-11-22 10:53:11 -08:00
|
|
|
|
|
|
|
def f(x):
|
|
|
|
x, _ = g(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
ans = f(2.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.sin(np.sin(2.))
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans, f_lin = api.linearize(f, 2.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.sin(np.sin(2.))
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = f_lin(3.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.cos(np.sin(2.)) * np.cos(2.) * 3.
|
2019-11-27 14:28:13 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
sin_calls = []
|
|
|
|
cos_calls = []
|
|
|
|
sin_impl = lax.sin_p.impl
|
|
|
|
cos_impl = lax.cos_p.impl
|
|
|
|
try:
|
|
|
|
lax.sin_p.def_impl(lambda x: sin_calls.append(1) or sin_impl(x))
|
|
|
|
lax.cos_p.def_impl(lambda x: cos_calls.append(1) or cos_impl(x))
|
|
|
|
f_lin(3.)
|
|
|
|
finally:
|
|
|
|
lax.sin_p.def_impl(sin_impl)
|
|
|
|
lax.cos_p.def_impl(cos_impl)
|
|
|
|
self.assertEqual(len(sin_calls), 1)
|
|
|
|
self.assertEqual(len(cos_calls), 2)
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_freevars(self, remat):
|
2019-11-27 14:28:13 -08:00
|
|
|
def f1(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
y = 2 * jnp.sin(x)
|
|
|
|
z = jnp.cos(x) * jnp.sin(y)
|
2019-11-27 14:28:13 -08:00
|
|
|
return z
|
|
|
|
|
|
|
|
def f2(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
y = 2 * jnp.sin(x)
|
2021-08-06 11:09:29 -07:00
|
|
|
z = remat(lambda x: jnp.cos(x) * jnp.sin(y))(x)
|
2019-11-27 14:28:13 -08:00
|
|
|
return z
|
|
|
|
|
|
|
|
ans, f_lin = api.linearize(f2, 2.)
|
|
|
|
expected, f_lin_expected = api.linearize(f1, 2.)
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2019-11-27 14:28:13 -08:00
|
|
|
ans = f_lin(3.)
|
|
|
|
expected = f_lin_expected(3.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
2019-11-22 10:53:11 -08:00
|
|
|
|
|
|
|
def test_remat_grad_python_control_flow(self):
|
|
|
|
@partial(api.remat, concrete=True)
|
|
|
|
def g(x):
|
|
|
|
if x > 0:
|
|
|
|
return lax.sin(x), 3.
|
|
|
|
else:
|
|
|
|
return lax.cos(x), 4.
|
|
|
|
|
|
|
|
def f(x):
|
|
|
|
x, _ = g(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
ans = f(2.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.sin(2.)
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(f)(2.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.cos(2.)
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_jit(self, remat):
|
|
|
|
@remat
|
2019-11-22 10:53:11 -08:00
|
|
|
def g(x):
|
|
|
|
return lax.sin(lax.sin(x))
|
|
|
|
|
|
|
|
def f_(x):
|
|
|
|
return g(x)
|
|
|
|
f = api.jit(f_)
|
|
|
|
|
|
|
|
ans = f(2.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.sin(np.sin(2.))
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(f)(2.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.cos(np.sin(2.)) * np.cos(2.)
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jit(api.grad(f_))(2.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.cos(np.sin(2.)) * np.cos(2.)
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_vmap(self, remat):
|
|
|
|
@remat
|
2019-11-22 10:53:11 -08:00
|
|
|
def g(x):
|
|
|
|
return lax.sin(lax.sin(x))
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = np.arange(3.)
|
2019-11-22 10:53:11 -08:00
|
|
|
|
|
|
|
ans = api.vmap(g)(x)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.sin(np.sin(x))
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jacfwd(g)(x)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.diag(np.cos(np.sin(x)) * np.cos(x))
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jacrev(g)(x)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = np.diag(np.cos(np.sin(x)) * np.cos(x))
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_higher_order_autodiff(self, remat):
|
2019-11-22 10:53:11 -08:00
|
|
|
def f(x):
|
|
|
|
return lax.cos(lax.sin(x))
|
2021-08-06 11:09:29 -07:00
|
|
|
g = remat(f)
|
2019-11-22 10:53:11 -08:00
|
|
|
|
|
|
|
ans = api.grad(api.grad(g))(3.)
|
|
|
|
expected = api.grad(api.grad(f))(3.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_remat_scan(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
to_scan = lambda c, x: (jnp.sin(c), None)
|
2019-11-22 10:53:11 -08:00
|
|
|
|
|
|
|
def f_noremat(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
y, _ = lax.scan(to_scan, x, np.arange(3.))
|
2019-11-22 10:53:11 -08:00
|
|
|
return y
|
|
|
|
|
|
|
|
def f_yesremat(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
y, _ = lax.scan(api.remat(to_scan), x, np.arange(3.))
|
2019-11-22 10:53:11 -08:00
|
|
|
return y
|
|
|
|
|
|
|
|
ans = f_yesremat(4.)
|
|
|
|
expected = f_noremat(4.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(f_yesremat)(4.)
|
|
|
|
expected = api.grad(f_noremat)(4.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
jaxpr = api.make_jaxpr(api.linearize(f_yesremat, 4.)[1])(1.)
|
2019-11-28 09:00:55 +01:00
|
|
|
scan_eqn, = jaxpr.jaxpr.eqns
|
2019-11-27 15:25:49 -08:00
|
|
|
self.assertIn(' cos ', str(scan_eqn.params['jaxpr']))
|
2019-11-22 10:53:11 -08:00
|
|
|
|
|
|
|
jaxpr = api.make_jaxpr(api.vjp(f_yesremat, 4.)[1])(1.)
|
2019-11-28 09:00:55 +01:00
|
|
|
scan_eqn, = jaxpr.jaxpr.eqns
|
2019-11-22 10:53:11 -08:00
|
|
|
self.assertIn(' cos ', str(scan_eqn.params['jaxpr']))
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_no_redundant_flops(self, remat):
|
2019-11-22 10:53:11 -08:00
|
|
|
# see https://github.com/google/jax/pull/1749#issuecomment-558267584
|
|
|
|
|
|
|
|
@api.jit
|
|
|
|
def g(x):
|
|
|
|
return f(2., x)
|
|
|
|
|
2021-08-06 11:09:29 -07:00
|
|
|
@remat
|
2019-11-22 10:53:11 -08:00
|
|
|
def f(x, y):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x) * y
|
2019-11-22 10:53:11 -08:00
|
|
|
|
|
|
|
# We swap out sin_p's impl rule to count how many times it's invoked
|
|
|
|
called = []
|
|
|
|
sin_impl = lax.sin_p.impl
|
|
|
|
try:
|
|
|
|
lax.sin_p.def_impl(lambda x: called.append(1) or sin_impl(x))
|
|
|
|
api.grad(g)(3.)
|
|
|
|
finally:
|
|
|
|
lax.sin_p.def_impl(sin_impl)
|
|
|
|
num_calls = len(called)
|
2020-07-30 12:59:36 -07:00
|
|
|
self.assertLessEqual(num_calls, 1)
|
2019-11-22 10:53:11 -08:00
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_binomial_checkpointing(self, remat):
|
2019-11-22 10:53:11 -08:00
|
|
|
def binom_checkpoint(funs):
|
|
|
|
if len(funs) == 1:
|
|
|
|
return funs[0]
|
|
|
|
else:
|
|
|
|
f1 = binom_checkpoint(funs[:len(funs)//2])
|
|
|
|
f2 = binom_checkpoint(funs[len(funs)//2:])
|
2021-08-06 11:09:29 -07:00
|
|
|
return remat(lambda x: f1(f2(x)))
|
2019-11-22 10:53:11 -08:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
f1 = binom_checkpoint([jnp.sin, jnp.sin, jnp.sin, jnp.sin])
|
|
|
|
f2 = lambda x: jnp.sin(jnp.sin(jnp.sin(jnp.sin(x))))
|
2019-11-22 10:53:11 -08:00
|
|
|
x = 4.
|
|
|
|
self.assertAllClose(f1(x), f2(x), check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(f1)(x), api.grad(f2)(x), check_dtypes=False)
|
|
|
|
|
2019-12-23 11:49:01 -08:00
|
|
|
def test_remat_symbolic_zeros(self):
|
|
|
|
# code from https://github.com/google/jax/issues/1907
|
|
|
|
|
|
|
|
key = jax.random.PRNGKey(0)
|
|
|
|
key, split = jax.random.split(key)
|
|
|
|
n = 5
|
|
|
|
|
|
|
|
def func(D0):
|
|
|
|
def shift(R, dR, **unused_kwargs):
|
|
|
|
return R + dR
|
|
|
|
|
|
|
|
def apply_fn(R):
|
|
|
|
return D0 * R
|
|
|
|
|
|
|
|
Rinit = jax.random.uniform(split, (n,3), minval=0.0, maxval=5.0,
|
2020-05-05 14:59:16 -04:00
|
|
|
dtype=jnp.float32)
|
2019-12-23 11:49:01 -08:00
|
|
|
|
|
|
|
def move(R,i):
|
|
|
|
F = apply_fn(R)
|
2020-05-05 14:59:16 -04:00
|
|
|
return shift(R, 0.001 * F), jnp.array([0.])
|
2019-12-23 11:49:01 -08:00
|
|
|
|
|
|
|
move = api.remat(move)
|
2020-05-05 14:59:16 -04:00
|
|
|
R, temp = lax.scan(move, Rinit, jnp.arange(2))
|
2019-12-23 11:49:01 -08:00
|
|
|
return R[0, 0]
|
|
|
|
|
|
|
|
api.grad(func)(5.0) # doesn't crash
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_jit2(self, remat):
|
2020-01-31 23:47:30 -08:00
|
|
|
@api.jit
|
|
|
|
def f(x):
|
|
|
|
y = 2 * x
|
|
|
|
|
2021-08-06 11:09:29 -07:00
|
|
|
@remat
|
2020-01-31 23:47:30 -08:00
|
|
|
def g():
|
|
|
|
return y
|
|
|
|
|
|
|
|
return g()
|
|
|
|
|
|
|
|
self.assertAllClose(f(3), 6, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_remat_nontrivial_env(self):
|
|
|
|
# simplified from https://github.com/google/jax/issues/2030
|
|
|
|
|
|
|
|
@api.remat
|
|
|
|
def foo(state, dt=0.5, c=1):
|
|
|
|
u, u_t = state
|
|
|
|
u_tt = c**2 * u
|
|
|
|
u_t = u_t + u_tt * dt
|
|
|
|
return (u, u_t)
|
|
|
|
|
|
|
|
@partial(api.jit, static_argnums=(1,))
|
|
|
|
def _multi_step(state, count, dt, c):
|
|
|
|
f = lambda s, _: (foo(s, dt, c), _)
|
|
|
|
return lax.scan(f, state, None, count)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
def multi_step(state, count, dt=1/jnp.sqrt(2), c=1):
|
2020-01-31 23:47:30 -08:00
|
|
|
return _multi_step(state, count, dt, c)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
def loss(u0, target, steps, dt=1/jnp.sqrt(2), c=1):
|
|
|
|
init = (u0, jnp.zeros_like(u0))
|
2020-01-31 23:47:30 -08:00
|
|
|
(uf, _), _ = multi_step(init, steps, dt, c)
|
|
|
|
return ((uf - target) ** 2).mean()
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
target = jnp.zeros((128, 128))
|
|
|
|
u0 = jnp.ones_like(target)
|
2020-01-31 23:47:30 -08:00
|
|
|
loss(u0, target, 10) # doesn't crash
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_jit3(self, remat):
|
2020-02-11 15:56:53 -08:00
|
|
|
# https://github.com/google/jax/issues/2180
|
|
|
|
def f(w, x):
|
2020-05-05 14:59:16 -04:00
|
|
|
a = jnp.dot(x, w)
|
|
|
|
b = jnp.einsum("btd,bTd->btT", a, a)
|
|
|
|
c = jnp.einsum("btT,btd->btd", b, a)
|
|
|
|
return jnp.sum(c)
|
2020-02-11 15:56:53 -08:00
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
w = jnp.ones([1, 1])
|
|
|
|
x = jnp.ones([1, 1, 1])
|
2021-08-06 11:09:29 -07:00
|
|
|
f = remat(f)
|
2020-02-11 15:56:53 -08:00
|
|
|
api.grad(f)(w, x) # doesn't crash
|
|
|
|
|
|
|
|
@api.jit
|
|
|
|
def mul(a, b):
|
|
|
|
return a * b
|
|
|
|
|
|
|
|
def f(w, x):
|
|
|
|
a = mul(w, x)
|
|
|
|
b = mul(a, a)
|
|
|
|
return b
|
|
|
|
|
|
|
|
w = 1.
|
|
|
|
x = 1.
|
2021-08-06 11:09:29 -07:00
|
|
|
f = remat(f)
|
2020-02-11 15:56:53 -08:00
|
|
|
api.grad(f)(w, x) # doesn't crash
|
|
|
|
|
|
|
|
def test_remat_scan2(self):
|
|
|
|
# https://github.com/google/jax/issues/1963
|
|
|
|
|
|
|
|
def scan_bug(x0):
|
|
|
|
f = lambda x, _: (x + 1, None)
|
|
|
|
def scanned_f(x, _):
|
|
|
|
return lax.scan(f, x, xs=None, length=1)[0], None
|
|
|
|
x, _ = jax.remat(scanned_f)(x0, None)
|
|
|
|
return x
|
|
|
|
|
|
|
|
jax.grad(scan_bug)(1.0) # doesn't crash
|
|
|
|
|
2020-07-30 12:59:36 -07:00
|
|
|
def test_remat_jit_static_argnum_omnistaging(self):
|
|
|
|
# https://github.com/google/jax/issues/2833
|
2021-08-06 11:09:29 -07:00
|
|
|
# NOTE(mattjj): after #3370, this test doesn't actually call remat...
|
2020-07-30 12:59:36 -07:00
|
|
|
def named_call(f):
|
|
|
|
def named_f(*args):
|
|
|
|
f_ = lu.wrap_init(lambda: (f(*args),))
|
|
|
|
out, = core.call_p.bind(f_)
|
|
|
|
return out
|
|
|
|
return named_f
|
|
|
|
|
|
|
|
def f(a_bool, y):
|
|
|
|
if a_bool:
|
|
|
|
return y + 1
|
|
|
|
else:
|
|
|
|
return y
|
|
|
|
|
|
|
|
api.jit(named_call(f), static_argnums=0)(True, 1) # no crash
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_remat_eval_counter(self, remat):
|
Simplify handling of non-linear equations in backward_pass and fix remat (#3162)
Previously, `backward_pass` has been generalized to be able to handle
non-linear computation in the body, but it could easily get confused
into doing unnecessary work only to throw it away later. Additionally, it
treated any call primitive embedded inside remat like remat itself,
which is obviously wrong.
This patch fixes both of those issues and simplifies a bunch of the code
at the same time. `backward_pass` now has an invariant that it only
deals with jaxprs containing linear equations alone, and becomes
a simple transposing interpreter again.
**Background on JVP vs linearization**
Ok, so why does this change actually fix the problem? It is important to
understand that JVP and linearization transforms are actually two
different things, even though we often identify them as one. Both take
in a function of type `a -> b`, but their ranges are different! JVP
returns a function of type `(a, T a) -> (b, T b)` while linearization
returns `a -> (b, T a --o T b)`. Note that the second type carries more
information, because we get a guarantee that (1) `b` does not depend on
`T a` and (2) the dependence of `T b` on `T a` is linear.
The reason why we usually treat them as equivalent, is that they can be
shown to be "isomorphic". If we take the output of linearization, we can
make it a JVP-like function using the following combinator:
```haskell
jvp f = \a ta -> let (b, lf) = linearize f in (b, lf ta)
```
More importantly for JAX, which doesn't have a linearization interpreter,
if we assume (1) and (2), linearization can be recovered in terms of jvp
as well:
```haskell
linearize f = \a -> let fjvp = jvp f in
partial_eval fjvp (Known a) Unknown
```
That is, if we have a mathematically correct JVP, then linearization is
simply partial evaluation with all primal values marked as known, and
all tangents treated as yet unknown values.
One important performance consideration is that for forward-mode AD we
really want to use the JVP formulation, which can interleave the computation
of primals and tangents, instead of sequencing them and increasing the memory
cost. On the other hand, transposition (necessary for VJPs!) can only be
applied to linear functions, and so it can't possibly work on the output
of JVP. It really can only be apply to the second output of the
linearization transform. Hence, we really care about both, but can we avoid
having two very similar implementations of (approximately) the same thing?
It seems that the answer is yes, because of the equivalence outlined above!
**If all this is so nice, then what's the problem?**
The problem is, of course, remat. Partial eval is able to thread the
known/unknown information correctly through regular call primitives, but
mind you, remat is no regular call primitive! Once we enter remat, we are
no longer interested in treating _anything_ like a known value. After
all, our goal here is to record an accurate trace of everything that has
happened in the body of a remat, including the primal (known!)
computation. This however presents a challenge for implementing
linearization in terms of JVP, because inside the body of remat we break
the assumption that known/unknown corresponds to the primal/tangent
distinction. Its body, instead of representing the second output of
linearization simply contains the traced JVP code now...
One way to fix it would be to implement a proper linearization pass that
would track the distinciton between primal and tangent information while
still allowing to stage out code for primals. @mattjj and I have even
started hacking together an implementation for that.
I've been trying to convince @mattjj that there is no other way to go
about it, but I couldn't really convince him that this is the case.
Then, once I wanted to write a semi-formal proof I could no longer even
convince myself! Turns out that there is an alternative solution!
What this patch does is, it stops caring about the output of the
`linearize` function (defined as JVP + partial eval, as discussed above)
to be a good linearization. It still is if you don't use remats in your
code, but it still breaks miserably once you do. However, as long as all
the complications are contained solely in the `call_jaxpr` embedded inside
a remat, we still have a chance to fix them! This is because the
transposition interpreter never reaches into those bodies directly, but
rather asks the call primitive to transpose itself.
Now, how do you transpose remat? We can't just reuse the code used for
regular call primitives (this is what happens now BTW), because unlike
for them, the `call_jaxpr` doesn't represent a linear function! But it's
not completely useless either --- it contains the traced JVP code. So,
how do we get from there to a linear function? Partial eval! And if you
think about it, it is exactly what we wanted --- we end up evaluating all
the primal code in the body once again, while only staging out the tangent
computation, to be passed into the transposing interpreter again.
Fin.
2020-05-27 20:22:40 +02:00
|
|
|
# https://github.com/google/jax/issues/2737
|
|
|
|
add_one_p = Primitive('add_one')
|
|
|
|
add_one = add_one_p.bind
|
|
|
|
|
|
|
|
num_evals = 0
|
|
|
|
|
|
|
|
@contextmanager
|
|
|
|
def assertEvals(n):
|
|
|
|
start = num_evals
|
|
|
|
yield
|
|
|
|
assert num_evals - start == n
|
|
|
|
|
|
|
|
def add_one_impl(x):
|
|
|
|
nonlocal num_evals
|
|
|
|
num_evals += 1
|
|
|
|
return x + 1
|
|
|
|
add_one_p.def_impl(add_one_impl)
|
|
|
|
|
|
|
|
def add_one_jvp(pin, tin):
|
|
|
|
pout = add_one(pin[0])
|
|
|
|
return pout, pout * tin[0]
|
|
|
|
ad.primitive_jvps[add_one_p] = add_one_jvp
|
|
|
|
|
|
|
|
add_one_p.def_abstract_eval(lambda x: x)
|
|
|
|
|
|
|
|
v = np.zeros((1,))
|
|
|
|
|
2021-08-06 11:09:29 -07:00
|
|
|
f = remat(add_one)
|
|
|
|
g = remat(lambda x: add_one(f(x)))
|
Simplify handling of non-linear equations in backward_pass and fix remat (#3162)
Previously, `backward_pass` has been generalized to be able to handle
non-linear computation in the body, but it could easily get confused
into doing unnecessary work only to throw it away later. Additionally, it
treated any call primitive embedded inside remat like remat itself,
which is obviously wrong.
This patch fixes both of those issues and simplifies a bunch of the code
at the same time. `backward_pass` now has an invariant that it only
deals with jaxprs containing linear equations alone, and becomes
a simple transposing interpreter again.
**Background on JVP vs linearization**
Ok, so why does this change actually fix the problem? It is important to
understand that JVP and linearization transforms are actually two
different things, even though we often identify them as one. Both take
in a function of type `a -> b`, but their ranges are different! JVP
returns a function of type `(a, T a) -> (b, T b)` while linearization
returns `a -> (b, T a --o T b)`. Note that the second type carries more
information, because we get a guarantee that (1) `b` does not depend on
`T a` and (2) the dependence of `T b` on `T a` is linear.
The reason why we usually treat them as equivalent, is that they can be
shown to be "isomorphic". If we take the output of linearization, we can
make it a JVP-like function using the following combinator:
```haskell
jvp f = \a ta -> let (b, lf) = linearize f in (b, lf ta)
```
More importantly for JAX, which doesn't have a linearization interpreter,
if we assume (1) and (2), linearization can be recovered in terms of jvp
as well:
```haskell
linearize f = \a -> let fjvp = jvp f in
partial_eval fjvp (Known a) Unknown
```
That is, if we have a mathematically correct JVP, then linearization is
simply partial evaluation with all primal values marked as known, and
all tangents treated as yet unknown values.
One important performance consideration is that for forward-mode AD we
really want to use the JVP formulation, which can interleave the computation
of primals and tangents, instead of sequencing them and increasing the memory
cost. On the other hand, transposition (necessary for VJPs!) can only be
applied to linear functions, and so it can't possibly work on the output
of JVP. It really can only be apply to the second output of the
linearization transform. Hence, we really care about both, but can we avoid
having two very similar implementations of (approximately) the same thing?
It seems that the answer is yes, because of the equivalence outlined above!
**If all this is so nice, then what's the problem?**
The problem is, of course, remat. Partial eval is able to thread the
known/unknown information correctly through regular call primitives, but
mind you, remat is no regular call primitive! Once we enter remat, we are
no longer interested in treating _anything_ like a known value. After
all, our goal here is to record an accurate trace of everything that has
happened in the body of a remat, including the primal (known!)
computation. This however presents a challenge for implementing
linearization in terms of JVP, because inside the body of remat we break
the assumption that known/unknown corresponds to the primal/tangent
distinction. Its body, instead of representing the second output of
linearization simply contains the traced JVP code now...
One way to fix it would be to implement a proper linearization pass that
would track the distinciton between primal and tangent information while
still allowing to stage out code for primals. @mattjj and I have even
started hacking together an implementation for that.
I've been trying to convince @mattjj that there is no other way to go
about it, but I couldn't really convince him that this is the case.
Then, once I wanted to write a semi-formal proof I could no longer even
convince myself! Turns out that there is an alternative solution!
What this patch does is, it stops caring about the output of the
`linearize` function (defined as JVP + partial eval, as discussed above)
to be a good linearization. It still is if you don't use remats in your
code, but it still breaks miserably once you do. However, as long as all
the complications are contained solely in the `call_jaxpr` embedded inside
a remat, we still have a chance to fix them! This is because the
transposition interpreter never reaches into those bodies directly, but
rather asks the call primitive to transpose itself.
Now, how do you transpose remat? We can't just reuse the code used for
regular call primitives (this is what happens now BTW), because unlike
for them, the `call_jaxpr` doesn't represent a linear function! But it's
not completely useless either --- it contains the traced JVP code. So,
how do we get from there to a linear function? Partial eval! And if you
think about it, it is exactly what we wanted --- we end up evaluating all
the primal code in the body once again, while only staging out the tangent
computation, to be passed into the transposing interpreter again.
Fin.
2020-05-27 20:22:40 +02:00
|
|
|
|
|
|
|
# 2 calls needed to evaluate g
|
|
|
|
with assertEvals(2):
|
|
|
|
_, vjp = jax.vjp(g, v)
|
|
|
|
# 2 calls made while transposing g, 1 call made while transposing f
|
|
|
|
with assertEvals(3):
|
|
|
|
vjp(v)
|
|
|
|
|
2021-01-11 14:20:32 -08:00
|
|
|
@jax._src.util.curry
|
Simplify handling of non-linear equations in backward_pass and fix remat (#3162)
Previously, `backward_pass` has been generalized to be able to handle
non-linear computation in the body, but it could easily get confused
into doing unnecessary work only to throw it away later. Additionally, it
treated any call primitive embedded inside remat like remat itself,
which is obviously wrong.
This patch fixes both of those issues and simplifies a bunch of the code
at the same time. `backward_pass` now has an invariant that it only
deals with jaxprs containing linear equations alone, and becomes
a simple transposing interpreter again.
**Background on JVP vs linearization**
Ok, so why does this change actually fix the problem? It is important to
understand that JVP and linearization transforms are actually two
different things, even though we often identify them as one. Both take
in a function of type `a -> b`, but their ranges are different! JVP
returns a function of type `(a, T a) -> (b, T b)` while linearization
returns `a -> (b, T a --o T b)`. Note that the second type carries more
information, because we get a guarantee that (1) `b` does not depend on
`T a` and (2) the dependence of `T b` on `T a` is linear.
The reason why we usually treat them as equivalent, is that they can be
shown to be "isomorphic". If we take the output of linearization, we can
make it a JVP-like function using the following combinator:
```haskell
jvp f = \a ta -> let (b, lf) = linearize f in (b, lf ta)
```
More importantly for JAX, which doesn't have a linearization interpreter,
if we assume (1) and (2), linearization can be recovered in terms of jvp
as well:
```haskell
linearize f = \a -> let fjvp = jvp f in
partial_eval fjvp (Known a) Unknown
```
That is, if we have a mathematically correct JVP, then linearization is
simply partial evaluation with all primal values marked as known, and
all tangents treated as yet unknown values.
One important performance consideration is that for forward-mode AD we
really want to use the JVP formulation, which can interleave the computation
of primals and tangents, instead of sequencing them and increasing the memory
cost. On the other hand, transposition (necessary for VJPs!) can only be
applied to linear functions, and so it can't possibly work on the output
of JVP. It really can only be apply to the second output of the
linearization transform. Hence, we really care about both, but can we avoid
having two very similar implementations of (approximately) the same thing?
It seems that the answer is yes, because of the equivalence outlined above!
**If all this is so nice, then what's the problem?**
The problem is, of course, remat. Partial eval is able to thread the
known/unknown information correctly through regular call primitives, but
mind you, remat is no regular call primitive! Once we enter remat, we are
no longer interested in treating _anything_ like a known value. After
all, our goal here is to record an accurate trace of everything that has
happened in the body of a remat, including the primal (known!)
computation. This however presents a challenge for implementing
linearization in terms of JVP, because inside the body of remat we break
the assumption that known/unknown corresponds to the primal/tangent
distinction. Its body, instead of representing the second output of
linearization simply contains the traced JVP code now...
One way to fix it would be to implement a proper linearization pass that
would track the distinciton between primal and tangent information while
still allowing to stage out code for primals. @mattjj and I have even
started hacking together an implementation for that.
I've been trying to convince @mattjj that there is no other way to go
about it, but I couldn't really convince him that this is the case.
Then, once I wanted to write a semi-formal proof I could no longer even
convince myself! Turns out that there is an alternative solution!
What this patch does is, it stops caring about the output of the
`linearize` function (defined as JVP + partial eval, as discussed above)
to be a good linearization. It still is if you don't use remats in your
code, but it still breaks miserably once you do. However, as long as all
the complications are contained solely in the `call_jaxpr` embedded inside
a remat, we still have a chance to fix them! This is because the
transposition interpreter never reaches into those bodies directly, but
rather asks the call primitive to transpose itself.
Now, how do you transpose remat? We can't just reuse the code used for
regular call primitives (this is what happens now BTW), because unlike
for them, the `call_jaxpr` doesn't represent a linear function! But it's
not completely useless either --- it contains the traced JVP code. So,
how do we get from there to a linear function? Partial eval! And if you
think about it, it is exactly what we wanted --- we end up evaluating all
the primal code in the body once again, while only staging out the tangent
computation, to be passed into the transposing interpreter again.
Fin.
2020-05-27 20:22:40 +02:00
|
|
|
def call(f, *args):
|
2020-06-23 09:39:45 -07:00
|
|
|
return jax.core.call(
|
|
|
|
jax.linear_util.wrap_init(lambda *args: [f(*args)]),
|
|
|
|
*args, name='foo')[0]
|
Simplify handling of non-linear equations in backward_pass and fix remat (#3162)
Previously, `backward_pass` has been generalized to be able to handle
non-linear computation in the body, but it could easily get confused
into doing unnecessary work only to throw it away later. Additionally, it
treated any call primitive embedded inside remat like remat itself,
which is obviously wrong.
This patch fixes both of those issues and simplifies a bunch of the code
at the same time. `backward_pass` now has an invariant that it only
deals with jaxprs containing linear equations alone, and becomes
a simple transposing interpreter again.
**Background on JVP vs linearization**
Ok, so why does this change actually fix the problem? It is important to
understand that JVP and linearization transforms are actually two
different things, even though we often identify them as one. Both take
in a function of type `a -> b`, but their ranges are different! JVP
returns a function of type `(a, T a) -> (b, T b)` while linearization
returns `a -> (b, T a --o T b)`. Note that the second type carries more
information, because we get a guarantee that (1) `b` does not depend on
`T a` and (2) the dependence of `T b` on `T a` is linear.
The reason why we usually treat them as equivalent, is that they can be
shown to be "isomorphic". If we take the output of linearization, we can
make it a JVP-like function using the following combinator:
```haskell
jvp f = \a ta -> let (b, lf) = linearize f in (b, lf ta)
```
More importantly for JAX, which doesn't have a linearization interpreter,
if we assume (1) and (2), linearization can be recovered in terms of jvp
as well:
```haskell
linearize f = \a -> let fjvp = jvp f in
partial_eval fjvp (Known a) Unknown
```
That is, if we have a mathematically correct JVP, then linearization is
simply partial evaluation with all primal values marked as known, and
all tangents treated as yet unknown values.
One important performance consideration is that for forward-mode AD we
really want to use the JVP formulation, which can interleave the computation
of primals and tangents, instead of sequencing them and increasing the memory
cost. On the other hand, transposition (necessary for VJPs!) can only be
applied to linear functions, and so it can't possibly work on the output
of JVP. It really can only be apply to the second output of the
linearization transform. Hence, we really care about both, but can we avoid
having two very similar implementations of (approximately) the same thing?
It seems that the answer is yes, because of the equivalence outlined above!
**If all this is so nice, then what's the problem?**
The problem is, of course, remat. Partial eval is able to thread the
known/unknown information correctly through regular call primitives, but
mind you, remat is no regular call primitive! Once we enter remat, we are
no longer interested in treating _anything_ like a known value. After
all, our goal here is to record an accurate trace of everything that has
happened in the body of a remat, including the primal (known!)
computation. This however presents a challenge for implementing
linearization in terms of JVP, because inside the body of remat we break
the assumption that known/unknown corresponds to the primal/tangent
distinction. Its body, instead of representing the second output of
linearization simply contains the traced JVP code now...
One way to fix it would be to implement a proper linearization pass that
would track the distinciton between primal and tangent information while
still allowing to stage out code for primals. @mattjj and I have even
started hacking together an implementation for that.
I've been trying to convince @mattjj that there is no other way to go
about it, but I couldn't really convince him that this is the case.
Then, once I wanted to write a semi-formal proof I could no longer even
convince myself! Turns out that there is an alternative solution!
What this patch does is, it stops caring about the output of the
`linearize` function (defined as JVP + partial eval, as discussed above)
to be a good linearization. It still is if you don't use remats in your
code, but it still breaks miserably once you do. However, as long as all
the complications are contained solely in the `call_jaxpr` embedded inside
a remat, we still have a chance to fix them! This is because the
transposition interpreter never reaches into those bodies directly, but
rather asks the call primitive to transpose itself.
Now, how do you transpose remat? We can't just reuse the code used for
regular call primitives (this is what happens now BTW), because unlike
for them, the `call_jaxpr` doesn't represent a linear function! But it's
not completely useless either --- it contains the traced JVP code. So,
how do we get from there to a linear function? Partial eval! And if you
think about it, it is exactly what we wanted --- we end up evaluating all
the primal code in the body once again, while only staging out the tangent
computation, to be passed into the transposing interpreter again.
Fin.
2020-05-27 20:22:40 +02:00
|
|
|
|
|
|
|
f = call(add_one)
|
2021-08-06 11:09:29 -07:00
|
|
|
g = remat(lambda x: add_one(f(x)))
|
Simplify handling of non-linear equations in backward_pass and fix remat (#3162)
Previously, `backward_pass` has been generalized to be able to handle
non-linear computation in the body, but it could easily get confused
into doing unnecessary work only to throw it away later. Additionally, it
treated any call primitive embedded inside remat like remat itself,
which is obviously wrong.
This patch fixes both of those issues and simplifies a bunch of the code
at the same time. `backward_pass` now has an invariant that it only
deals with jaxprs containing linear equations alone, and becomes
a simple transposing interpreter again.
**Background on JVP vs linearization**
Ok, so why does this change actually fix the problem? It is important to
understand that JVP and linearization transforms are actually two
different things, even though we often identify them as one. Both take
in a function of type `a -> b`, but their ranges are different! JVP
returns a function of type `(a, T a) -> (b, T b)` while linearization
returns `a -> (b, T a --o T b)`. Note that the second type carries more
information, because we get a guarantee that (1) `b` does not depend on
`T a` and (2) the dependence of `T b` on `T a` is linear.
The reason why we usually treat them as equivalent, is that they can be
shown to be "isomorphic". If we take the output of linearization, we can
make it a JVP-like function using the following combinator:
```haskell
jvp f = \a ta -> let (b, lf) = linearize f in (b, lf ta)
```
More importantly for JAX, which doesn't have a linearization interpreter,
if we assume (1) and (2), linearization can be recovered in terms of jvp
as well:
```haskell
linearize f = \a -> let fjvp = jvp f in
partial_eval fjvp (Known a) Unknown
```
That is, if we have a mathematically correct JVP, then linearization is
simply partial evaluation with all primal values marked as known, and
all tangents treated as yet unknown values.
One important performance consideration is that for forward-mode AD we
really want to use the JVP formulation, which can interleave the computation
of primals and tangents, instead of sequencing them and increasing the memory
cost. On the other hand, transposition (necessary for VJPs!) can only be
applied to linear functions, and so it can't possibly work on the output
of JVP. It really can only be apply to the second output of the
linearization transform. Hence, we really care about both, but can we avoid
having two very similar implementations of (approximately) the same thing?
It seems that the answer is yes, because of the equivalence outlined above!
**If all this is so nice, then what's the problem?**
The problem is, of course, remat. Partial eval is able to thread the
known/unknown information correctly through regular call primitives, but
mind you, remat is no regular call primitive! Once we enter remat, we are
no longer interested in treating _anything_ like a known value. After
all, our goal here is to record an accurate trace of everything that has
happened in the body of a remat, including the primal (known!)
computation. This however presents a challenge for implementing
linearization in terms of JVP, because inside the body of remat we break
the assumption that known/unknown corresponds to the primal/tangent
distinction. Its body, instead of representing the second output of
linearization simply contains the traced JVP code now...
One way to fix it would be to implement a proper linearization pass that
would track the distinciton between primal and tangent information while
still allowing to stage out code for primals. @mattjj and I have even
started hacking together an implementation for that.
I've been trying to convince @mattjj that there is no other way to go
about it, but I couldn't really convince him that this is the case.
Then, once I wanted to write a semi-formal proof I could no longer even
convince myself! Turns out that there is an alternative solution!
What this patch does is, it stops caring about the output of the
`linearize` function (defined as JVP + partial eval, as discussed above)
to be a good linearization. It still is if you don't use remats in your
code, but it still breaks miserably once you do. However, as long as all
the complications are contained solely in the `call_jaxpr` embedded inside
a remat, we still have a chance to fix them! This is because the
transposition interpreter never reaches into those bodies directly, but
rather asks the call primitive to transpose itself.
Now, how do you transpose remat? We can't just reuse the code used for
regular call primitives (this is what happens now BTW), because unlike
for them, the `call_jaxpr` doesn't represent a linear function! But it's
not completely useless either --- it contains the traced JVP code. So,
how do we get from there to a linear function? Partial eval! And if you
think about it, it is exactly what we wanted --- we end up evaluating all
the primal code in the body once again, while only staging out the tangent
computation, to be passed into the transposing interpreter again.
Fin.
2020-05-27 20:22:40 +02:00
|
|
|
|
|
|
|
# 2 calls needed to evaluate g
|
|
|
|
with assertEvals(2):
|
|
|
|
_, vjp = jax.vjp(g, v)
|
|
|
|
# 2 calls made while transposing g, no reevaluation for transposition of f
|
|
|
|
with assertEvals(2):
|
|
|
|
vjp(v)
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_escaped_tracer_remat(self, remat):
|
2020-10-20 18:26:32 -07:00
|
|
|
# b/169779185
|
|
|
|
def f():
|
|
|
|
seq = [jnp.zeros([])]
|
|
|
|
def g():
|
|
|
|
seq[0] += 1 # this is line 7 btw
|
|
|
|
return seq[0]
|
|
|
|
|
2021-08-06 11:09:29 -07:00
|
|
|
remat(g)()
|
|
|
|
remat(g)()
|
2020-10-20 18:26:32 -07:00
|
|
|
|
2021-06-30 10:46:37 +01:00
|
|
|
with self.assertRaisesRegex(UnexpectedTracerError, "global state"):
|
2020-10-20 18:26:32 -07:00
|
|
|
api.jit(f)()
|
|
|
|
|
2021-08-19 17:30:12 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
2021-10-14 07:09:06 -07:00
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
2021-08-19 17:30:12 -07:00
|
|
|
])
|
2021-08-06 11:09:29 -07:00
|
|
|
def test_no_cse_widget_on_primals(self, remat):
|
|
|
|
@remat
|
2021-06-24 15:00:19 -07:00
|
|
|
def g(x):
|
|
|
|
return lax.sin(lax.sin(x)), 3.
|
|
|
|
|
|
|
|
def f(x):
|
|
|
|
x, _ = g(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
c = api.xla_computation(f)(2.)
|
|
|
|
self.assertNotIn('while', c.as_hlo_text())
|
|
|
|
self.assertNotIn('conditional', c.as_hlo_text())
|
|
|
|
|
|
|
|
c = api.xla_computation(grad(f))(2.)
|
|
|
|
text = c.as_hlo_text()
|
|
|
|
self.assertTrue('while' in text or 'conditional' in text)
|
|
|
|
|
|
|
|
def test_no_cse_widget_with_prevent_cse_false(self):
|
|
|
|
@partial(api.remat, prevent_cse=False)
|
|
|
|
def g(x):
|
|
|
|
return lax.sin(lax.sin(x)), 3.
|
|
|
|
|
|
|
|
def f(x):
|
|
|
|
x, _ = g(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
c = api.xla_computation(f)(2.)
|
|
|
|
self.assertNotIn('while', c.as_hlo_text())
|
|
|
|
self.assertNotIn('conditional', c.as_hlo_text())
|
|
|
|
|
|
|
|
c = api.xla_computation(grad(f))(2.)
|
|
|
|
self.assertNotIn('while', c.as_hlo_text())
|
|
|
|
self.assertNotIn('conditional', c.as_hlo_text())
|
|
|
|
|
2021-08-06 11:09:29 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"_{policy_name}", "policy": policy,
|
|
|
|
"in_jaxpr2": in_jaxpr2, "not_in_jaxpr2": not_in_jaxpr2}
|
|
|
|
for policy_name, policy, in_jaxpr2, not_in_jaxpr2 in [
|
|
|
|
('save_anything', lambda *_, **__: True, [], [' sin ', ' cos ']),
|
|
|
|
('save_nothing', lambda *_, **__: False, [' sin ', ' cos '], []),
|
|
|
|
('save_sin', lambda p, *_, **__: str(p) == 'sin', [' cos '], [' sin ']),
|
|
|
|
])
|
|
|
|
def test_remat_custom_policy(self, policy, in_jaxpr2, not_in_jaxpr2):
|
|
|
|
for square in [lambda x: x * x, api.jit(lambda x: x * x)]:
|
|
|
|
f = api.remat(lambda x: jnp.sin(square(jnp.sin(x))),
|
2021-08-19 17:12:13 -07:00
|
|
|
policy=policy)
|
2021-08-06 11:09:29 -07:00
|
|
|
y, f_lin = api.linearize(f, 1.)
|
|
|
|
ydot = f_lin(2.)
|
|
|
|
jaxpr_text = str(f_lin.func.args[0])
|
|
|
|
for substr in in_jaxpr2:
|
|
|
|
self.assertIn(substr, jaxpr_text)
|
|
|
|
for substr in not_in_jaxpr2:
|
|
|
|
self.assertNotIn(substr, jaxpr_text)
|
|
|
|
y_expected, ydot_expected = api.jvp(lambda x: jnp.sin(square(jnp.sin(x))),
|
|
|
|
[1.], [2.])
|
|
|
|
self.assertAllClose(y, y_expected)
|
|
|
|
self.assertAllClose(ydot, ydot_expected)
|
|
|
|
jtu.check_grads(f, (3.,), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
|
|
|
def test_remat_custom_policy_save_cos(self):
|
|
|
|
save_cos = lambda prim, *_, **__: str(prim) == 'cos'
|
|
|
|
f = api.remat(lambda x: jnp.sin(jnp.sin(x)), # different function
|
2021-08-19 17:12:13 -07:00
|
|
|
policy=save_cos)
|
2021-08-06 11:09:29 -07:00
|
|
|
_, f_lin = api.linearize(f, 1.)
|
|
|
|
jaxpr_text = str(f_lin.func.args[0])
|
|
|
|
self.assertNotIn(' sin ', jaxpr_text)
|
|
|
|
self.assertNotIn(' cos ', jaxpr_text)
|
|
|
|
jtu.check_grads(f, (3.,), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
|
|
|
def test_remat_checkpoint_dots(self):
|
2021-08-25 20:46:11 -07:00
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots)
|
2021-08-06 11:09:29 -07:00
|
|
|
def f(x):
|
2021-08-27 17:42:42 -07:00
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
2021-08-06 11:09:29 -07:00
|
|
|
x = jnp.sin(x)
|
2021-08-27 17:42:42 -07:00
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
2021-08-06 11:09:29 -07:00
|
|
|
x = jnp.sin(x)
|
2021-08-27 17:42:42 -07:00
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
2021-08-06 11:09:29 -07:00
|
|
|
x = jnp.sin(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
_, f_lin = api.linearize(f, jnp.ones((2, 2)))
|
2021-08-27 16:59:54 -07:00
|
|
|
jaxpr_text = str(f_lin.func.args[0])
|
|
|
|
self.assertEqual(jaxpr_text.count(' sin '), 2)
|
|
|
|
self.assertEqual(jaxpr_text.count(' dot_'), 6)
|
|
|
|
jtu.check_grads(f, (jnp.ones((2, 2)),), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
2021-10-11 14:18:58 -07:00
|
|
|
def test_remat_checkpoint_dots_with_no_batch_dims(self):
|
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots_with_no_batch_dims)
|
|
|
|
def f(x):
|
|
|
|
x = jnp.einsum('ij,jk->ik', x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = jnp.sin(x)
|
|
|
|
x = jnp.einsum('ij,jk->ik', x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = jnp.sin(x)
|
|
|
|
x = jnp.einsum('ij,jk->ik', x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = jnp.sin(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
_, f_lin = api.linearize(f, jnp.ones((2, 2)))
|
|
|
|
jaxpr_text = str(f_lin.func.args[0])
|
|
|
|
self.assertEqual(jaxpr_text.count(' sin '), 2)
|
|
|
|
self.assertEqual(jaxpr_text.count(' dot_general'), 6)
|
|
|
|
jtu.check_grads(f, (jnp.ones((2, 2)),), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
|
|
|
def test_remat_checkpoint_dots_with_no_batch_dims2(self):
|
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots_with_no_batch_dims)
|
|
|
|
def f(x):
|
|
|
|
x = jnp.einsum('nij,njk->nik', x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = jnp.sin(x)
|
|
|
|
x = jnp.einsum('nij,njk->nik', x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = jnp.sin(x)
|
|
|
|
x = jnp.einsum('nij,njk->nik', x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = jnp.sin(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
_, f_lin = api.linearize(f, jnp.ones((3, 2, 2)))
|
|
|
|
jaxpr_text = str(f_lin.func.args[0])
|
|
|
|
self.assertEqual(jaxpr_text.count(' sin '), 2)
|
|
|
|
self.assertEqual(jaxpr_text.count(' dot_general'), 9)
|
|
|
|
jtu.check_grads(f, (jnp.ones((3, 2, 2)),), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
2021-08-27 16:59:54 -07:00
|
|
|
def test_remat_checkpoint_dots_jit(self):
|
|
|
|
@api.jit
|
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots)
|
|
|
|
def f(x):
|
2021-08-27 17:42:42 -07:00
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
2021-08-27 16:59:54 -07:00
|
|
|
x = jnp.sin(x * 1e-3)
|
2021-08-27 17:42:42 -07:00
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
2021-08-27 16:59:54 -07:00
|
|
|
x = jnp.sin(x * 1e-3)
|
2021-08-27 17:42:42 -07:00
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
2021-08-27 16:59:54 -07:00
|
|
|
x = jnp.sin(x * 1e-3)
|
|
|
|
return x
|
|
|
|
|
|
|
|
_, f_lin = api.linearize(f, jnp.ones((2, 2)))
|
2021-08-06 11:09:29 -07:00
|
|
|
jaxpr_text = str(f_lin.func.args[0])
|
|
|
|
self.assertEqual(jaxpr_text.count(' sin '), 2)
|
|
|
|
self.assertEqual(jaxpr_text.count(' dot_'), 6)
|
|
|
|
jtu.check_grads(f, (jnp.ones((2, 2)),), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
|
|
|
def test_remat_checkpoint_dots_inside_scan(self):
|
|
|
|
x = jnp.ones((5,))
|
|
|
|
|
|
|
|
def f(W):
|
2021-08-25 20:46:11 -07:00
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots)
|
2021-08-06 11:09:29 -07:00
|
|
|
def f(x):
|
2021-08-27 17:42:42 -07:00
|
|
|
x = jnp.sin(jnp.dot(x, W, precision=lax.Precision.HIGHEST))
|
|
|
|
x = jnp.sin(jnp.dot(x, W, precision=lax.Precision.HIGHEST))
|
|
|
|
x = jnp.sin(jnp.dot(x, W, precision=lax.Precision.HIGHEST))
|
2021-08-06 11:09:29 -07:00
|
|
|
return x
|
|
|
|
|
|
|
|
def body(x, _): return f(x), None
|
|
|
|
return lax.scan(body, x, None, length=2)[0]
|
|
|
|
|
|
|
|
_, f_vjp = api.vjp(f, jnp.ones((5, 5)))
|
|
|
|
jaxpr_text = str(f_vjp.args[0].func.args[1])
|
|
|
|
|
|
|
|
# Two sine calls in the backward pass because while we don't save sines
|
|
|
|
# within the (rematted) body function, we can save the scan carry, which
|
|
|
|
# effectively saves one sine. Three cosines for the Jacoian coefficients.
|
|
|
|
self.assertEqual(jaxpr_text.count(' sin '), 2)
|
|
|
|
self.assertEqual(jaxpr_text.count(' cos '), 3)
|
|
|
|
# Six calls to dot_general in the backward pass because we save the primal
|
|
|
|
# matmuls and only compure the backward pass ones (two for each primal one).
|
|
|
|
self.assertEqual(jaxpr_text.count(' dot_'), 6)
|
|
|
|
|
|
|
|
jtu.check_grads(api.jit(f), (jnp.ones((5, 5)),), order=2,
|
|
|
|
modes=['fwd', 'rev'])
|
|
|
|
|
|
|
|
def test_remat_custom_jvp_policy(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def sin(x):
|
|
|
|
return jnp.sin(x)
|
|
|
|
def sin_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
|
|
|
return sin(x), jnp.cos(x) * g
|
|
|
|
sin.defjvp(sin_jvp)
|
|
|
|
|
2021-08-27 17:42:42 -07:00
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots)
|
2021-08-06 11:09:29 -07:00
|
|
|
def f(x):
|
2021-08-27 17:42:42 -07:00
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = sin(x * 1e-3)
|
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = sin(x * 1e-3)
|
|
|
|
x = jnp.dot(x, x, precision=lax.Precision.HIGHEST)
|
|
|
|
x = sin(x * 1e-3)
|
|
|
|
return x
|
2021-08-06 11:09:29 -07:00
|
|
|
|
|
|
|
jtu.check_grads(f, (3.,), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
return lax.scan(lambda x, _: (f(x), None), x, None, length=2)[0]
|
|
|
|
jtu.check_grads(g, (3.,), order=2, modes=['fwd', 'rev'])
|
Simplify handling of non-linear equations in backward_pass and fix remat (#3162)
Previously, `backward_pass` has been generalized to be able to handle
non-linear computation in the body, but it could easily get confused
into doing unnecessary work only to throw it away later. Additionally, it
treated any call primitive embedded inside remat like remat itself,
which is obviously wrong.
This patch fixes both of those issues and simplifies a bunch of the code
at the same time. `backward_pass` now has an invariant that it only
deals with jaxprs containing linear equations alone, and becomes
a simple transposing interpreter again.
**Background on JVP vs linearization**
Ok, so why does this change actually fix the problem? It is important to
understand that JVP and linearization transforms are actually two
different things, even though we often identify them as one. Both take
in a function of type `a -> b`, but their ranges are different! JVP
returns a function of type `(a, T a) -> (b, T b)` while linearization
returns `a -> (b, T a --o T b)`. Note that the second type carries more
information, because we get a guarantee that (1) `b` does not depend on
`T a` and (2) the dependence of `T b` on `T a` is linear.
The reason why we usually treat them as equivalent, is that they can be
shown to be "isomorphic". If we take the output of linearization, we can
make it a JVP-like function using the following combinator:
```haskell
jvp f = \a ta -> let (b, lf) = linearize f in (b, lf ta)
```
More importantly for JAX, which doesn't have a linearization interpreter,
if we assume (1) and (2), linearization can be recovered in terms of jvp
as well:
```haskell
linearize f = \a -> let fjvp = jvp f in
partial_eval fjvp (Known a) Unknown
```
That is, if we have a mathematically correct JVP, then linearization is
simply partial evaluation with all primal values marked as known, and
all tangents treated as yet unknown values.
One important performance consideration is that for forward-mode AD we
really want to use the JVP formulation, which can interleave the computation
of primals and tangents, instead of sequencing them and increasing the memory
cost. On the other hand, transposition (necessary for VJPs!) can only be
applied to linear functions, and so it can't possibly work on the output
of JVP. It really can only be apply to the second output of the
linearization transform. Hence, we really care about both, but can we avoid
having two very similar implementations of (approximately) the same thing?
It seems that the answer is yes, because of the equivalence outlined above!
**If all this is so nice, then what's the problem?**
The problem is, of course, remat. Partial eval is able to thread the
known/unknown information correctly through regular call primitives, but
mind you, remat is no regular call primitive! Once we enter remat, we are
no longer interested in treating _anything_ like a known value. After
all, our goal here is to record an accurate trace of everything that has
happened in the body of a remat, including the primal (known!)
computation. This however presents a challenge for implementing
linearization in terms of JVP, because inside the body of remat we break
the assumption that known/unknown corresponds to the primal/tangent
distinction. Its body, instead of representing the second output of
linearization simply contains the traced JVP code now...
One way to fix it would be to implement a proper linearization pass that
would track the distinciton between primal and tangent information while
still allowing to stage out code for primals. @mattjj and I have even
started hacking together an implementation for that.
I've been trying to convince @mattjj that there is no other way to go
about it, but I couldn't really convince him that this is the case.
Then, once I wanted to write a semi-formal proof I could no longer even
convince myself! Turns out that there is an alternative solution!
What this patch does is, it stops caring about the output of the
`linearize` function (defined as JVP + partial eval, as discussed above)
to be a good linearization. It still is if you don't use remats in your
code, but it still breaks miserably once you do. However, as long as all
the complications are contained solely in the `call_jaxpr` embedded inside
a remat, we still have a chance to fix them! This is because the
transposition interpreter never reaches into those bodies directly, but
rather asks the call primitive to transpose itself.
Now, how do you transpose remat? We can't just reuse the code used for
regular call primitives (this is what happens now BTW), because unlike
for them, the `call_jaxpr` doesn't represent a linear function! But it's
not completely useless either --- it contains the traced JVP code. So,
how do we get from there to a linear function? Partial eval! And if you
think about it, it is exactly what we wanted --- we end up evaluating all
the primal code in the body once again, while only staging out the tangent
computation, to be passed into the transposing interpreter again.
Fin.
2020-05-27 20:22:40 +02:00
|
|
|
|
2021-08-27 17:42:42 -07:00
|
|
|
def test_remat_custom_vjp_policy(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def sin(x):
|
|
|
|
return jnp.sin(x)
|
|
|
|
def sin_fwd(x):
|
|
|
|
return sin(x), x
|
|
|
|
def sin_bwd(x, y_bar):
|
|
|
|
return (jnp.cos(x) * y_bar,)
|
|
|
|
sin.defvjp(sin_fwd, sin_bwd)
|
|
|
|
|
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots)
|
|
|
|
def f(x):
|
|
|
|
@partial(api.named_call, name="dot")
|
|
|
|
def dot2(y, z):
|
|
|
|
return jnp.dot(x, jnp.dot(y, z, precision=lax.Precision.HIGHEST),
|
|
|
|
precision=lax.Precision.HIGHEST)
|
|
|
|
|
|
|
|
x = dot2(x, x)
|
|
|
|
x = sin(x * 1e-3)
|
|
|
|
x = dot2(x, x)
|
|
|
|
x = sin(x * 1e-3)
|
|
|
|
x = dot2(x, x)
|
|
|
|
x = sin(x * 1e-3)
|
|
|
|
return x
|
|
|
|
|
|
|
|
jtu.check_grads(f, (3.,), order=2, modes=['rev'])
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
return lax.scan(lambda x, _: (f(x), None), x, None, length=2)[0]
|
|
|
|
jtu.check_grads(g, (3.,), order=2, modes=['rev'])
|
|
|
|
|
2021-09-01 22:38:17 -07:00
|
|
|
def test_remat_dropvar_policy(self):
|
|
|
|
def f(x):
|
|
|
|
return x, x
|
|
|
|
|
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots)
|
|
|
|
def g(x):
|
|
|
|
x = api.grad(lambda x: f(x)[0])(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
api.grad(g)(3.)
|
|
|
|
|
2021-09-03 16:43:57 -07:00
|
|
|
def test_remat_custom_jvp_linear_policy(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def sum(x):
|
|
|
|
return jnp.sum(x, axis=0)
|
|
|
|
@sum.defjvp
|
|
|
|
def sum_jvp(primals, tangents):
|
|
|
|
(x,), (xdot,) = primals, tangents
|
|
|
|
return sum(x), sum(xdot)
|
|
|
|
|
|
|
|
@partial(api.remat, policy=jax.checkpoint_policies.checkpoint_dots)
|
|
|
|
def f(x):
|
|
|
|
return sum(x)
|
|
|
|
jtu.check_grads(f, (jnp.ones(3),), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
return lax.scan(lambda _, x: (None, f(x)), None, x)[1]
|
|
|
|
jtu.check_grads(g, (jnp.ones((2, 3)),), order=2, modes=['fwd', 'rev'])
|
|
|
|
|
2021-10-12 20:06:38 -07:00
|
|
|
def test_constants_not_hoisted(self):
|
|
|
|
# The old implementation of remat worked by data dependence, and so
|
|
|
|
# (potentially large) constants would not be rematerialized and could be
|
|
|
|
# wastefully instantiated. This test checks that the newer remat
|
2021-10-14 07:09:06 -07:00
|
|
|
# implementation avoids that. See https://github.com/google/jax/pull/8191.
|
2021-10-12 20:06:38 -07:00
|
|
|
|
|
|
|
# no residuals from constants created inside jnp.einsum
|
2021-10-14 07:09:06 -07:00
|
|
|
@partial(new_checkpoint, policy=lambda *_, **__: False)
|
2021-10-12 20:06:38 -07:00
|
|
|
def f(x):
|
|
|
|
return jnp.einsum('ii->i', x)
|
|
|
|
res_avals = saved_residuals(f, jnp.ones((2, 2)))
|
|
|
|
self.assertLen(res_avals, 0)
|
|
|
|
|
|
|
|
# no residuals from jnp.zeros
|
2021-10-14 07:09:06 -07:00
|
|
|
@partial(new_checkpoint, policy=lambda *_, **__: False)
|
2021-10-12 20:06:38 -07:00
|
|
|
def f(x):
|
|
|
|
return jnp.zeros_like(x) * x
|
|
|
|
res_avals = saved_residuals(f, jnp.ones((2, 2)))
|
|
|
|
self.assertLen(res_avals, 0)
|
|
|
|
|
|
|
|
# no residuals from jnp.zeros, but input must be saved
|
2021-10-14 07:09:06 -07:00
|
|
|
@partial(new_checkpoint, policy=lambda *_, **__: False)
|
2021-10-12 20:06:38 -07:00
|
|
|
def f(x):
|
|
|
|
return jnp.zeros_like(x) * jnp.sin(x)
|
|
|
|
res_avals = saved_residuals(f, jnp.ones((2, 2)))
|
|
|
|
self.assertLen(res_avals, 1)
|
|
|
|
|
2021-10-13 18:21:20 -07:00
|
|
|
def test_name_denylist(self):
|
|
|
|
def f(x):
|
|
|
|
y = checkpoint_name(jnp.multiply(2., 2.), 'y')
|
|
|
|
z = checkpoint_name(jnp.multiply(2., 2.), 'z')
|
|
|
|
w = checkpoint_name(jnp.multiply(2., 2.), 'w')
|
|
|
|
u = jnp.multiply(2., 2.)
|
|
|
|
return (((x * y) * z) * w) * u
|
|
|
|
|
|
|
|
policy = jax.checkpoint_policies.save_any_names_but_these('y', 'z', 'w')
|
2021-10-14 07:09:06 -07:00
|
|
|
res = saved_residuals(new_checkpoint(f, policy=policy), 1.)
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertLen(res, 0) # can't save anything
|
|
|
|
|
|
|
|
policy = jax.checkpoint_policies.save_any_names_but_these('z', 'w')
|
2021-10-14 07:09:06 -07:00
|
|
|
res = saved_residuals(new_checkpoint(f, policy=policy), 1.)
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertLen(res, 1) # can save only y
|
|
|
|
|
|
|
|
policy = jax.checkpoint_policies.save_any_names_but_these('w')
|
2021-10-14 07:09:06 -07:00
|
|
|
res = saved_residuals(new_checkpoint(f, policy=policy), 1.)
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertLen(res, 2) # can save y and z
|
|
|
|
|
|
|
|
policy = jax.checkpoint_policies.save_any_names_but_these()
|
2021-10-14 07:09:06 -07:00
|
|
|
res = saved_residuals(new_checkpoint(f, policy=policy), 1.)
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertLen(res, 3) # can save y, z, and w
|
|
|
|
|
|
|
|
def test_name_allowlist(self):
|
|
|
|
def f(x):
|
|
|
|
y = checkpoint_name(jnp.multiply(2., 2.), 'y')
|
|
|
|
z = checkpoint_name(jnp.multiply(2., 2.), 'z')
|
|
|
|
w = checkpoint_name(jnp.multiply(2., 2.), 'w')
|
|
|
|
u = jnp.multiply(2., 2.)
|
|
|
|
return (((x * y) * z) * w) * u
|
|
|
|
|
|
|
|
policy = jax.checkpoint_policies.save_only_these_names('y', 'z', 'w')
|
2021-10-14 07:09:06 -07:00
|
|
|
res = saved_residuals(new_checkpoint(f, policy=policy), 1.)
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertLen(res, 3) # can save y, z, and w
|
|
|
|
|
|
|
|
policy = jax.checkpoint_policies.save_only_these_names('z', 'w')
|
2021-10-14 07:09:06 -07:00
|
|
|
res = saved_residuals(new_checkpoint(f, policy=policy), 1.)
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertLen(res, 2) # can save z and w
|
|
|
|
|
|
|
|
policy = jax.checkpoint_policies.save_only_these_names('w')
|
2021-10-14 07:09:06 -07:00
|
|
|
res = saved_residuals(new_checkpoint(f, policy=policy), 1.)
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertLen(res, 1) # can save w
|
|
|
|
|
|
|
|
policy = jax.checkpoint_policies.save_only_these_names()
|
2021-10-14 07:09:06 -07:00
|
|
|
res = saved_residuals(new_checkpoint(f, policy=policy), 1.)
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertLen(res, 0) # can't save anything!
|
|
|
|
|
|
|
|
def test_saved_residuals_utility(self):
|
|
|
|
def f(x, y):
|
|
|
|
x1, x2 = x
|
|
|
|
z = checkpoint_name(jnp.sin(3.), 'z')
|
|
|
|
return z * ((x1 * x2) * y) * np.array([3.])
|
|
|
|
|
|
|
|
res = saved_residuals(f, (2., 3.), y=4.)
|
|
|
|
self.assertLen(res, 6)
|
|
|
|
self.assertEqual(res[0][0].shape, (1,))
|
|
|
|
self.assertEqual(res[0][1], "from a constant")
|
|
|
|
self.assertEqual(res[1][0].shape, ())
|
|
|
|
self.assertEqual(res[1][1], "from the argument 'x'")
|
|
|
|
self.assertEqual(res[2][0].shape, ())
|
|
|
|
self.assertEqual(res[2][1], "from the argument 'x'")
|
|
|
|
self.assertEqual(res[3][0].shape, ())
|
|
|
|
self.assertEqual(res[3][1], "from the argument 'y'")
|
|
|
|
self.assertEqual(res[4][0].shape, ())
|
2021-10-14 18:49:56 -07:00
|
|
|
self.assertStartsWith(res[4][1], "named 'z'")
|
2021-10-13 18:21:20 -07:00
|
|
|
self.assertEqual(res[5][0].shape, ())
|
|
|
|
|
2021-10-14 11:32:09 -07:00
|
|
|
def test_saved_residuals_utility_literals(self):
|
|
|
|
res = saved_residuals(lambda x: x * 2., 3.)
|
|
|
|
self.assertLen(res, 1)
|
|
|
|
self.assertEqual(res[0][0].shape, ())
|
|
|
|
|
2021-10-15 16:51:37 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
|
|
|
])
|
|
|
|
def test_checkpoint_dropvars(self, remat):
|
|
|
|
@remat
|
2021-10-14 18:49:56 -07:00
|
|
|
def f(x):
|
|
|
|
_, x = api.jit(lambda: (x, x))()
|
|
|
|
return x
|
|
|
|
|
|
|
|
_ = api.grad(f)(3.) # doesn't crash
|
|
|
|
|
2021-10-14 20:41:29 -07:00
|
|
|
def test_dce_keeps_eqns_with_used_outputs_but_no_used_inputs(self):
|
|
|
|
@new_checkpoint
|
|
|
|
def f(x):
|
|
|
|
c = jax.jit(lambda: 3.)()
|
|
|
|
return c * x
|
|
|
|
|
|
|
|
_ = jax.grad(f)(3.) # doesn't crash
|
Simplify handling of non-linear equations in backward_pass and fix remat (#3162)
Previously, `backward_pass` has been generalized to be able to handle
non-linear computation in the body, but it could easily get confused
into doing unnecessary work only to throw it away later. Additionally, it
treated any call primitive embedded inside remat like remat itself,
which is obviously wrong.
This patch fixes both of those issues and simplifies a bunch of the code
at the same time. `backward_pass` now has an invariant that it only
deals with jaxprs containing linear equations alone, and becomes
a simple transposing interpreter again.
**Background on JVP vs linearization**
Ok, so why does this change actually fix the problem? It is important to
understand that JVP and linearization transforms are actually two
different things, even though we often identify them as one. Both take
in a function of type `a -> b`, but their ranges are different! JVP
returns a function of type `(a, T a) -> (b, T b)` while linearization
returns `a -> (b, T a --o T b)`. Note that the second type carries more
information, because we get a guarantee that (1) `b` does not depend on
`T a` and (2) the dependence of `T b` on `T a` is linear.
The reason why we usually treat them as equivalent, is that they can be
shown to be "isomorphic". If we take the output of linearization, we can
make it a JVP-like function using the following combinator:
```haskell
jvp f = \a ta -> let (b, lf) = linearize f in (b, lf ta)
```
More importantly for JAX, which doesn't have a linearization interpreter,
if we assume (1) and (2), linearization can be recovered in terms of jvp
as well:
```haskell
linearize f = \a -> let fjvp = jvp f in
partial_eval fjvp (Known a) Unknown
```
That is, if we have a mathematically correct JVP, then linearization is
simply partial evaluation with all primal values marked as known, and
all tangents treated as yet unknown values.
One important performance consideration is that for forward-mode AD we
really want to use the JVP formulation, which can interleave the computation
of primals and tangents, instead of sequencing them and increasing the memory
cost. On the other hand, transposition (necessary for VJPs!) can only be
applied to linear functions, and so it can't possibly work on the output
of JVP. It really can only be apply to the second output of the
linearization transform. Hence, we really care about both, but can we avoid
having two very similar implementations of (approximately) the same thing?
It seems that the answer is yes, because of the equivalence outlined above!
**If all this is so nice, then what's the problem?**
The problem is, of course, remat. Partial eval is able to thread the
known/unknown information correctly through regular call primitives, but
mind you, remat is no regular call primitive! Once we enter remat, we are
no longer interested in treating _anything_ like a known value. After
all, our goal here is to record an accurate trace of everything that has
happened in the body of a remat, including the primal (known!)
computation. This however presents a challenge for implementing
linearization in terms of JVP, because inside the body of remat we break
the assumption that known/unknown corresponds to the primal/tangent
distinction. Its body, instead of representing the second output of
linearization simply contains the traced JVP code now...
One way to fix it would be to implement a proper linearization pass that
would track the distinciton between primal and tangent information while
still allowing to stage out code for primals. @mattjj and I have even
started hacking together an implementation for that.
I've been trying to convince @mattjj that there is no other way to go
about it, but I couldn't really convince him that this is the case.
Then, once I wanted to write a semi-formal proof I could no longer even
convince myself! Turns out that there is an alternative solution!
What this patch does is, it stops caring about the output of the
`linearize` function (defined as JVP + partial eval, as discussed above)
to be a good linearization. It still is if you don't use remats in your
code, but it still breaks miserably once you do. However, as long as all
the complications are contained solely in the `call_jaxpr` embedded inside
a remat, we still have a chance to fix them! This is because the
transposition interpreter never reaches into those bodies directly, but
rather asks the call primitive to transpose itself.
Now, how do you transpose remat? We can't just reuse the code used for
regular call primitives (this is what happens now BTW), because unlike
for them, the `call_jaxpr` doesn't represent a linear function! But it's
not completely useless either --- it contains the traced JVP code. So,
how do we get from there to a linear function? Partial eval! And if you
think about it, it is exactly what we wanted --- we end up evaluating all
the primal code in the body once again, while only staging out the tangent
computation, to be passed into the transposing interpreter again.
Fin.
2020-05-27 20:22:40 +02:00
|
|
|
|
2021-10-15 16:51:37 -07:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": f"{suffix}", "remat": remat}
|
|
|
|
for suffix, remat in [
|
|
|
|
('', api.remat),
|
|
|
|
('_policy', partial(api.remat, policy=lambda *_, **__: False)),
|
|
|
|
('_new', partial(new_checkpoint, policy=lambda *_, **__: False)),
|
|
|
|
])
|
|
|
|
def test_unit_dropvar_consistency_regression(self, remat):
|
|
|
|
@partial(remat, policy=lambda *_, **__: False)
|
|
|
|
def f(u, x):
|
|
|
|
x, _ = jax.jit(lambda x: (x, u))(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
_ = api.linearize(partial(f, core.unit), 3.)
|
|
|
|
|
2019-12-04 19:34:21 -08:00
|
|
|
class JaxprTest(jtu.JaxTestCase):
|
|
|
|
|
|
|
|
def test_scalar_literals(self):
|
|
|
|
jaxpr = api.make_jaxpr(lambda x: x + 2)(42)
|
|
|
|
self.assertLen(jaxpr.jaxpr.constvars, 0)
|
|
|
|
|
2021-02-10 16:22:29 -08:00
|
|
|
def test_abstract_inputs(self):
|
|
|
|
jaxpr = api.make_jaxpr(lambda x: x + 2.)(
|
2021-06-22 15:58:29 -04:00
|
|
|
types.SimpleNamespace(shape=(), dtype=np.dtype(np.float32)))
|
2021-02-10 16:22:29 -08:00
|
|
|
self.assertEqual(jaxpr.in_avals[0].shape, ())
|
|
|
|
self.assertEqual(jaxpr.in_avals[0].dtype, np.float32)
|
|
|
|
|
2019-12-04 19:34:21 -08:00
|
|
|
def test_const(self):
|
|
|
|
def fun(x):
|
2021-09-24 22:08:42 -04:00
|
|
|
return (x, 1., np.zeros(1, dtype=jnp.float32))
|
2020-07-30 12:59:36 -07:00
|
|
|
|
2021-09-24 22:08:42 -04:00
|
|
|
expected = "{ lambda a:f32[1]; b:f32[]. let in (b, 1.0, a) }"
|
|
|
|
jaxpr = api.make_jaxpr(fun)(jnp.float32(0.))
|
2020-07-30 12:59:36 -07:00
|
|
|
self.assertMultiLineStrippedEqual(expected, str(jaxpr))
|
2019-12-04 19:34:21 -08:00
|
|
|
|
|
|
|
def test_cond(self):
|
|
|
|
def f(x):
|
|
|
|
return lax.cond(x >= 0.,
|
|
|
|
x + 1.,
|
|
|
|
lambda xt: xt + x,
|
|
|
|
x + 2.,
|
|
|
|
lambda xf: xf - x)
|
2021-09-24 22:08:42 -04:00
|
|
|
expected = """{ lambda ; a:f32[]. let
|
|
|
|
b:bool[] = ge a 0.0
|
|
|
|
c:f32[] = add a 1.0
|
|
|
|
d:f32[] = add a 2.0
|
|
|
|
e:i32[] = convert_element_type[new_dtype=int32 weak_type=False] b
|
|
|
|
f:f32[] = cond[
|
|
|
|
branches=(
|
2021-09-28 10:00:45 -04:00
|
|
|
{ lambda ; g_:f32[] h:f32[] i:f32[] j:f32[]. let
|
|
|
|
k:f32[] = sub j h
|
|
|
|
in (k,) }
|
|
|
|
{ lambda ; l:f32[] m_:f32[] n:f32[] o:f32[]. let
|
|
|
|
p:f32[] = add n l
|
|
|
|
in (p,) }
|
2021-09-24 22:08:42 -04:00
|
|
|
)
|
|
|
|
linear=(False, False, False, False)
|
|
|
|
] e a a c d
|
|
|
|
in (f,) }"""
|
|
|
|
jaxpr = api.make_jaxpr(f)(jnp.float32(3.))
|
2020-07-30 12:59:36 -07:00
|
|
|
self.assertMultiLineStrippedEqual(expected, str(jaxpr))
|
2020-02-10 11:40:05 +01:00
|
|
|
|
2020-04-23 18:07:51 -07:00
|
|
|
def test_make_jaxpr_static_argnums(self):
|
|
|
|
def f(x, y):
|
|
|
|
return x + y
|
|
|
|
|
|
|
|
jaxpr = api.make_jaxpr(f, static_argnums=(1,))(2, 3)
|
|
|
|
self.assertIn('3', str(jaxpr))
|
|
|
|
|
2020-09-23 20:41:57 -07:00
|
|
|
def test_make_jaxpr_return_shape(self):
|
|
|
|
_, shape_tree = api.make_jaxpr(lambda x: (x + 1, jnp.zeros(2, jnp.float32)),
|
|
|
|
return_shape=True)(np.int32(1))
|
|
|
|
expected = (api.ShapeDtypeStruct(shape=(), dtype=jnp.int32),
|
|
|
|
api.ShapeDtypeStruct(shape=(2,), dtype=jnp.float32))
|
|
|
|
self.assertEqual(shape_tree, expected)
|
|
|
|
|
2021-01-26 17:25:22 -08:00
|
|
|
def test_make_jaxpr_axis_env(self):
|
|
|
|
def f(x):
|
|
|
|
return x - lax.psum(x, 'i')
|
|
|
|
jaxpr = api.make_jaxpr(f, axis_env=[('i', 4)])(2)
|
|
|
|
self.assertIn('psum', str(jaxpr))
|
|
|
|
|
2021-03-09 13:48:15 -08:00
|
|
|
def test_make_jaxpr_named(self):
|
|
|
|
def f(x):
|
|
|
|
return x - lax.psum(x, 'i')
|
|
|
|
|
AWN-enabled reduction over named axes in reverse-mode AD
Previously, reverse-mode AD operators inside JAX maps always meant "compute
a gradient (or VJP, etc.) for each axis index in the map". For instance,
`vmap(grad(f))` is the standard JAX spelling of the per-example gradient of `f`.
In batching tracer terms, this "elementwise" behavior means that, if any inputs
to a function being transposed are mapped, the cotangents of all inputs, even
unmapped ones, would also be mapped. But a user might want them to be unmapped
(if, for instance, they're interested in a total gradient rather than a
per-example gradient). They could always reduce (`psum`) the cotangents
afterwards, but computing mapped cotangents in the first place would likely be
an unacceptable waste of memory and can't necessarily be optimized away.
If we want to fuse these reductions into reverse-mode autodiff itself, we need
the backward_pass logic and/or transpose rules to know about whether primal
values are mapped or unmapped. This is made possible by avals-with-names,
which encodes that information in the avals of the primal jaxpr.
Putting things together, **this change adds an option to reverse-mode AD APIs
that indicates which named axes should be reduced over in the backward pass in
situations where they were broadcasted over in the forward pass**. All other
named axes will be treated in the current elementwise way. This has the effect
of making APIs like `grad` behave akin to collectives like `psum`: they act
collectively over axes that are named explicitly, and elementwise otherwise.
Since avals-with-names is currently enabled only in `xmap`, this behavior is
only available in that context for now. It's also missing some optimizations:
- reductions aren't fused into any first-order primitives (e.g. a `pdot`
should have a named contracting axis added rather than being followed by a
`psum`; this can be implemented by putting these primitives into
`reducing_transposes`)
- reductions are performed eagerly, even over axes that are mapped to
hardware resources (the optimal thing to do would be to reduce eagerly
over any vectorized axis component while delaying the reduction over any
hardware-mapped component until the end of the overall backward pass; this
would require a way to represent these partially-reduced values)
PiperOrigin-RevId: 383685336
2021-07-08 12:05:56 -07:00
|
|
|
x = api.ShapeDtypeStruct(
|
2021-06-22 15:58:29 -04:00
|
|
|
shape=(2, 3), dtype=jnp.dtype(jnp.float32), named_shape={'i': 10})
|
2021-03-09 13:48:15 -08:00
|
|
|
jaxpr = api.make_jaxpr(f, axis_env=[('i', 10)])(x)
|
|
|
|
named_shapes = [v.aval.named_shape for v in jaxpr.jaxpr.eqns[1].invars]
|
|
|
|
self.assertEqual(named_shapes, [{'i': 10}, {}])
|
|
|
|
|
AWN-enabled reduction over named axes in reverse-mode AD
Previously, reverse-mode AD operators inside JAX maps always meant "compute
a gradient (or VJP, etc.) for each axis index in the map". For instance,
`vmap(grad(f))` is the standard JAX spelling of the per-example gradient of `f`.
In batching tracer terms, this "elementwise" behavior means that, if any inputs
to a function being transposed are mapped, the cotangents of all inputs, even
unmapped ones, would also be mapped. But a user might want them to be unmapped
(if, for instance, they're interested in a total gradient rather than a
per-example gradient). They could always reduce (`psum`) the cotangents
afterwards, but computing mapped cotangents in the first place would likely be
an unacceptable waste of memory and can't necessarily be optimized away.
If we want to fuse these reductions into reverse-mode autodiff itself, we need
the backward_pass logic and/or transpose rules to know about whether primal
values are mapped or unmapped. This is made possible by avals-with-names,
which encodes that information in the avals of the primal jaxpr.
Putting things together, **this change adds an option to reverse-mode AD APIs
that indicates which named axes should be reduced over in the backward pass in
situations where they were broadcasted over in the forward pass**. All other
named axes will be treated in the current elementwise way. This has the effect
of making APIs like `grad` behave akin to collectives like `psum`: they act
collectively over axes that are named explicitly, and elementwise otherwise.
Since avals-with-names is currently enabled only in `xmap`, this behavior is
only available in that context for now. It's also missing some optimizations:
- reductions aren't fused into any first-order primitives (e.g. a `pdot`
should have a named contracting axis added rather than being followed by a
`psum`; this can be implemented by putting these primitives into
`reducing_transposes`)
- reductions are performed eagerly, even over axes that are mapped to
hardware resources (the optimal thing to do would be to reduce eagerly
over any vectorized axis component while delaying the reduction over any
hardware-mapped component until the end of the overall backward pass; this
would require a way to represent these partially-reduced values)
PiperOrigin-RevId: 383685336
2021-07-08 12:05:56 -07:00
|
|
|
@parameterized.parameters(True, False)
|
|
|
|
def test_vjp_reduce_axes_jaxpr(self, gy_batched):
|
|
|
|
def f(w, x):
|
|
|
|
return jnp.sin(jnp.dot(x, w))
|
|
|
|
|
|
|
|
w = api.ShapeDtypeStruct(
|
|
|
|
shape=(3, 4), dtype=jnp.float32, named_shape={})
|
|
|
|
x = api.ShapeDtypeStruct(
|
|
|
|
shape=(3,), dtype=jnp.float32, named_shape={'batch': 2})
|
|
|
|
gy = api.ShapeDtypeStruct(
|
|
|
|
shape=(4,), dtype=jnp.float32,
|
|
|
|
named_shape={'batch': 2} if gy_batched else {})
|
|
|
|
|
|
|
|
# per-example
|
|
|
|
jaxpr, shapes = api.make_jaxpr(
|
|
|
|
lambda w, x, gy: api.vjp(f, w, x)[1](gy), axis_env=[('batch', 2)],
|
|
|
|
return_shape=True)(w, x, gy)
|
|
|
|
expected = (api.ShapeDtypeStruct(
|
|
|
|
shape=(3, 4), dtype=jnp.float32, named_shape={'batch': 2}), x)
|
|
|
|
self.assertEqual(shapes, expected)
|
|
|
|
self.assertNotIn('psum', str(jaxpr))
|
|
|
|
|
|
|
|
# reduced
|
|
|
|
jaxpr, shapes = api.make_jaxpr(
|
|
|
|
lambda w, x, gy: api.vjp(f, w, x, reduce_axes=('batch',))[1](gy),
|
|
|
|
axis_env=[('batch', 2)],
|
|
|
|
return_shape=True)(w, x, gy)
|
|
|
|
expected = (w, x)
|
|
|
|
self.assertEqual(shapes, expected)
|
|
|
|
self.assertIn('psum', str(jaxpr))
|
|
|
|
|
2021-11-15 21:21:29 -08:00
|
|
|
def test_weak_type_jit_invariance(self):
|
|
|
|
y = jnp.broadcast_to(3., (3,))
|
|
|
|
self.assertTrue(y.aval.weak_type)
|
|
|
|
|
|
|
|
def f():
|
|
|
|
return lax.convert_element_type(y, 'float32')
|
|
|
|
|
|
|
|
self.assertEqual(f().aval.weak_type, api.jit(f)().aval.weak_type)
|
|
|
|
|
|
|
|
def test_elide_trivial_convert_element_types(self):
|
|
|
|
# since we apply convert_element_type to a numpy.ndarray, the primitive is
|
|
|
|
# still bound and thus would appear in the jaxpr if we didn't clean it up
|
|
|
|
if config.x64_enabled:
|
|
|
|
x = np.arange(3, dtype='float64')
|
|
|
|
else:
|
|
|
|
x = np.arange(3, dtype='float32')
|
|
|
|
|
|
|
|
cet = partial(lax.convert_element_type, new_dtype=x.dtype)
|
|
|
|
jaxpr = api.make_jaxpr(lambda: cet(cet(cet(x))))()
|
|
|
|
self.assertLen(jaxpr.eqns, 0)
|
|
|
|
|
|
|
|
def test_elide_trivial_broadcasts(self):
|
|
|
|
# since we apply broadcast to a numpy.ndarray, the primitive is still bound
|
|
|
|
# and thus would appear in the jaxpr if we didn't clean it up
|
|
|
|
jaxpr = api.make_jaxpr(lambda: lax.broadcast(np.float32(3), ()))()
|
|
|
|
self.assertLen(jaxpr.jaxpr.eqns, 0)
|
|
|
|
|
|
|
|
def test_convert_element_type_literal_constant_folding(self):
|
|
|
|
# this convert_elemnt_type is nontrivial, but because it's on a scalar we
|
|
|
|
# constant-fold it
|
|
|
|
cet = partial(lax.convert_element_type, new_dtype='float16')
|
|
|
|
jaxpr = api.make_jaxpr(lambda: cet(3.))()
|
|
|
|
self.assertLen(jaxpr.eqns, 0)
|
|
|
|
|
implement lazy sublanguage
Before this commit, this computation would avoid materializing the iota
array at trace time:
@jit
def f(x):
m, n = x.shape
return x + np.arange(n)
But this one would materialize the iota array at trace time and stage it
into the computation as a potentially large array constant:
@jit
def f(x):
m, n = x.shape
return x + np.arange(m)[:, None]
The difference is that previously operations like broadcasts,
transposes, and reshapes that add singleton dimensions (as above) would
force otherwise lazy values to be materialized, while after this commit
broadcasts, transposes, and reshapes are all lazy operations that only
update metadata on their input rather than compiling and executing XLA
computations and producing new buffers.
Also, np.eye and np.tri become lazy (in addition to np.zeros, np.ones, np.full).
This commit replaces the ad-hoc "lazy device constant" system, which was
used to get the simpler behavior in the first example above.
Incidentally fixes #1431
See https://github.com/google/jax/pull/1668 for more.
2020-01-03 15:46:19 -08:00
|
|
|
|
2020-01-15 15:00:38 -08:00
|
|
|
class CustomJVPTest(jtu.JaxTestCase):
|
|
|
|
|
|
|
|
def test_basic(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), 2 * jnp.cos(x) * g
|
2020-01-15 15:00:38 -08:00
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
x = 3.
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(f(x), jnp.sin(x))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.jvp(f, (x,), (1.,)),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(x), 2 * jnp.cos(x)))
|
|
|
|
self.assertAllClose(api.grad(f)(x), 2 * jnp.cos(x))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
def test_invariance(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.cos(2 * x) / 2.
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
|
|
|
return (f(x), 3 * g)
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
def f2(x):
|
|
|
|
y, _ = api.jvp(f, (x,), (x,))
|
|
|
|
return y
|
|
|
|
def f3(x):
|
|
|
|
y, _ = api.jvp(f2, (x,), (x,))
|
|
|
|
return y
|
|
|
|
x = 1.
|
|
|
|
self.assertAllClose(api.jvp(f, (x,), (x,)),
|
|
|
|
api.jvp(f2, (x,), (x,)),
|
|
|
|
check_dtypes=False)
|
|
|
|
self.assertAllClose(api.jvp(f, (x,), (x,)),
|
|
|
|
api.jvp(f3, (x,), (x,)),
|
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
def test_python_control_flow(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
if x > 0:
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
else:
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
|
|
|
if x > 0:
|
|
|
|
return f(x), 2 * g
|
|
|
|
else:
|
|
|
|
return f(x), 3 * g
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
x = 2.
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(f(x), jnp.sin(x))
|
|
|
|
self.assertAllClose(f(-x), jnp.cos(-x))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.jvp(f, (x,), (1.,)),
|
2020-05-05 14:59:16 -04:00
|
|
|
(jnp.sin(x), 2.),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
|
|
|
self.assertAllClose(api.jvp(f, (-x,), (1.,)),
|
2020-05-05 14:59:16 -04:00
|
|
|
(jnp.cos(-x), 3.),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(f)(x), 2., check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(f)(-x), 3., check_dtypes=False)
|
|
|
|
|
|
|
|
def test_vmap(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
assert jnp.ndim(x) == 0
|
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
2020-05-05 14:59:16 -04:00
|
|
|
assert jnp.ndim(x) == jnp.ndim(g) == 0
|
|
|
|
return f(x), 2 * jnp.cos(x) * g
|
2020-01-15 15:00:38 -08:00
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = jnp.arange(3.)
|
|
|
|
xx = jnp.arange(6.).reshape(2, 3)
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# vmap of f
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(api.vmap(f)(x), jnp.sin(x))
|
|
|
|
self.assertAllClose(api.vmap(api.vmap(f))(xx), jnp.sin(xx))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# vmap of jvp of f
|
|
|
|
self.assertAllClose(api.vmap(lambda x: api.jvp(f, (x,), (x,)))(x),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(x), 2 * jnp.cos(x) * x))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.vmap(api.vmap(lambda x: api.jvp(f, (x,), (x,))))(xx),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(xx), 2 * jnp.cos(xx) * xx))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# jvp of vmap of f
|
|
|
|
self.assertAllClose(api.jvp(api.vmap(f), (x,), (x,)),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(x), 2 * jnp.cos(x) * x))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.jvp(api.vmap(api.vmap(f)), (xx,), (xx,)),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(xx), 2 * jnp.cos(xx) * xx))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# vmap of jvp of vmap of f
|
|
|
|
self.assertAllClose(api.vmap(lambda x: api.jvp(api.vmap(f), (x,), (x,)))(xx),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(xx), 2 * jnp.cos(xx) * xx))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
def test_jit(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), 2 * jnp.cos(x) * g
|
2020-01-15 15:00:38 -08:00
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
x = 3.
|
|
|
|
|
|
|
|
# jit
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(api.jit(f)(x), jnp.sin(x))
|
|
|
|
self.assertAllClose(api.jit(api.jit(f))(x), jnp.sin(x))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# jit of jvp
|
|
|
|
self.assertAllClose(api.jit(lambda x: api.jvp(f, (x,), (x,)))(x),
|
2020-05-05 14:59:16 -04:00
|
|
|
(jnp.sin(x), 2 * jnp.cos(x) * x),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
# jvp of jit
|
|
|
|
self.assertAllClose(api.jvp(api.jit(f), (x,), (x,)),
|
2020-05-05 14:59:16 -04:00
|
|
|
(jnp.sin(x), 2 * jnp.cos(x) * x),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
def test_pytrees(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return {'b': jnp.sin(x['a'])}
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), {'b': 2 * jnp.cos(x['a']) * g['a']}
|
2020-01-15 15:00:38 -08:00
|
|
|
f.defjvp(f_jvp)
|
|
|
|
x = {'a': 3.}
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(f(x)['b'], jnp.sin(x['a']))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.jvp(f, (x,), (x,)),
|
2020-05-05 14:59:16 -04:00
|
|
|
({'b': jnp.sin(x['a'])},
|
|
|
|
{'b': 2 * jnp.cos(x['a']) * x['a']}),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
def test_kwargs(self):
|
|
|
|
# from https://github.com/google/jax/issues/1938
|
|
|
|
@api.custom_jvp
|
|
|
|
def my_fun(x, y, c=1.):
|
|
|
|
return c * (x + y)
|
|
|
|
def my_jvp(primals, tangents):
|
|
|
|
x, y, c = primals
|
|
|
|
t_x, t_y, t_c = tangents
|
|
|
|
return my_fun(x, y, c), t_c
|
|
|
|
my_fun.defjvp(my_jvp)
|
2020-05-05 14:59:16 -04:00
|
|
|
f = lambda x, y: jnp.square(my_fun(x, y, c=2.)).sum()
|
2020-01-15 15:00:38 -08:00
|
|
|
f(10., 5.) # doesn't crash
|
|
|
|
api.jvp(f, (10., 5.), (1., 1.)) # doesn't crash
|
|
|
|
|
|
|
|
def test_initial_style(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return 3 * x
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
|
|
|
return f(x), 2 * g
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
def foo(x):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(c), None), x, None, length=1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
ans = api.grad(foo)(3.)
|
|
|
|
expected = 2.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
ans = api.grad(api.jit(foo))(3.)
|
|
|
|
expected = 2.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jit(api.grad(foo))(3.)
|
|
|
|
expected = 2.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-01-15 15:00:38 -08:00
|
|
|
ans = api.grad(api.grad(foo))(3.)
|
|
|
|
expected = 0.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
ans = api.grad(api.grad(api.jit(foo)))(3.)
|
|
|
|
expected = 0.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(api.jit(api.grad(foo)))(3.)
|
|
|
|
expected = 0.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jit(api.grad(api.grad(foo)))(3.)
|
|
|
|
expected = 0.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-01-15 15:00:38 -08:00
|
|
|
def test_initial_style_vmap(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
assert jnp.ndim(x) == 0
|
2020-01-15 15:00:38 -08:00
|
|
|
return 3 * x
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
|
|
|
return f(x), 2 * g
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
def foo(x):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(c), None), x, None, length=1)
|
|
|
|
return out
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
ans = api.vmap(foo)(jnp.ones(3))
|
|
|
|
expected = 3. * jnp.ones(3)
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
ans = api.vmap(api.jit(foo))(jnp.ones(3))
|
|
|
|
expected = 3. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jit(api.vmap(foo))(jnp.ones(3))
|
|
|
|
expected = 3. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
ans = api.grad(lambda x: api.vmap(foo)(x).sum())(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
ans = api.grad(lambda x: api.vmap(api.jit(foo))(x).sum())(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(lambda x: api.jit(api.vmap(foo))(x).sum())(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(api.jit(lambda x: api.vmap(foo)(x).sum()))(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jit(api.grad(lambda x: api.vmap(foo)(x).sum()))(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2021-08-26 13:34:01 -07:00
|
|
|
def test_initial_style_vmap_with_collective(self):
|
|
|
|
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return lax.psum(x, 'foo')
|
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def f_jvp(xs, ts):
|
|
|
|
x, = xs
|
|
|
|
t, = ts
|
|
|
|
return lax.psum(x, 'foo'), t
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
jaxpr = api.make_jaxpr(f)(x)
|
|
|
|
return core.eval_jaxpr(jaxpr.jaxpr, [], x)[0]
|
|
|
|
|
|
|
|
v = api.vmap(lambda _, x: g(x), axis_name='foo', in_axes=(0, None),
|
|
|
|
out_axes=None)(jnp.arange(4.), 2.)
|
|
|
|
self.assertAllClose(v, 8.)
|
|
|
|
|
2020-01-15 15:00:38 -08:00
|
|
|
def test_closed_over_tracers_error_message(self):
|
|
|
|
def f(x):
|
|
|
|
@api.custom_jvp
|
|
|
|
def g(y):
|
|
|
|
return x + y
|
|
|
|
def g_jvp(primals, tangents):
|
2020-06-02 19:25:47 -07:00
|
|
|
return g(x), 2 * primals[0]
|
2020-01-15 15:00:38 -08:00
|
|
|
g.defjvp(g_jvp)
|
|
|
|
return g(1.)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
self.assertRaises(ad.CustomJVPException, lambda: api.jvp(f, (3.,), (1.,)))
|
|
|
|
self.assertRaises(ad.CustomJVPException, lambda: api.grad(f)(3.))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
def test_nondiff_arg(self):
|
|
|
|
@partial(api.custom_jvp, nondiff_argnums=(0,))
|
|
|
|
def app(f, x):
|
|
|
|
return f(x)
|
|
|
|
def app_jvp(f, primals, tangents):
|
|
|
|
(x,), (t,) = primals, tangents
|
|
|
|
return app(f, x), 3 * t
|
|
|
|
app.defjvp(app_jvp)
|
|
|
|
|
|
|
|
ans = app(lambda x: 2 * x, 1)
|
|
|
|
expected = 2
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jvp(lambda x: app(lambda y: 2 * y, x), (1.,), (1.,))
|
|
|
|
expected = (2., 3.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-07-30 12:59:36 -07:00
|
|
|
def test_nondiff_arg_jit_tracer(self):
|
2020-01-15 15:00:38 -08:00
|
|
|
@partial(api.custom_jvp, nondiff_argnums=(0,))
|
|
|
|
def f(x, y):
|
|
|
|
return x * y
|
|
|
|
def f_jvp(x, primals, tangents):
|
|
|
|
(y,), (t_y,) = primals, tangents
|
|
|
|
return f(x, y), 5 * t_y
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def g(x, y):
|
|
|
|
return f(x, y)
|
|
|
|
|
|
|
|
ans = api.jvp(lambda y: g(2., y), (3.,), (1.,))
|
|
|
|
expected = (6., 5.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_nondiff_arg_hiding_jvp_tracer(self):
|
|
|
|
def f(x):
|
|
|
|
@partial(api.custom_jvp, nondiff_argnums=(0,))
|
|
|
|
def g(h, x):
|
|
|
|
return h(x)
|
|
|
|
@g.defjvp
|
|
|
|
def g_jvp(h, primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
t, = tangents
|
|
|
|
return g(h, x), 2. * t
|
|
|
|
h = lambda y: x + y # capture x
|
|
|
|
return g(h, x)
|
|
|
|
|
|
|
|
with self.assertRaisesRegex(ad.CustomJVPException, "Detected differentiation"):
|
|
|
|
api.jvp(f, (2.,), (1.,))
|
|
|
|
|
2020-01-15 15:00:38 -08:00
|
|
|
def test_vmap_axes(self):
|
|
|
|
raise unittest.SkipTest("TODO") # TODO(mattjj): write test
|
|
|
|
|
|
|
|
def test_pmap(self):
|
|
|
|
raise unittest.SkipTest("TODO") # TODO(mattjj): write test
|
|
|
|
|
2020-03-24 20:43:33 -07:00
|
|
|
def test_missing_jvp_rule_error_message(self):
|
2020-01-15 15:00:38 -08:00
|
|
|
@api.custom_jvp
|
|
|
|
def foo(x):
|
|
|
|
return x ** 2
|
|
|
|
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
AttributeError,
|
|
|
|
r"No JVP defined for custom_jvp function foo using defjvp.",
|
|
|
|
lambda: foo(2))
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
AttributeError,
|
|
|
|
r"No JVP defined for custom_jvp function foo using defjvp.",
|
|
|
|
lambda: api.jvp(foo, (2.,), (1.,)))
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
AttributeError,
|
|
|
|
r"No JVP defined for custom_jvp function foo using defjvp.",
|
|
|
|
lambda: api.grad(foo)(2.))
|
|
|
|
|
2020-03-24 20:43:33 -07:00
|
|
|
def test_jvp_rule_inconsistent_pytree_structures_error_message(self):
|
2020-01-15 15:00:38 -08:00
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return (x**2,)
|
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def foo_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
t, = tangents
|
|
|
|
return f(x), [2 * x * t, x]
|
|
|
|
|
|
|
|
f(2.) # doesn't crash
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
re.escape(
|
|
|
|
"Custom JVP rule must produce primal and tangent outputs "
|
|
|
|
"with equal container (pytree) structures, but got "
|
2020-03-24 20:43:33 -07:00
|
|
|
"{} and {} respectively.".format(
|
2020-01-15 15:00:38 -08:00
|
|
|
tree_util.tree_structure((1,)),
|
|
|
|
tree_util.tree_structure([1, 2]))
|
|
|
|
),
|
|
|
|
lambda: api.jvp(f, (2.,), (1.,)))
|
|
|
|
|
2020-03-24 20:43:33 -07:00
|
|
|
def test_primal_tangent_aval_disagreement_error_message(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return x ** 2
|
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def foo_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
t, = tangents
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), jnp.reshape(t, (1,))
|
2020-03-24 20:43:33 -07:00
|
|
|
|
|
|
|
f(2.) # doesn't crash
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
re.escape(
|
|
|
|
"Custom JVP rule must produce primal and tangent outputs "
|
|
|
|
"with equal shapes and dtypes, but got float32[] and float32[1] "
|
|
|
|
"respectively."),
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: api.jvp(f, (jnp.float32(2.),), (jnp.float32(1.),)))
|
2020-03-24 20:43:33 -07:00
|
|
|
|
2020-03-29 20:51:51 -07:00
|
|
|
def test_jvp_rule_doesnt_return_pair_error_message(self):
|
|
|
|
# https://github.com/google/jax/issues/2516
|
|
|
|
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return x ** 2
|
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def foo_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
t, = tangents
|
|
|
|
return t
|
|
|
|
|
|
|
|
f(2.) # doesn't crash
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
re.escape(
|
|
|
|
"Custom JVP rule must produce a pair (list or tuple of length two) "
|
|
|
|
"representing primal and tangent outputs, got 1.0"),
|
|
|
|
lambda: api.jvp(f, (2.,), (1.,)))
|
|
|
|
|
2020-03-28 13:52:40 -07:00
|
|
|
def test_multiple_rule_invocations(self):
|
|
|
|
@jax.custom_jvp
|
|
|
|
def expit(x):
|
|
|
|
return 1 / (1 + lax.exp(-x))
|
|
|
|
|
|
|
|
@expit.defjvp
|
|
|
|
def _expit_jvp(primals, tangents):
|
|
|
|
(x,), (t,) = primals, tangents
|
|
|
|
ans = expit(x)
|
|
|
|
t_out = t * ans * (1 - ans)
|
|
|
|
return ans, t_out
|
|
|
|
|
|
|
|
def scanned_fun(c, _):
|
|
|
|
return [expit(c[0])] + [c[i-1] + c[i] for i in range(1, len(c))], None
|
|
|
|
|
|
|
|
def foo(x):
|
|
|
|
c, _ = lax.scan(scanned_fun, [x, 0., 0., 0., 0.], None, length=10)
|
|
|
|
return c[-1]
|
|
|
|
|
|
|
|
# just make sure these don't crash
|
|
|
|
foo(3.)
|
|
|
|
grad(foo)(3.)
|
2020-05-05 14:59:16 -04:00
|
|
|
grad(lambda x: jax.vmap(foo)(x).sum())(jnp.arange(3.))
|
2020-03-28 13:52:40 -07:00
|
|
|
|
|
|
|
def test_hard_stuff(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
arr = jnp.ones((5, 2, 2))
|
|
|
|
api.jit(jax.vmap(jnp.linalg.det))(arr) # doesn't crash
|
2020-03-28 13:52:40 -07:00
|
|
|
|
|
|
|
def test_hard_stuff2(self):
|
|
|
|
@jax.custom_jvp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return lax.tie_in(x, np.zeros(x.shape, x.dtype))
|
2020-03-28 13:52:40 -07:00
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
t, = tangents
|
|
|
|
return f(x), t
|
|
|
|
|
|
|
|
# don't crash
|
2020-05-05 14:59:16 -04:00
|
|
|
jax.jit(jax.vmap(f))(jnp.arange(3.))
|
|
|
|
jax.jit(jax.vmap(jax.grad(f)))(jnp.arange(3.))
|
|
|
|
jax.jit(jax.grad(lambda x: jax.vmap(f)(x).sum()))(jnp.arange(3.))
|
|
|
|
jax.grad(lambda x: jax.vmap(f)(x).sum())(jnp.arange(3.))
|
|
|
|
jax.jvp(jax.vmap(f), (jnp.arange(3.),), (jnp.ones(3),))
|
2020-03-28 13:52:40 -07:00
|
|
|
|
|
|
|
def test_hard_stuff3(self):
|
|
|
|
@jax.custom_jvp
|
|
|
|
def relu(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.maximum(x, 0)
|
2020-03-28 13:52:40 -07:00
|
|
|
|
|
|
|
@relu.defjvp
|
|
|
|
def _relu_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
t, = tangents
|
|
|
|
return relu(x), lax.select(x > 0, t, lax.full_like(t, 0))
|
|
|
|
|
|
|
|
def scanned_fun(c, _):
|
|
|
|
return [relu(c[0])] + [c[i-1] + c[i] for i in range(1, len(c))], None
|
|
|
|
|
|
|
|
def f(x):
|
|
|
|
c, _ = lax.scan(scanned_fun, [x, 0., 0., 0., 0.], None, length=10)
|
|
|
|
return c[-1]
|
|
|
|
|
|
|
|
# don't crash
|
2020-05-05 14:59:16 -04:00
|
|
|
jax.jit(jax.vmap(f))(jnp.arange(3.))
|
|
|
|
jax.jit(jax.vmap(jax.grad(f)))(jnp.arange(3.))
|
|
|
|
jax.jit(jax.grad(lambda x: jax.vmap(f)(x).sum()))(jnp.arange(3.))
|
|
|
|
jax.grad(lambda x: jax.vmap(f)(x).sum())(jnp.arange(3.))
|
|
|
|
jax.jvp(jax.jit(jax.vmap(f)), (jnp.arange(3.),), (jnp.ones(3),))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
2020-03-29 20:51:51 -07:00
|
|
|
def test_eval_shape(self):
|
|
|
|
@jax.custom_jvp
|
|
|
|
def expit(x):
|
|
|
|
return 1 / (1 + lax.exp(-x))
|
|
|
|
|
|
|
|
@expit.defjvp
|
|
|
|
def _expit_jvp(primals, tangents):
|
|
|
|
(x,), (t,) = primals, tangents
|
|
|
|
ans = expit(x)
|
|
|
|
t_out = t * ans * (1 - ans)
|
|
|
|
return ans, t_out
|
|
|
|
|
|
|
|
# don't crash
|
2020-05-05 14:59:16 -04:00
|
|
|
api.eval_shape(expit, jnp.ones((2, 3)))
|
|
|
|
api.eval_shape(api.grad(lambda x: expit(x).sum()), jnp.ones((2, 3)))
|
2020-03-29 20:51:51 -07:00
|
|
|
|
2020-04-10 11:45:33 -07:00
|
|
|
def test_jaxpr_zeros(self):
|
|
|
|
# from https://github.com/google/jax/issues/2657
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(A, b):
|
2020-08-19 18:39:25 +02:00
|
|
|
return A @ b
|
2020-04-10 11:45:33 -07:00
|
|
|
|
|
|
|
def f_jvp(primals, tangents):
|
2020-08-19 18:39:25 +02:00
|
|
|
A, b = primals
|
|
|
|
dA, db = tangents
|
|
|
|
z = f(A, b)
|
|
|
|
dz = A @ db + dA @ b
|
|
|
|
return z, dz
|
2020-04-10 11:45:33 -07:00
|
|
|
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
def experiment(theta):
|
2020-08-19 18:39:25 +02:00
|
|
|
def step(q, _):
|
|
|
|
z = f(jnp.eye(3), jnp.ones(3) * theta)
|
|
|
|
q += z[0]
|
|
|
|
return q, q
|
2020-04-10 11:45:33 -07:00
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
q = 0.
|
|
|
|
q, _ = lax.scan(step, q, None, 4)
|
|
|
|
return q
|
2020-04-10 11:45:33 -07:00
|
|
|
|
|
|
|
grad(experiment)(1.) # doesn't crash
|
|
|
|
|
2020-05-28 10:20:36 -07:00
|
|
|
def test_linear_in_scan(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return -x
|
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
x_dot, = tangents
|
|
|
|
return f(x), f(x_dot)
|
|
|
|
|
|
|
|
def foo(x):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(c), None), x, None, length=1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
ans = api.grad(foo)(3.)
|
|
|
|
expected = -1.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-06-09 15:19:53 -07:00
|
|
|
def test_custom_jvps_first_rule_is_none(self):
|
|
|
|
# https://github.com/google/jax/issues/3389
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x, y):
|
|
|
|
return x ** 2 * y
|
|
|
|
|
|
|
|
f.defjvps(None, lambda x_dot, primal_out, x, y: 2 * x * y * x_dot)
|
|
|
|
ans = grad(f, 1)(2., 3.) # doesn't crash
|
|
|
|
expected = 12.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-07-23 19:49:04 -07:00
|
|
|
def test_concurrent_initial_style(self):
|
|
|
|
# https://github.com/google/jax/issues/3843
|
|
|
|
def unroll(param, sequence):
|
|
|
|
def scan_f(prev_state, inputs):
|
|
|
|
return prev_state, jax.nn.sigmoid(param * inputs)
|
|
|
|
return jnp.sum(jax.lax.scan(scan_f, None, sequence)[1])
|
|
|
|
|
|
|
|
def run():
|
|
|
|
return jax.grad(unroll)(jnp.array(1.0), jnp.array([1.0]))
|
|
|
|
|
2020-07-23 20:59:12 -07:00
|
|
|
expected = run()
|
|
|
|
|
2020-07-23 19:49:04 -07:00
|
|
|
# we just don't want this to crash
|
2020-07-30 12:59:36 -07:00
|
|
|
n_workers = 2
|
2020-07-23 19:49:04 -07:00
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=n_workers) as e:
|
|
|
|
futures = []
|
|
|
|
for _ in range(n_workers):
|
|
|
|
futures.append(e.submit(run))
|
2020-07-23 20:59:12 -07:00
|
|
|
results = [f.result() for f in futures]
|
|
|
|
for ans in results:
|
|
|
|
self.assertAllClose(ans, expected)
|
2020-07-23 19:49:04 -07:00
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_nondiff_argnums_vmap_tracer(self):
|
|
|
|
# https://github.com/google/jax/issues/3964
|
|
|
|
@partial(jax.custom_jvp, nondiff_argnums=(0, 2))
|
|
|
|
def sample(shape, param, seed):
|
|
|
|
return jax.random.uniform(key=seed, shape=shape, minval=param)
|
|
|
|
|
|
|
|
@sample.defjvp
|
|
|
|
def sample_jvp(shape, seed, primals, tangents):
|
|
|
|
param, = primals
|
|
|
|
dparam, = tangents
|
|
|
|
dparam = jnp.broadcast_to(dparam, shape)
|
|
|
|
samples = sample(shape, param, seed)
|
|
|
|
return samples, samples * dparam # dummy jvp for proof of concept
|
|
|
|
|
|
|
|
# check these don't crash
|
|
|
|
jax.vmap(lambda seed: sample((2,3), 1., seed))(
|
|
|
|
jax.random.split(jax.random.PRNGKey(1), 10))
|
|
|
|
jax.jvp(lambda x: sample((2, 3), x, jax.random.PRNGKey(1)),
|
|
|
|
(1.,), (1.,))
|
|
|
|
|
|
|
|
def test_fun_with_nested_calls_2(self):
|
|
|
|
def call(f, *args):
|
|
|
|
f = api.custom_jvp(f)
|
|
|
|
f.defjvp(lambda primals, tangents: (f(*primals), sum(tangents)))
|
|
|
|
return f(*args)
|
|
|
|
|
|
|
|
def fun_with_nested_calls_2(x):
|
|
|
|
def bar(y):
|
|
|
|
def baz(w):
|
|
|
|
q = call(lambda x: y, x)
|
|
|
|
q = q + call(lambda: y)
|
|
|
|
q = q + call(lambda y: w + y, y)
|
|
|
|
q = call(lambda w: call(jnp.sin, x) * y, 1.0) + q
|
|
|
|
return q
|
|
|
|
return api.jit(baz)(x)
|
|
|
|
return call(bar, x)
|
|
|
|
|
|
|
|
# test these don't crash
|
|
|
|
self.assertAllClose(api.jit(fun_with_nested_calls_2)(3.),
|
|
|
|
fun_with_nested_calls_2(3.))
|
|
|
|
api.vmap(fun_with_nested_calls_2)(jnp.arange(3.))
|
|
|
|
|
|
|
|
def test_closure_with_vmap(self):
|
|
|
|
# https://github.com/google/jax/issues/3822
|
|
|
|
alpha = np.float32(2.)
|
|
|
|
|
|
|
|
def sample(seed):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(alpha):
|
|
|
|
return jax.random.gamma(seed, alpha, shape=[])
|
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def f_jvp(primal, tangent):
|
|
|
|
alpha = primal
|
|
|
|
dalpha = tangent
|
|
|
|
sample = f(alpha)
|
|
|
|
partial_alpha = lax.random_gamma_grad(alpha, sample)
|
|
|
|
return sample, partial_alpha * dalpha
|
|
|
|
return f(alpha)
|
|
|
|
|
|
|
|
api.vmap(sample)(jax.random.split(jax.random.PRNGKey(1), 3)) # don't crash
|
|
|
|
|
2021-12-11 14:07:30 -08:00
|
|
|
def test_closure_with_vmap2(self):
|
|
|
|
# https://github.com/google/jax/issues/8783
|
|
|
|
def h(z):
|
|
|
|
def f(x):
|
|
|
|
@jax.custom_jvp
|
|
|
|
def g(y):
|
|
|
|
return x * y
|
|
|
|
|
|
|
|
# NOTE: rule closes over vmap tracer
|
|
|
|
@g.defjvp
|
|
|
|
def g_jvp(primals, tangents):
|
|
|
|
(y,), (ydot,) = primals, tangents
|
|
|
|
return x * y, x * ydot
|
|
|
|
|
|
|
|
return g(z) # NOTE: no vmapped arg
|
|
|
|
|
|
|
|
return jax.vmap(f)(jnp.arange(3., dtype='float32'))
|
|
|
|
|
|
|
|
primals, tangents = jax.jvp(h, (jnp.float32(1.),), (jnp.float32(2.),))
|
|
|
|
self.assertAllClose(primals , jnp.arange(3., dtype='float32'))
|
|
|
|
self.assertAllClose(tangents, 2 * jnp.arange(3., dtype='float32'))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-10-08 15:36:05 +01:00
|
|
|
def test_float0(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x, y):
|
|
|
|
return x, y
|
|
|
|
def f_jvp(primals, _):
|
|
|
|
# we need a defined (non-float0) tangent to trigger the rule
|
|
|
|
return primals, (2., 1)
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
primals = (2., 3)
|
|
|
|
tangents = (np.ones(()), np.zeros((), float0),)
|
|
|
|
expected_tangents = (2., np.zeros((), float0))
|
|
|
|
self.assertArraysEqual(api.jvp(f, primals, tangents),
|
|
|
|
(primals, expected_tangents))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-10-08 15:36:05 +01:00
|
|
|
def test_float0_initial_style(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x, y):
|
|
|
|
return x, y
|
|
|
|
def f_jvp(primals, _):
|
|
|
|
x, y = primals
|
|
|
|
return (x, y), (2., 1)
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
def foo(x, y):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(*c), None), (x, y), None, length=1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
primals = (2., 3)
|
|
|
|
tangents = (np.ones(()), np.zeros((), float0),)
|
|
|
|
expected_tangents = (2., np.zeros((), float0))
|
|
|
|
self.assertArraysEqual(api.jvp(foo, primals, tangents),
|
|
|
|
(primals, expected_tangents))
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_remat(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return jnp.sin(x)
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
|
|
|
return f(x), 2 * jnp.cos(x) * g
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
@api.remat
|
|
|
|
def g(x):
|
|
|
|
return f(f(x))
|
|
|
|
|
|
|
|
ans = g(2.)
|
|
|
|
expected = np.sin(np.sin(2.))
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(g)(2.)
|
|
|
|
expected = 4. * api.grad(lambda x: jnp.sin(jnp.sin(x)))(2.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_remat_higher_order(self):
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return jnp.sin(x)
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
|
|
|
return f(x), 2 * jnp.cos(x) * g
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
return f(f(x))
|
|
|
|
|
|
|
|
ans = api.grad(api.grad(api.remat(g)))(2.)
|
|
|
|
expected = api.grad(api.grad(g))(2.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(api.remat(api.grad(g)))(2.)
|
|
|
|
expected = api.grad(api.grad(g))(2.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(api.grad(api.grad(api.remat(g))))(2.)
|
|
|
|
expected = api.grad(api.grad(api.grad(g)))(2.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-20 21:08:59 -07:00
|
|
|
def test_initial_style_vmap_2(self):
|
2020-10-20 21:16:00 -07:00
|
|
|
# This is like test_initial_style_vmap except the primal function closes
|
|
|
|
# over an array constant.
|
2020-10-20 21:08:59 -07:00
|
|
|
y = jnp.array([1., 2., 3.])
|
|
|
|
|
|
|
|
@api.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
assert jnp.ndim(x) == 0
|
|
|
|
return 3 * x * jnp.sum(y)
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
g, = tangents
|
|
|
|
return f(x), 2 * g
|
|
|
|
f.defjvp(f_jvp)
|
|
|
|
|
|
|
|
def foo(x):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(c), None), x, None, length=1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
ans = api.grad(lambda x: api.vmap(foo)(x).sum())(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-20 21:16:00 -07:00
|
|
|
ans = api.grad(lambda x: api.vmap(api.jit(foo))(x).sum())(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(lambda x: api.jit(api.vmap(foo))(x).sum())(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(api.jit(lambda x: api.vmap(foo)(x).sum()))(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.jit(api.grad(lambda x: api.vmap(foo)(x).sum()))(jnp.ones(3))
|
|
|
|
expected = 2. * jnp.ones(3)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2021-04-15 15:16:29 -07:00
|
|
|
def test_custom_jvp_vmap_broadcasting_interaction(self):
|
|
|
|
# https://github.com/google/jax/issues/6452
|
|
|
|
def f2(y, z):
|
|
|
|
v1 = z
|
|
|
|
v2 = jnp.sum(y) + z
|
|
|
|
return jnp.logaddexp(v1, v2)
|
|
|
|
|
|
|
|
def f1(y, z):
|
|
|
|
v = api.vmap(lambda _y: f2(_y, z))(y)
|
|
|
|
return jnp.sum(v)
|
|
|
|
|
|
|
|
y = jnp.ones((3, 2))
|
|
|
|
f = lambda z: f1(y, z)
|
|
|
|
z = 0.1
|
|
|
|
val, g = api.value_and_grad(f)(z)
|
|
|
|
self.assertEqual(val.shape, ())
|
|
|
|
self.assertEqual(g.shape, ())
|
|
|
|
|
|
|
|
def test_custom_jvp_vmap_broadcasting_interaction_2(self):
|
|
|
|
# https://github.com/google/jax/issues/5849
|
|
|
|
@api.custom_jvp
|
|
|
|
def transform(box, R):
|
|
|
|
if jnp.isscalar(box) or box.size == 1:
|
|
|
|
return R * box
|
|
|
|
elif box.ndim == 2:
|
|
|
|
return jnp.einsum('ij,j->i', box, R)
|
|
|
|
raise ValueError()
|
|
|
|
|
|
|
|
@transform.defjvp
|
|
|
|
def transform_jvp(primals, tangents):
|
|
|
|
box, R = primals
|
|
|
|
dbox, dR = tangents
|
|
|
|
return (transform(box, R), dR + transform(dbox, R))
|
|
|
|
|
|
|
|
def periodic_general(box):
|
|
|
|
def displacement_fn(Ra, Rb, **kwargs):
|
|
|
|
_box = kwargs.get('box', box)
|
|
|
|
return transform(_box, Ra - Rb)
|
|
|
|
|
|
|
|
return displacement_fn
|
|
|
|
|
|
|
|
N = 250
|
|
|
|
|
|
|
|
scalar_box = 1.0
|
|
|
|
displacement = periodic_general(scalar_box)
|
|
|
|
|
|
|
|
key = jax.random.PRNGKey(0)
|
|
|
|
R = jax.random.uniform(key, (N, 2))
|
|
|
|
|
|
|
|
def energy_fn(box):
|
|
|
|
d = partial(displacement, box=box)
|
|
|
|
d = api.vmap(api.vmap(d, (None, 0)), (0, None))
|
|
|
|
return jnp.sum(d(R, R) ** 2)
|
|
|
|
|
|
|
|
self.assertEqual(grad(energy_fn)(scalar_box).shape, ())
|
|
|
|
|
|
|
|
def test_custom_jvp_implicit_broadcasting(self):
|
|
|
|
# https://github.com/google/jax/issues/6357
|
|
|
|
if config.x64_enabled:
|
|
|
|
raise unittest.SkipTest("test only applies when x64 is disabled")
|
|
|
|
|
|
|
|
@jax.custom_jvp
|
|
|
|
def projection_unit_simplex(x: jnp.ndarray) -> jnp.ndarray:
|
|
|
|
"""Projection onto the unit simplex."""
|
|
|
|
s = 1.0
|
|
|
|
n_features = x.shape[0]
|
|
|
|
u = jnp.sort(x)[::-1]
|
|
|
|
cssv = jnp.cumsum(u) - s
|
|
|
|
ind = jnp.arange(n_features) + 1
|
|
|
|
cond = u - cssv / ind > 0
|
|
|
|
idx = jnp.count_nonzero(cond)
|
|
|
|
threshold = cssv[idx - 1] / idx.astype(x.dtype)
|
|
|
|
return jax.nn.relu(x - threshold)
|
|
|
|
|
|
|
|
|
|
|
|
@projection_unit_simplex.defjvp
|
|
|
|
def projection_unit_simplex_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
x_dot, = tangents
|
|
|
|
primal_out = projection_unit_simplex(x)
|
|
|
|
supp = primal_out > 0
|
|
|
|
card = jnp.count_nonzero(supp)
|
|
|
|
tangent_out = supp * x_dot - (jnp.dot(supp, x_dot) / card) * supp
|
|
|
|
return primal_out, tangent_out
|
|
|
|
|
2021-12-10 10:32:09 -08:00
|
|
|
rng = self.rng()
|
2021-04-15 15:16:29 -07:00
|
|
|
x = rng.rand(5).astype(np.float32)
|
|
|
|
|
|
|
|
J_rev = jax.jacrev(projection_unit_simplex)(x)
|
|
|
|
J_fwd = jax.jacfwd(projection_unit_simplex)(x)
|
|
|
|
|
|
|
|
p = projection_unit_simplex(x)
|
|
|
|
support = (p > 0).astype(jnp.int32)
|
|
|
|
cardinality = jnp.count_nonzero(support)
|
|
|
|
J_true = jnp.diag(support) - jnp.outer(support, support) / cardinality
|
|
|
|
self.assertAllClose(J_true, J_fwd)
|
|
|
|
self.assertAllClose(J_true, J_rev)
|
|
|
|
|
|
|
|
proj = jax.vmap(projection_unit_simplex)
|
|
|
|
|
|
|
|
def fun(X):
|
|
|
|
return jnp.sum(proj(X) ** 2)
|
|
|
|
|
2021-12-10 10:32:09 -08:00
|
|
|
rng = self.rng()
|
2021-04-15 15:16:29 -07:00
|
|
|
X = rng.rand(4, 5).astype(np.float32)
|
|
|
|
U = rng.rand(4, 5)
|
|
|
|
U /= np.sqrt(np.sum(U ** 2))
|
|
|
|
U = U.astype(np.float32)
|
|
|
|
|
|
|
|
eps = 1e-3
|
|
|
|
dir_deriv_num = (fun(X + eps * U) - fun(X - eps * U)) / (2 * eps)
|
|
|
|
dir_deriv = jnp.vdot(jax.grad(fun)(X), U)
|
|
|
|
self.assertAllClose(dir_deriv, dir_deriv_num, atol=1e-3)
|
|
|
|
|
|
|
|
def test_vmap_inside_defjvp(self):
|
|
|
|
# https://github.com/google/jax/issues/3201
|
|
|
|
seed = 47
|
|
|
|
key = jax.random.PRNGKey(seed)
|
|
|
|
mat = jax.random.normal(key, (2, 3))
|
|
|
|
|
|
|
|
@jax.custom_jvp
|
|
|
|
def f(mat, aux):
|
|
|
|
num_rows, num_cols = mat.shape
|
|
|
|
return jnp.ones((num_rows, 1)) / num_cols
|
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
mat, aux = primals
|
|
|
|
vec, _ = tangents
|
|
|
|
output = f(*primals)
|
|
|
|
num_rows, num_cols = mat.shape
|
|
|
|
size = num_rows * num_cols
|
|
|
|
# -----
|
|
|
|
bd_mat = mat.reshape(1, 1, num_rows, num_cols)
|
|
|
|
bd_mat = jnp.tile(bd_mat, reps=(num_rows, num_cols))
|
|
|
|
bd_mat = bd_mat.reshape(size, num_rows, num_cols)
|
|
|
|
# -----
|
|
|
|
rowsum = jnp.sum(mat, axis=1, keepdims=True)
|
|
|
|
colsum = jnp.sum(mat, axis=0, keepdims=True)
|
|
|
|
bd_rowsum = jnp.tile(rowsum, reps=(1, num_rows))
|
|
|
|
bd_colsum = jnp.tile(colsum, reps=(num_cols, 1))
|
|
|
|
# -----
|
|
|
|
bd_vec = vec.reshape(size, 1)
|
|
|
|
# -----
|
|
|
|
def operate(mx, val):
|
|
|
|
buf = 0
|
|
|
|
for i in range(2):
|
|
|
|
buf = buf + jnp.matmul(mx, bd_colsum) / jnp.power(aux, i)
|
|
|
|
buf = jnp.matmul(bd_rowsum, buf)
|
|
|
|
return buf * val
|
|
|
|
# -----
|
|
|
|
# Vertorizing will raise shape error
|
|
|
|
bd_buf = jax.vmap(operate, in_axes=(0, 0), out_axes=0)(bd_mat, bd_vec)
|
|
|
|
# -----
|
|
|
|
bd_buf = bd_buf / aux
|
|
|
|
jvp = jnp.sum(bd_buf, axis=0)
|
|
|
|
jvp = jnp.mean(jvp, axis=1, keepdims=True)
|
|
|
|
# -----
|
|
|
|
# JVP ends successfully, but still raise an error
|
|
|
|
return (output, jvp)
|
|
|
|
|
|
|
|
jax.grad(lambda mat, aux: jnp.sum(f(mat, aux)))(mat, 0.5) # doesn't crash
|
|
|
|
|
|
|
|
def test_custom_jvp_unbroadcasting(self):
|
|
|
|
# https://github.com/google/jax/issues/3056
|
|
|
|
a = jnp.array([1., 1.])
|
|
|
|
|
|
|
|
@jax.custom_jvp
|
|
|
|
def f(x):
|
|
|
|
return a * x
|
|
|
|
|
|
|
|
@f.defjvp
|
|
|
|
def f_jvp(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
dx, = tangents
|
|
|
|
return a * x, a * dx
|
|
|
|
|
|
|
|
shape = grad(lambda x: jnp.sum(f(x)))(jnp.array(1.)).shape
|
|
|
|
self.assertEqual(shape, ())
|
|
|
|
|
2020-04-10 11:45:33 -07:00
|
|
|
|
2020-01-15 15:00:38 -08:00
|
|
|
class CustomVJPTest(jtu.JaxTestCase):
|
|
|
|
|
|
|
|
def test_basic(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_fwd(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
x = 3.
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(f(x), jnp.sin(x))
|
|
|
|
self.assertAllClose(api.grad(f)(x), 2 * jnp.cos(x))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.value_and_grad(f)(x),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(x), 2 * jnp.cos(x)))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
def test_invariance(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.cos(2 * x) / 2.
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_fwd(x):
|
|
|
|
return (f(x), x)
|
|
|
|
def f_rev(x, g):
|
|
|
|
return (g * 3,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
def f2(x):
|
|
|
|
y, _ = api.value_and_grad(f)(x)
|
|
|
|
return y
|
|
|
|
def f3(x):
|
|
|
|
y, _ = api.value_and_grad(f2)(x)
|
|
|
|
return y
|
|
|
|
x = 1.
|
|
|
|
self.assertAllClose(f(x), f2(x), check_dtypes=False)
|
|
|
|
self.assertAllClose(f(x), f3(x), check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(f)(x), api.grad(f2)(x),
|
|
|
|
check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(f)(x), api.grad(f3)(x),
|
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
def test_python_control_flow(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
if x > 0:
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
else:
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_fwd(x):
|
|
|
|
if x > 0:
|
|
|
|
return f(x), x
|
|
|
|
else:
|
|
|
|
return f(x), x
|
|
|
|
def f_rev(x, g):
|
|
|
|
if x > 0:
|
|
|
|
return (2 * g,)
|
|
|
|
else:
|
|
|
|
return (3 * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
x = 2.
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(f(x), jnp.sin(x))
|
|
|
|
self.assertAllClose(f(-x), jnp.cos(-x))
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertAllClose(api.value_and_grad(f)(x), (jnp.sin(x), 2.),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertAllClose(api.value_and_grad(f)(-x), (jnp.cos(-x), 3.),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
def test_vmap(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
assert jnp.ndim(x) == 0
|
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_fwd(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
assert jnp.ndim(x) == 0
|
|
|
|
return f(x), jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
x = jnp.arange(3.)
|
|
|
|
xx = jnp.arange(6.).reshape(2, 3)
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# vmap of f
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(api.vmap(f)(x), jnp.sin(x))
|
|
|
|
self.assertAllClose(api.vmap(api.vmap(f))(xx), jnp.sin(xx))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# vmap of grad of f
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(api.vmap(api.grad(f))(x), 2 * jnp.cos(x))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.vmap(api.value_and_grad(f))(x),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(x), 2 * jnp.cos(x)))
|
|
|
|
self.assertAllClose(api.vmap(api.vmap(api.grad(f)))(xx), 2 * jnp.cos(xx))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.vmap(api.vmap(api.value_and_grad(f)))(xx),
|
2020-06-01 17:19:23 -04:00
|
|
|
(jnp.sin(xx), 2 * jnp.cos(xx)))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# grad of vmap of f
|
|
|
|
self.assertAllClose(api.grad(lambda x: api.vmap(f)(x).sum())(x),
|
2020-06-01 17:19:23 -04:00
|
|
|
2 * jnp.cos(x))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.grad(lambda x: api.vmap(api.vmap(f))(x).sum())(xx),
|
2020-06-01 17:19:23 -04:00
|
|
|
2 * jnp.cos(xx))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# vmap of grad of vmap of f
|
|
|
|
self.assertAllClose(api.vmap(api.grad(lambda x: api.vmap(f)(x).sum()))(xx),
|
2020-06-01 17:19:23 -04:00
|
|
|
2 * jnp.cos(xx))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
def test_jit(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_fwd(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
x = 3.
|
|
|
|
|
|
|
|
# jit
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(api.jit(f)(x), jnp.sin(x))
|
|
|
|
self.assertAllClose(api.jit(api.jit(f))(x), jnp.sin(x))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
# jit of grad
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertAllClose(api.jit(api.grad(f))(x), 2 * jnp.cos(x),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
# grad of jit
|
2020-05-05 14:59:16 -04:00
|
|
|
self.assertAllClose(api.grad(api.jit(f))(x), 2 * jnp.cos(x),
|
2020-01-15 15:00:38 -08:00
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
def test_pytrees(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return {'b': jnp.sin(x['a'])}
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_fwd(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), {'r': jnp.cos(x['a'])}
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_bwd(res, g):
|
|
|
|
cos_x = res['r']
|
|
|
|
return ({'a': 2 * cos_x * g['b']},)
|
|
|
|
f.defvjp(f_fwd, f_bwd)
|
|
|
|
x = {'a': 3.}
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(f(x)['b'], jnp.sin(x['a']))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(api.grad(lambda x: f(x)['b'])(x),
|
2020-06-01 17:19:23 -04:00
|
|
|
{'a': 2 * jnp.cos(x['a'])})
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
def test_jvp_error(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_fwd(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
r"can't apply forward-mode autodiff \(jvp\) to a custom_vjp function.",
|
|
|
|
lambda: api.jvp(f, (3.,), (1.,)))
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
r"can't apply forward-mode autodiff \(jvp\) to a custom_vjp function.",
|
2020-05-05 14:59:16 -04:00
|
|
|
lambda: api.jvp(api.vmap(f), (jnp.arange(3.),), (jnp.ones(3),)))
|
2021-03-18 20:08:33 +00:00
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
r"can't apply forward-mode autodiff \(jvp\) to a custom_vjp function.",
|
|
|
|
lambda: api.jvp(jit(f), (3.,), (1.,)))
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
def test_kwargs(self):
|
|
|
|
# from https://github.com/google/jax/issues/1938
|
|
|
|
@api.custom_vjp
|
|
|
|
def my_fun(x, y, c=1.):
|
|
|
|
return c * (x + y)
|
|
|
|
my_fun.defvjp(lambda x, y, c=1.: (my_fun(c, y, c), None),
|
|
|
|
lambda _, g: (g, g, g))
|
2020-05-05 14:59:16 -04:00
|
|
|
f = lambda x, y: jnp.square(my_fun(x, y, c=2.)).sum()
|
2020-01-15 15:00:38 -08:00
|
|
|
f(10., 5.) # doesn't crash
|
|
|
|
api.grad(f)(10., 5.) # doesn't crash
|
|
|
|
|
|
|
|
def test_initial_style(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return jnp.sin(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_fwd(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
def foo(x):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(c), None), x, None, length=1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
ans = api.grad(foo)(3.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = 2. * jnp.cos(3.)
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(api.grad(foo))(3.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = -2. * jnp.sin(3.)
|
2020-06-01 17:19:23 -04:00
|
|
|
self.assertAllClose(ans, expected)
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
def test_initial_style_vmap(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
assert jnp.ndim(x) == 0
|
2020-01-15 15:00:38 -08:00
|
|
|
return 3 * x
|
|
|
|
def f_fwd(x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return f(x), jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
def foo(x):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(c), None), x, None, length=1)
|
|
|
|
return out
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
ans = api.vmap(foo)(jnp.arange(3.))
|
|
|
|
expected = 3. * jnp.arange(3.)
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-05-05 14:59:16 -04:00
|
|
|
ans = api.grad(lambda x: api.vmap(foo)(x).sum())(jnp.arange(3.))
|
2020-10-20 21:16:00 -07:00
|
|
|
expected = 2. * jnp.cos(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-01-15 15:00:38 -08:00
|
|
|
def test_nondiff_arg(self):
|
|
|
|
@partial(api.custom_vjp, nondiff_argnums=(0,))
|
|
|
|
def app(f, x):
|
|
|
|
return f(x)
|
|
|
|
def app_fwd(f, x):
|
2020-05-05 14:59:16 -04:00
|
|
|
return app(f, x), jnp.cos(x)
|
2020-01-15 15:00:38 -08:00
|
|
|
def app_rev(f, cos_x, g):
|
|
|
|
return (cos_x * g,)
|
|
|
|
app.defvjp(app_fwd, app_rev)
|
|
|
|
|
|
|
|
ans = app(lambda x: 2 * x, 1)
|
|
|
|
expected = 2
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.value_and_grad(lambda x: app(lambda y: 2 * y, x))(1.)
|
2020-05-05 14:59:16 -04:00
|
|
|
expected = (2., jnp.cos(1.))
|
2020-01-15 15:00:38 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_closed_over_tracer(self):
|
|
|
|
# This test is similar to test_nondiff_arg_tracer except it uses lexical
|
|
|
|
# closure rather than the nondiff_argnums mechanism. We decided to disallow
|
|
|
|
# tracers in nondiff_argnums to greatly simplify bookkeeping while still
|
|
|
|
# supporting the cases for which it is necessary.
|
|
|
|
def outer(x):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(y):
|
|
|
|
return x * y
|
|
|
|
def f_fwd(y):
|
|
|
|
return f(y), jnp.cos(y)
|
|
|
|
def f_rev(cos_y, g):
|
|
|
|
return (cos_y * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
return f
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def g(x, y):
|
|
|
|
return outer(x)(y)
|
|
|
|
|
|
|
|
ans = g(2, 3.)
|
|
|
|
expected = 6.
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(g, 1)(2., 3.)
|
|
|
|
expected = jnp.cos(3.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2021-01-19 19:08:23 -08:00
|
|
|
def test_closed_over_tracer2(self):
|
|
|
|
def outer(x):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(y):
|
|
|
|
return x * y
|
|
|
|
def f_fwd(y):
|
|
|
|
return f(y), jnp.cos(y)
|
|
|
|
def f_rev(cos_y, g):
|
|
|
|
return (cos_y * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
return f
|
|
|
|
|
|
|
|
@api.vmap
|
|
|
|
def g(x):
|
|
|
|
return outer(x)(3.)
|
|
|
|
|
|
|
|
ans = g(np.arange(3.))
|
|
|
|
expected = np.arange(3.) * 3
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_closed_over_tracer3(self):
|
|
|
|
def outer(x):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(y):
|
|
|
|
return x * y
|
|
|
|
def f_fwd(y):
|
|
|
|
return f(y), (x, jnp.cos(y))
|
|
|
|
def f_rev(res, g):
|
|
|
|
x, cos_y = res
|
|
|
|
return (cos_y * g * x,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
return api.grad(f)
|
|
|
|
|
|
|
|
@api.vmap
|
|
|
|
def g(x):
|
|
|
|
return outer(x)(3.)
|
|
|
|
|
|
|
|
ans = g(np.arange(3.))
|
|
|
|
expected = np.cos(3.) * np.arange(3.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_nondiff_arg_tracer_error(self):
|
|
|
|
# This is similar to the old (now skipped) test_nondiff_arg_tracer, except
|
|
|
|
# we're testing for the error message that that usage pattern now raises.
|
|
|
|
|
|
|
|
@partial(api.custom_vjp, nondiff_argnums=(0,))
|
|
|
|
def f(x, y):
|
|
|
|
return x * y
|
|
|
|
def f_fwd(x, y):
|
|
|
|
return f(x, y), jnp.cos(y)
|
|
|
|
def f_rev(x, cos_y, g):
|
|
|
|
return (cos_y * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def g(x, y):
|
|
|
|
return f(x, y)
|
|
|
|
|
2021-06-30 10:46:37 +01:00
|
|
|
with self.assertRaisesRegex(UnexpectedTracerError, "custom_vjp"):
|
2020-10-16 00:21:04 -07:00
|
|
|
_ = g(2, 3.)
|
2021-06-30 10:46:37 +01:00
|
|
|
with self.assertRaisesRegex(UnexpectedTracerError, "custom_vjp"):
|
2020-10-16 00:21:04 -07:00
|
|
|
_ = api.grad(g, 1)(2., 3.)
|
|
|
|
|
2020-01-15 15:00:38 -08:00
|
|
|
def test_vmap_axes(self):
|
|
|
|
raise unittest.SkipTest("TODO") # TODO(mattjj): write test
|
|
|
|
|
|
|
|
def test_pmap(self):
|
|
|
|
raise unittest.SkipTest("TODO") # TODO(mattjj): write test
|
|
|
|
|
|
|
|
def test_missing_vjp_rule_error(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def foo(x):
|
|
|
|
return x ** 2
|
|
|
|
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
AttributeError,
|
|
|
|
r"No VJP defined for custom_vjp function foo using defvjp.",
|
|
|
|
lambda: foo(2))
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
AttributeError,
|
|
|
|
r"No VJP defined for custom_vjp function foo using defvjp.",
|
|
|
|
lambda: api.grad(foo)(2.))
|
|
|
|
|
|
|
|
def test_vjp_rule_inconsistent_pytree_structures_error(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
|
|
|
|
def foo_fwd(x):
|
|
|
|
return x, None
|
|
|
|
|
|
|
|
def foo_bwd(_, g):
|
2020-10-15 11:27:14 -07:00
|
|
|
return (g, g)
|
2020-01-15 15:00:38 -08:00
|
|
|
|
|
|
|
f.defvjp(foo_fwd, foo_bwd)
|
|
|
|
|
|
|
|
f(2) # doesn't crash
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
re.escape(
|
|
|
|
"Custom VJP rule must produce an output with the same container "
|
|
|
|
"(pytree) structure as the args tuple of the primal function, "
|
|
|
|
"and in particular must produce a tuple of length equal to the "
|
|
|
|
"number of arguments to the primal function, but got VJP output "
|
|
|
|
"structure {} for primal input structure {}.".format(
|
2020-10-15 11:27:14 -07:00
|
|
|
tree_util.tree_structure((1, 1)),
|
2020-01-15 15:00:38 -08:00
|
|
|
tree_util.tree_structure((1,)))
|
|
|
|
),
|
|
|
|
lambda: api.grad(f)(2.))
|
|
|
|
|
2021-01-29 19:55:02 +01:00
|
|
|
def test_vjp_bwd_returns_non_tuple_error(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
|
|
|
|
def foo_fwd(x):
|
|
|
|
return x, None
|
|
|
|
|
|
|
|
def foo_bwd(_, g):
|
|
|
|
return 2. * g # Should be a tuple
|
|
|
|
|
|
|
|
f.defvjp(foo_fwd, foo_bwd)
|
|
|
|
with self.assertRaisesRegex(TypeError, "Custom VJP rule .* must produce a tuple"):
|
|
|
|
api.grad(f)(3.)
|
|
|
|
|
2020-03-29 20:51:51 -07:00
|
|
|
def test_issue2511(self):
|
2020-05-05 14:59:16 -04:00
|
|
|
arr = jnp.ones((5, 2, 2))
|
|
|
|
foo = lambda x: api.vmap(jnp.linalg.det, (0,))(x)
|
2020-03-29 20:51:51 -07:00
|
|
|
api.jit(foo)(arr) # doesn't crash
|
|
|
|
|
2020-04-02 22:52:07 -07:00
|
|
|
def test_lowering_out_of_traces(self):
|
|
|
|
# https://github.com/google/jax/issues/2578
|
|
|
|
|
|
|
|
class F(collections.namedtuple("F", ["a"])):
|
|
|
|
def __call__(self, x):
|
|
|
|
return jax.nn.relu(self.a) * x
|
|
|
|
|
|
|
|
@jax.jit
|
|
|
|
def g(f, x):
|
|
|
|
return f(x)
|
|
|
|
|
|
|
|
jax.grad(g, argnums=(1,))(F(2.0), 0.) # doesn't crash
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_clip_gradient(self):
|
|
|
|
# https://github.com/google/jax/issues/2784
|
|
|
|
@api.custom_vjp
|
|
|
|
def _clip_gradient(lo, hi, x):
|
|
|
|
return x # identity function when not differentiating
|
|
|
|
|
|
|
|
def clip_gradient_fwd(lo, hi, x):
|
|
|
|
return x, (lo, hi,)
|
|
|
|
|
|
|
|
def clip_gradient_bwd(res, g):
|
|
|
|
lo, hi = res
|
|
|
|
return (None, None, jnp.clip(g, lo, hi),)
|
|
|
|
|
|
|
|
_clip_gradient.defvjp(clip_gradient_fwd, clip_gradient_bwd)
|
|
|
|
|
|
|
|
def clip_gradient(x):
|
|
|
|
lo = -0.1
|
|
|
|
hi = x + 0.1
|
|
|
|
return _clip_gradient(lo, hi, x)
|
|
|
|
|
|
|
|
g = jax.grad(clip_gradient)(0.1) # doesn't crash
|
|
|
|
self.assertAllClose(g, jnp.array(0.2))
|
|
|
|
|
2020-07-09 14:13:45 -04:00
|
|
|
def test_nestable_vjp(self):
|
|
|
|
# Verify that https://github.com/google/jax/issues/3667 is resolved.
|
|
|
|
def f(x):
|
2020-08-19 18:39:25 +02:00
|
|
|
return x ** 2
|
2020-07-09 14:13:45 -04:00
|
|
|
|
|
|
|
@api.custom_vjp
|
|
|
|
def g(x):
|
2020-08-19 18:39:25 +02:00
|
|
|
return f(x)
|
2020-07-09 14:13:45 -04:00
|
|
|
|
|
|
|
def g_fwd(x):
|
2020-08-19 18:39:25 +02:00
|
|
|
y, f_vjp = api.vjp(f, x)
|
|
|
|
return y, f_vjp
|
2020-07-09 14:13:45 -04:00
|
|
|
|
|
|
|
def g_bwd(f_vjp, y_bar):
|
2020-08-19 18:39:25 +02:00
|
|
|
return f_vjp(y_bar)
|
2020-07-09 14:13:45 -04:00
|
|
|
|
|
|
|
g.defvjp(g_fwd, g_bwd)
|
|
|
|
|
|
|
|
# Check that VJP can be nested in simple situations. For this to pass,
|
|
|
|
# vjp has to return a PyTree.
|
|
|
|
_, g_vjp = api.vjp(g, 1.0)
|
|
|
|
y, = g_vjp(1.0)
|
|
|
|
self.assertAllClose(y, jnp.array(2.0))
|
|
|
|
|
|
|
|
# Check that VJP can be nested in complex situations. For this to pass,
|
|
|
|
# vjp can't treat the closed-over tracer x as a static argument.
|
|
|
|
@jit
|
|
|
|
def z(x):
|
2020-08-19 18:39:25 +02:00
|
|
|
_, g_vjp = api.vjp(g, x)
|
|
|
|
return g_vjp
|
2020-07-09 14:13:45 -04:00
|
|
|
y, = z(1.0)(3.0)
|
|
|
|
self.assertAllClose(y, jnp.array(6.0))
|
2020-06-15 18:42:53 -07:00
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_initial_style_vmap_2(self):
|
|
|
|
# https://github.com/google/jax/issues/4173
|
|
|
|
x = jnp.ones((10, 3))
|
|
|
|
|
|
|
|
# Create the custom function
|
|
|
|
@api.custom_vjp
|
|
|
|
def custom_fun(x):
|
2020-10-22 08:57:12 -07:00
|
|
|
return x.sum()
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def forward(x):
|
2020-10-22 08:57:12 -07:00
|
|
|
return x.sum(), (jnp.ones_like(x),)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def backward(res, g):
|
2020-10-22 08:57:12 -07:00
|
|
|
return g * res[0],
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
custom_fun.defvjp(forward, backward)
|
|
|
|
|
|
|
|
def train_fun(x):
|
2020-10-22 08:57:12 -07:00
|
|
|
|
|
|
|
def summed_fun(x):
|
|
|
|
return api.vmap(custom_fun)(x).sum()
|
|
|
|
|
|
|
|
return api.grad(summed_fun)(x)
|
2020-10-16 00:21:04 -07:00
|
|
|
|
|
|
|
def scan_body(carry, inputs):
|
2020-10-22 08:57:12 -07:00
|
|
|
x = carry
|
|
|
|
return carry, train_fun(x)
|
2020-10-16 00:21:04 -07:00
|
|
|
|
|
|
|
scan_range = jnp.arange(4)
|
|
|
|
lax.scan(scan_body, x, scan_range) # don't crash
|
|
|
|
|
2020-10-20 21:20:04 -07:00
|
|
|
def test_initial_style_vmap_3(self):
|
|
|
|
# This is like test_initial_style_vmap except the primal function closes
|
|
|
|
# over an array constant.
|
|
|
|
y = jnp.array([1., 2., 3.])
|
|
|
|
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
assert jnp.ndim(x) == 0
|
|
|
|
return 3 * x * jnp.sum(y)
|
|
|
|
def f_fwd(x):
|
|
|
|
return f(x), jnp.cos(x)
|
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
def foo(x):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(c), None), x, None, length=1)
|
|
|
|
return out
|
|
|
|
|
|
|
|
ans = api.vmap(foo)(jnp.arange(3.))
|
|
|
|
expected = 3. * jnp.arange(3.) * 6
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(lambda x: api.vmap(foo)(x).sum())(jnp.arange(3.))
|
|
|
|
expected = 2. * jnp.cos(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2021-08-26 13:34:01 -07:00
|
|
|
def test_initial_style_vmap_with_collective(self):
|
|
|
|
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return lax.psum(x, 'foo')
|
|
|
|
|
|
|
|
def f_fwd(x):
|
|
|
|
return lax.psum(x, 'foo'), None
|
|
|
|
|
|
|
|
def f_bwd(res, dx):
|
|
|
|
return dx
|
|
|
|
f.defvjp(f_fwd, f_bwd)
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
jaxpr = api.make_jaxpr(f)(x)
|
|
|
|
return core.eval_jaxpr(jaxpr.jaxpr, [], x)[0]
|
|
|
|
|
|
|
|
out = api.vmap(lambda _, x: g(x), axis_name='foo', in_axes=(0, None),
|
|
|
|
out_axes=None)(jnp.arange(4.), 2.)
|
|
|
|
self.assertAllClose(out, 8.)
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_bwd_closes_over_tracer(self):
|
|
|
|
def f(y):
|
|
|
|
@jax.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return 2. * jnp.sin(x)
|
|
|
|
|
|
|
|
def fwd(x):
|
|
|
|
return f(x), ()
|
|
|
|
|
|
|
|
def bwd(_, g):
|
|
|
|
return (2. * jnp.cos(y) * g,) # capture!
|
|
|
|
|
|
|
|
f.defvjp(fwd, bwd)
|
|
|
|
|
|
|
|
return jax.grad(f)(1.)
|
|
|
|
|
|
|
|
ans = jax.jit(f)(2.)
|
|
|
|
self.assertAllClose(ans, 2. * jnp.cos(2.))
|
|
|
|
|
|
|
|
ans = jax.vmap(f)(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, 2. * jnp.cos(jnp.arange(3.)))
|
|
|
|
|
|
|
|
ans = jax.jit(jax.vmap(f))(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, 2. * jnp.cos(jnp.arange(3.)))
|
|
|
|
|
|
|
|
ans = jax.vmap(jax.jit(f))(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, 2. * jnp.cos(jnp.arange(3.)))
|
|
|
|
|
|
|
|
ans = jax.grad(f)(4.)
|
|
|
|
self.assertAllClose(ans, -2. * jnp.sin(4.))
|
|
|
|
|
|
|
|
def test_fwd_closes_over_tracer(self):
|
|
|
|
def f(y):
|
|
|
|
@jax.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return 2. * jnp.sin(x)
|
|
|
|
|
|
|
|
def fwd(x):
|
|
|
|
return f(x), y
|
|
|
|
|
|
|
|
def bwd(y, g):
|
|
|
|
return (2. * jnp.cos(y) * g,) # capture!
|
|
|
|
|
|
|
|
f.defvjp(fwd, bwd)
|
|
|
|
|
|
|
|
return jax.grad(f)(1.)
|
|
|
|
|
|
|
|
ans = jax.jit(f)(2.)
|
|
|
|
self.assertAllClose(ans, 2. * jnp.cos(2.))
|
|
|
|
|
|
|
|
ans = jax.vmap(f)(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, 2. * jnp.cos(jnp.arange(3.)))
|
|
|
|
|
|
|
|
ans = jax.jit(jax.vmap(f))(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, 2. * jnp.cos(jnp.arange(3.)))
|
|
|
|
|
|
|
|
ans = jax.vmap(jax.jit(f))(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, 2. * jnp.cos(jnp.arange(3.)))
|
|
|
|
|
|
|
|
ans = jax.grad(f)(4.)
|
|
|
|
self.assertAllClose(ans, -2. * jnp.sin(4.))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-10-08 15:36:05 +01:00
|
|
|
def test_float0(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x, _):
|
|
|
|
return x
|
|
|
|
def f_fwd(x, _):
|
|
|
|
# we need a defined (non-float0) tangent to trigger the rule
|
|
|
|
return x, (2., 1)
|
|
|
|
def f_rev(*_):
|
|
|
|
return (2., 1)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
x = 2.
|
|
|
|
y = 3
|
|
|
|
self.assertEqual(api.grad(f, allow_int=True, argnums=(0, 1))(x, y),
|
|
|
|
(2., np.zeros(shape=(), dtype=float0)))
|
|
|
|
|
2021-06-24 11:02:22 -04:00
|
|
|
@unittest.skipIf(numpy_version == (1, 21, 0),
|
|
|
|
"https://github.com/numpy/numpy/issues/19305")
|
2020-10-08 15:36:05 +01:00
|
|
|
def test_float0_initial_style(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return x
|
|
|
|
def f_fwd(x):
|
|
|
|
return x, (2., x)
|
|
|
|
def f_rev(*_):
|
|
|
|
return ((2., 1),)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
def foo(x, y):
|
|
|
|
out, _ = lax.scan(lambda c, _: (f(c), None), (x, y), None, length=1)
|
|
|
|
return out[0]
|
|
|
|
|
|
|
|
x = 2.
|
|
|
|
y = 3
|
|
|
|
self.assertEqual(api.grad(foo, allow_int=True, argnums=(0, 1))(x, y),
|
|
|
|
(2., np.zeros(shape=(), dtype=float0)))
|
|
|
|
|
2020-10-16 00:21:04 -07:00
|
|
|
def test_remat(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return jnp.sin(x)
|
|
|
|
def f_fwd(x):
|
|
|
|
return f(x), jnp.cos(x)
|
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
@api.remat
|
|
|
|
def g(x):
|
|
|
|
return f(f(x))
|
|
|
|
|
|
|
|
ans = g(2.)
|
|
|
|
expected = np.sin(np.sin(2.))
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(g)(2.)
|
|
|
|
expected = 4. * api.grad(lambda x: jnp.sin(jnp.sin(x)))(2.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_remat_higher_order(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x):
|
|
|
|
return jnp.sin(x)
|
|
|
|
def f_fwd(x):
|
|
|
|
return f(x), jnp.cos(x)
|
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (2 * cos_x * g,)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
def g(x):
|
|
|
|
return f(f(x))
|
|
|
|
|
|
|
|
ans = api.grad(api.grad(api.remat(g)))(2.)
|
|
|
|
expected = api.grad(api.grad(g))(2.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(api.remat(api.grad(g)))(2.)
|
|
|
|
expected = api.grad(api.grad(g))(2.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = api.grad(api.grad(api.grad(api.remat(g))))(2.)
|
|
|
|
expected = api.grad(api.grad(api.grad(g)))(2.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_bwd_nones(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x, y):
|
|
|
|
return x * jnp.sin(y)
|
|
|
|
def f_fwd(x, y):
|
|
|
|
return f(x, y), jnp.cos(y)
|
|
|
|
def f_rev(cos, g):
|
|
|
|
return (None, 2 * cos * g)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
ans = api.grad(lambda x: f(x, x))(3.)
|
|
|
|
expected = 2 * jnp.cos(3.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_bwd_nones_vmap(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(x, y):
|
|
|
|
return x * jnp.sin(y)
|
|
|
|
def f_fwd(x, y):
|
|
|
|
return f(x, y), jnp.cos(y)
|
|
|
|
def f_rev(cos, g):
|
|
|
|
return (None, 2 * cos * g)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
ans = api.grad(lambda x: api.vmap(f)(x, x).sum())(jnp.arange(3.))
|
|
|
|
expected = 2 * jnp.cos(jnp.arange(3.))
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_bwd_nones_pytree(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(xs, y):
|
|
|
|
x1, x2 = xs
|
|
|
|
return x1 * x2 * jnp.sin(y)
|
|
|
|
def f_fwd(xs, y):
|
|
|
|
return f(xs, y), jnp.cos(y)
|
|
|
|
def f_rev(cos, g):
|
|
|
|
return (None, 2 * cos * g)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
ans = api.grad(lambda x: f((x, x), x))(3.)
|
|
|
|
expected = 2 * jnp.cos(3.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_custom_vjp_closure_4521(self):
|
|
|
|
# https://github.com/google/jax/issues/4521
|
|
|
|
@api.custom_vjp
|
|
|
|
def g(x, y):
|
|
|
|
return None
|
|
|
|
def g_fwd(x, y):
|
|
|
|
return None, y
|
|
|
|
def g_bwd(residuals, z_bar):
|
|
|
|
assert False
|
|
|
|
|
|
|
|
g.defvjp(g_fwd, g_bwd)
|
|
|
|
|
|
|
|
def f(xs, y):
|
|
|
|
v_g = api.vmap(g, in_axes=(0, None), out_axes=None)
|
|
|
|
v_g(xs, y)
|
|
|
|
|
|
|
|
def scan_body(xs, _):
|
|
|
|
y = jnp.zeros(1)
|
|
|
|
_, vjp_f = api.vjp(f, xs, y)
|
|
|
|
vjp_f(None)
|
|
|
|
return xs, None
|
|
|
|
|
|
|
|
lax.scan(scan_body, jnp.ones(5), None, 100) # doesn't crash
|
|
|
|
|
2020-10-15 16:18:43 -07:00
|
|
|
def test_float0_bwd_none(self):
|
|
|
|
@api.custom_vjp
|
|
|
|
def f(i, x):
|
|
|
|
return jnp.sin(x)
|
|
|
|
def f_fwd(i, x):
|
|
|
|
return f(i, x), jnp.cos(x)
|
|
|
|
def f_rev(cos_x, g):
|
|
|
|
return (None, 2 * cos_x * g)
|
|
|
|
f.defvjp(f_fwd, f_rev)
|
|
|
|
|
|
|
|
ans = api.grad(f, 1)(jnp.array([1, 2]), 3.) # doesn't crash
|
|
|
|
expected = 2 * jnp.cos(3.)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2020-10-23 13:54:23 -07:00
|
|
|
def test_custom_gradient(self):
|
|
|
|
@api.custom_gradient
|
|
|
|
def f(x):
|
|
|
|
return x ** 2, lambda g: (g * x,)
|
|
|
|
|
|
|
|
self.assertAllClose(f(3.), 9., check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(f)(3.), 3., check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(api.grad(f))(3.), 1., check_dtypes=False)
|
|
|
|
|
|
|
|
def test_custom_gradient_2(self):
|
|
|
|
@api.custom_gradient
|
|
|
|
def f(x, y):
|
|
|
|
return x * y, lambda g: (y, x)
|
|
|
|
|
|
|
|
self.assertAllClose(f(3., 4.), 12., check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(f, argnums=(0, 1))(3., 4.), (4., 3.),
|
|
|
|
check_dtypes=False)
|
|
|
|
|
|
|
|
def test_custom_gradient_3(self):
|
|
|
|
@api.custom_gradient
|
|
|
|
def f(x):
|
|
|
|
vjp = lambda g: (jnp.cos(x) * jnp.array([3., 4., 5.]),)
|
|
|
|
return jnp.sum(jnp.sin(x)), vjp
|
|
|
|
|
|
|
|
self.assertAllClose(f(jnp.arange(3)), jnp.sum(jnp.sin(jnp.arange(3.))),
|
|
|
|
check_dtypes=False)
|
|
|
|
self.assertAllClose(
|
|
|
|
api.grad(f)(jnp.arange(3.)),
|
|
|
|
api.grad(lambda x: jnp.sum(jnp.sin(x)))(jnp.arange(3.)) * jnp.array([3., 4., 5.]),
|
|
|
|
check_dtypes=False)
|
|
|
|
|
2021-01-26 12:39:35 -08:00
|
|
|
def test_custom_gradient_can_return_singleton_value_in_vjp(self):
|
|
|
|
@api.custom_gradient
|
|
|
|
def f(x):
|
|
|
|
return x ** 2, lambda g: g * x
|
|
|
|
|
|
|
|
self.assertAllClose(f(3.), 9., check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(f)(3.), 3., check_dtypes=False)
|
|
|
|
self.assertAllClose(api.grad(api.grad(f))(3.), 1., check_dtypes=False)
|
|
|
|
|
2020-12-30 17:23:44 -08:00
|
|
|
def test_closure_convert(self):
|
2021-07-23 17:32:57 -07:00
|
|
|
def cos_after(fn, x):
|
|
|
|
converted_fn, aux_args = api.closure_convert(fn, x)
|
|
|
|
self.assertLessEqual(len(aux_args), 1)
|
|
|
|
return _cos_after(converted_fn, x, *aux_args)
|
2020-12-30 17:23:44 -08:00
|
|
|
|
|
|
|
@partial(api.custom_vjp, nondiff_argnums=(0,))
|
2021-07-23 17:32:57 -07:00
|
|
|
def _cos_after(fn, x, *args):
|
|
|
|
return jnp.cos(fn(x, *args))
|
2020-12-30 17:23:44 -08:00
|
|
|
|
2021-07-23 17:32:57 -07:00
|
|
|
def fwd(fn, x, *args):
|
|
|
|
y = _cos_after(fn, x, *args)
|
|
|
|
return y, (x, args)
|
2020-12-30 17:23:44 -08:00
|
|
|
|
2021-07-23 17:32:57 -07:00
|
|
|
def rev(fn, res, g):
|
|
|
|
x, args = res
|
|
|
|
x_bar = 17. * x
|
2020-12-30 17:23:44 -08:00
|
|
|
args_bars = [42. * a for a in args]
|
2021-07-23 17:32:57 -07:00
|
|
|
return (x_bar, *args_bars)
|
2020-12-30 17:23:44 -08:00
|
|
|
|
2021-07-23 17:32:57 -07:00
|
|
|
_cos_after.defvjp(fwd, rev)
|
2020-12-30 17:23:44 -08:00
|
|
|
|
2021-07-23 17:32:57 -07:00
|
|
|
def dist(c, x):
|
2020-12-30 17:23:44 -08:00
|
|
|
return jnp.sum((x - c) ** 2.)
|
|
|
|
|
|
|
|
def solve(c, x):
|
|
|
|
def closure(x):
|
2021-07-23 17:32:57 -07:00
|
|
|
return dist(c, x)
|
|
|
|
return cos_after(closure, x)
|
2020-12-30 17:23:44 -08:00
|
|
|
|
2021-07-23 17:32:57 -07:00
|
|
|
c, x = 2. * jnp.ones(2), jnp.ones(2)
|
|
|
|
expected = jnp.cos(dist(c, x))
|
|
|
|
self.assertAllClose(solve(c, x), expected, check_dtypes=False)
|
2020-12-30 17:23:44 -08:00
|
|
|
g_c, g_x = api.grad(solve, argnums=(0, 1))(c, x)
|
2021-07-23 17:32:57 -07:00
|
|
|
self.assertAllClose(g_c, 42. * c, check_dtypes=False)
|
|
|
|
self.assertAllClose(g_x, 17. * x, check_dtypes=False)
|
|
|
|
|
|
|
|
def test_closure_convert_mixed_consts(self):
|
|
|
|
# Like test_closure_convert, but close over values that
|
|
|
|
# participate in AD as well as values that do not.
|
|
|
|
# See https://github.com/google/jax/issues/6415
|
|
|
|
|
|
|
|
def cos_after(fn, x):
|
|
|
|
converted_fn, aux_args = api.closure_convert(fn, x)
|
|
|
|
self.assertLessEqual(len(aux_args), 1)
|
|
|
|
return _cos_after(converted_fn, x, *aux_args)
|
|
|
|
|
|
|
|
@partial(api.custom_vjp, nondiff_argnums=(0,))
|
|
|
|
def _cos_after(fn, x, *args):
|
|
|
|
return jnp.cos(fn(x, *args))
|
|
|
|
|
|
|
|
def fwd(fn, x, *args):
|
|
|
|
y = _cos_after(fn, x, *args)
|
|
|
|
return y, (x, args)
|
|
|
|
|
|
|
|
def rev(fn, res, g):
|
|
|
|
x, args = res
|
|
|
|
x_bar = 17. * x
|
|
|
|
args_bars = [42. * a for a in args]
|
|
|
|
return (x_bar, *args_bars)
|
|
|
|
|
|
|
|
_cos_after.defvjp(fwd, rev)
|
|
|
|
|
|
|
|
def dist(c, s, x):
|
|
|
|
return jnp.sum(s * (x - c) ** 2.)
|
|
|
|
|
|
|
|
def solve(c, s, x):
|
|
|
|
def closure(x):
|
|
|
|
return dist(c, s, x)
|
|
|
|
return cos_after(closure, x)
|
|
|
|
|
|
|
|
c, s, x = 2. * jnp.ones(2), 3. * jnp.ones(2), jnp.ones(2)
|
|
|
|
expected = jnp.cos(dist(c, s, x))
|
|
|
|
self.assertAllClose(solve(c, s, x), expected, check_dtypes=False)
|
|
|
|
g_c, g_x = api.grad(solve, argnums=(0, 2))(c, s, x)
|
|
|
|
self.assertAllClose(g_c, 42. * c, check_dtypes=False)
|
|
|
|
self.assertAllClose(g_x, 17. * x, check_dtypes=False)
|
2020-12-30 17:23:44 -08:00
|
|
|
|
2021-08-17 16:18:57 -07:00
|
|
|
def test_float0_cotangents_automatically_handled(self):
|
|
|
|
@jax.custom_vjp
|
|
|
|
def f(x, y):
|
|
|
|
return x
|
|
|
|
|
|
|
|
def f_fwd(x, y):
|
|
|
|
return x, None
|
|
|
|
|
|
|
|
def f_bwd(_, zbar):
|
|
|
|
return (0., 1)
|
|
|
|
|
|
|
|
f.defvjp(f_fwd, f_bwd)
|
|
|
|
|
|
|
|
jax.jit(lambda x: jax.vjp(f, 0., x)[1](1.))(1) # doesn't crash
|
|
|
|
|
2021-10-06 14:18:07 -07:00
|
|
|
def test_custom_vjp_scan_batching_edge_case(self):
|
|
|
|
# https://github.com/google/jax/issues/5832
|
|
|
|
@jax.custom_vjp
|
|
|
|
def mul(x, coeff): return x * coeff
|
|
|
|
def mul_fwd(x, coeff): return mul(x, coeff), (x, coeff)
|
|
|
|
def mul_bwd(res, g):
|
|
|
|
x, coeff = res
|
|
|
|
g_x = g * coeff
|
|
|
|
g_coeff = (x * g).sum()
|
|
|
|
return g_x, g_coeff
|
|
|
|
mul.defvjp(mul_fwd, mul_bwd)
|
|
|
|
|
|
|
|
def scan_over_mul(x, coeff):
|
|
|
|
def f_(x, t):
|
|
|
|
return mul(x, coeff), None
|
|
|
|
y, _ = jax.lax.scan(f_, x, jnp.arange(3))
|
|
|
|
return y
|
|
|
|
|
|
|
|
key = jax.random.PRNGKey(0)
|
|
|
|
key1, key2 = jax.random.split(key, 2)
|
|
|
|
x_batch = jax.random.normal(key1, (3, 2))
|
|
|
|
covector_batch = jax.random.normal(key2, (3, 2))
|
|
|
|
coeff = jnp.array(1.)
|
|
|
|
|
|
|
|
batched_scan_over_mul = jax.vmap(scan_over_mul, in_axes=(0, None), out_axes=0)
|
|
|
|
res, vjp_fun = jax.vjp(batched_scan_over_mul, x_batch, coeff)
|
|
|
|
vjp_fun(covector_batch) # doesn't crash
|
|
|
|
|
|
|
|
jtu.check_grads(batched_scan_over_mul, (x_batch, coeff), order=2,
|
|
|
|
modes=['rev'])
|
|
|
|
|
2021-12-11 14:07:30 -08:00
|
|
|
def test_closure_with_vmap2(self):
|
|
|
|
# https://github.com/google/jax/issues/8783
|
|
|
|
def h(z):
|
|
|
|
def f(x):
|
|
|
|
@jax.custom_vjp
|
|
|
|
def g(y):
|
|
|
|
return x * y
|
|
|
|
|
|
|
|
def g_fwd(y):
|
|
|
|
return x * y, (x, x * y, y)
|
|
|
|
def g_rev(res, w_bar):
|
|
|
|
x, *_ = res
|
|
|
|
return (x * w_bar,)
|
|
|
|
g.defvjp(g_fwd, g_rev)
|
|
|
|
|
|
|
|
return g(z)
|
|
|
|
|
|
|
|
return jax.vmap(f)(jnp.arange(3., dtype='float32')).sum()
|
|
|
|
|
|
|
|
jtu.check_grads(h, (jnp.float32(3.14),), order=1, modes=['rev'])
|
|
|
|
|
2020-10-08 15:36:05 +01:00
|
|
|
|
2022-01-07 14:33:58 -08:00
|
|
|
def transpose_unary(f, x_example):
|
|
|
|
def transposed(y):
|
|
|
|
x, = api.linear_transpose(f, x_example)(y)
|
|
|
|
return x
|
|
|
|
return transposed
|
2021-02-12 12:56:15 -08:00
|
|
|
|
2022-01-07 14:33:58 -08:00
|
|
|
|
|
|
|
class CustomTransposeTest(jtu.JaxTestCase):
|
2021-02-12 12:56:15 -08:00
|
|
|
|
|
|
|
def test_linear_call(self):
|
|
|
|
def f(x, y):
|
|
|
|
def fn(r, x): return x / r
|
|
|
|
def tp(r, t): return t / r
|
|
|
|
return x + api.linear_call(fn, tp, y, x)
|
|
|
|
|
|
|
|
def f_ref(x, y):
|
|
|
|
return x + x / y
|
|
|
|
|
|
|
|
x = jnp.ones(2) * 6.
|
|
|
|
y = jnp.ones(2) * 3.
|
|
|
|
self.assertAllClose(f(x, y), f_ref(x, y))
|
|
|
|
|
|
|
|
f1 = lambda x: f(x, y)
|
|
|
|
f1_ref = lambda x: f_ref(x, y)
|
2022-01-07 14:33:58 -08:00
|
|
|
self.assertAllClose(transpose_unary(f1, x)(x),
|
|
|
|
transpose_unary(f1_ref, x)(x))
|
2021-02-12 12:56:15 -08:00
|
|
|
|
|
|
|
def test_linear_call_incorrect_transpose(self):
|
|
|
|
def f(x, y):
|
|
|
|
def fn(r, x): return x / r
|
|
|
|
def tp(r, t): return t / (2. * r) # nb: not the true transpose
|
|
|
|
return x + api.linear_call(fn, tp, y, x)
|
|
|
|
|
|
|
|
def f_ref(x, y):
|
|
|
|
return x + x / y
|
|
|
|
|
|
|
|
x = jnp.ones(2) * 6.
|
|
|
|
y = jnp.ones(2) * 3.
|
|
|
|
self.assertAllClose(f(x, y), f_ref(x, y))
|
|
|
|
|
|
|
|
f1 = lambda x: f(x, y)
|
|
|
|
f1_ref = lambda x: f_ref(x, 2. * y) # nb: double the reference divisor
|
2022-01-07 14:33:58 -08:00
|
|
|
self.assertAllClose(transpose_unary(f1, x)(x),
|
|
|
|
transpose_unary(f1_ref, x)(x))
|
2021-02-12 12:56:15 -08:00
|
|
|
|
|
|
|
def test_linear_call_transpose_transpose_transpose(self):
|
|
|
|
def fn(r, x): return x / r
|
|
|
|
def tp(r, t): return t / (2. * r) # nb: untrue transpose
|
|
|
|
def f_(x, y):
|
|
|
|
return x + api.linear_call(fn, tp, y, x)
|
|
|
|
|
|
|
|
x = jnp.ones(2) * 6.
|
|
|
|
y = jnp.ones(2) * 3.
|
|
|
|
f = lambda x: f_(x, y)
|
2022-01-07 14:33:58 -08:00
|
|
|
ft = transpose_unary(f, x)
|
|
|
|
ftt = transpose_unary(ft, x)
|
|
|
|
fttt = transpose_unary(ftt, x)
|
2021-02-12 12:56:15 -08:00
|
|
|
self.assertAllClose(ft(x), x + tp(y, x))
|
|
|
|
self.assertAllClose(f(x), ftt(x))
|
|
|
|
self.assertAllClose(ft(x), fttt(x))
|
|
|
|
|
|
|
|
def test_linear_call_scalar_to_vector(self):
|
|
|
|
def f(c, x):
|
|
|
|
def fn(_, x):
|
|
|
|
return [x, x]
|
|
|
|
|
|
|
|
def tp(_, t):
|
|
|
|
t1, t2 = t
|
|
|
|
return t1 + t2
|
|
|
|
|
|
|
|
return api.linear_call(fn, tp, (), c * x)
|
|
|
|
|
|
|
|
def f_ref(c, x):
|
|
|
|
return [c * x, c * x]
|
|
|
|
|
|
|
|
c, x = 2., 3.
|
|
|
|
t = [4., 5.]
|
|
|
|
self.assertAllClose(f(c, x), f_ref(c, x))
|
2022-01-07 14:33:58 -08:00
|
|
|
self.assertAllClose(transpose_unary(partial(f, c), x)(t),
|
|
|
|
transpose_unary(partial(f_ref, c), x)(t))
|
2021-02-12 12:56:15 -08:00
|
|
|
|
|
|
|
def test_linear_call_nested(self):
|
|
|
|
# identity function with an untrue transpose of 0
|
|
|
|
def id_(x):
|
|
|
|
def f(_, x): return x
|
|
|
|
def t(_, t): return 0.
|
|
|
|
return api.linear_call(f, t, (), x)
|
|
|
|
|
|
|
|
# identity function with an untrue transpose of 7, and where both
|
|
|
|
# forward and transpose have custom transpositions that should
|
|
|
|
# never end up invoked.
|
|
|
|
def f(x):
|
|
|
|
def f_(_, x): return id_(x)
|
|
|
|
def t_(_, t): return id_(7.)
|
|
|
|
return api.linear_call(f_, t_, (), x)
|
|
|
|
|
|
|
|
x = 5.
|
2022-01-07 14:33:58 -08:00
|
|
|
id_t = transpose_unary(id_, x)
|
|
|
|
id_tt = transpose_unary(id_t, x)
|
|
|
|
ft = transpose_unary(f, x)
|
|
|
|
ftt = transpose_unary(ft, x)
|
|
|
|
fttt = transpose_unary(ftt, x)
|
2021-02-12 12:56:15 -08:00
|
|
|
|
|
|
|
self.assertAllClose(id_(x), x)
|
|
|
|
self.assertAllClose(id_t(x), 0.)
|
|
|
|
self.assertAllClose(id_tt(x), x)
|
|
|
|
|
|
|
|
self.assertAllClose(f(x), x)
|
|
|
|
self.assertAllClose(ft(x), 7.)
|
|
|
|
self.assertAllClose(ftt(x), x)
|
|
|
|
self.assertAllClose(fttt(x), 7.)
|
|
|
|
|
2021-09-14 12:04:43 +02:00
|
|
|
def test_linear_call_jit(self):
|
|
|
|
def f(x, y):
|
|
|
|
def fn(r, x): return x / r
|
|
|
|
def tp(r, t): return t / r
|
|
|
|
return x + api.linear_call(fn, tp, y, x)
|
|
|
|
|
|
|
|
x = jnp.ones(2) * 6.
|
|
|
|
y = jnp.ones(2) * 3.
|
|
|
|
self.assertAllClose(f(x, y), jax.jit(f)(x, y))
|
|
|
|
|
|
|
|
f1 = lambda x: f(x, y)
|
2022-01-07 14:33:58 -08:00
|
|
|
self.assertAllClose(transpose_unary(f1, x)(x),
|
|
|
|
jax.jit(transpose_unary(f1, x))(x))
|
|
|
|
|
|
|
|
def test_basic(self):
|
|
|
|
def f(x, y):
|
|
|
|
@api.custom_transpose
|
|
|
|
def fn(r, x): return x / r
|
|
|
|
@fn.def_transpose
|
|
|
|
def tp(r, t): return t / r
|
|
|
|
|
|
|
|
return x + fn(y, x)
|
|
|
|
|
|
|
|
def f_ref(x, y):
|
|
|
|
return x + x / y
|
|
|
|
|
|
|
|
x = jnp.ones(2) * 6.
|
|
|
|
y = jnp.ones(2) * 3.
|
|
|
|
self.assertAllClose(f(x, y), f_ref(x, y))
|
|
|
|
|
|
|
|
f1 = lambda x: f(x, y)
|
|
|
|
f1_ref = lambda x: f_ref(x, y)
|
|
|
|
self.assertAllClose(transpose_unary(f1, x)(x),
|
|
|
|
transpose_unary(f1_ref, x)(x))
|
|
|
|
|
|
|
|
def test_incorrect_transpose(self):
|
|
|
|
def f(x, y):
|
|
|
|
@api.custom_transpose
|
|
|
|
def fn(r, x): return x / r
|
|
|
|
@fn.def_transpose
|
|
|
|
def tp(r, t): return t / (2. * r) # nb: not the true transpose
|
|
|
|
|
|
|
|
return x + fn(y, x)
|
|
|
|
|
|
|
|
def f_ref(x, y):
|
|
|
|
return x + x / y
|
|
|
|
|
|
|
|
x = jnp.ones(2) * 6.
|
|
|
|
y = jnp.ones(2) * 3.
|
|
|
|
self.assertAllClose(f(x, y), f_ref(x, y))
|
|
|
|
|
|
|
|
f1 = lambda x: f(x, y)
|
|
|
|
f1_ref = lambda x: f_ref(x, 2. * y) # nb: double the reference divisor
|
|
|
|
self.assertAllClose(transpose_unary(f1, x)(x),
|
|
|
|
transpose_unary(f1_ref, x)(x))
|
|
|
|
|
|
|
|
def test_transpose_transpose_transpose(self):
|
|
|
|
@api.custom_transpose
|
|
|
|
def fn(r, x): return x / r
|
|
|
|
@api.custom_transpose
|
|
|
|
def tp(r, t): return t / (2. * r) # nb: untrue transpose
|
|
|
|
|
|
|
|
fn.def_transpose(tp)
|
|
|
|
tp.def_transpose(fn)
|
|
|
|
|
|
|
|
def f_(x, y):
|
|
|
|
return x + fn(y, x)
|
|
|
|
|
|
|
|
x = jnp.ones(2) * 6.
|
|
|
|
y = jnp.ones(2) * 3.
|
|
|
|
f = lambda x: f_(x, y)
|
|
|
|
ft = transpose_unary(f, x)
|
|
|
|
ftt = transpose_unary(ft, x)
|
|
|
|
fttt = transpose_unary(ftt, x)
|
|
|
|
self.assertAllClose(ft(x), x + tp(y, x))
|
|
|
|
self.assertAllClose(f(x), ftt(x))
|
|
|
|
self.assertAllClose(ft(x), fttt(x))
|
|
|
|
|
|
|
|
def test_scalar_to_vector(self):
|
|
|
|
def f(c, x):
|
|
|
|
@api.custom_transpose
|
|
|
|
def fn(_, x):
|
|
|
|
return [x, x]
|
|
|
|
|
|
|
|
@fn.def_transpose
|
|
|
|
def tp(_, t):
|
|
|
|
t1, t2 = t
|
|
|
|
return t1 + t2
|
|
|
|
|
|
|
|
return fn((), c * x)
|
|
|
|
|
|
|
|
def f_ref(c, x):
|
|
|
|
return [c * x, c * x]
|
|
|
|
|
|
|
|
c, x = 2., 3.
|
|
|
|
t = [4., 5.]
|
|
|
|
self.assertAllClose(f(c, x), f_ref(c, x))
|
|
|
|
self.assertAllClose(transpose_unary(partial(f, c), x)(t),
|
|
|
|
transpose_unary(partial(f_ref, c), x)(t))
|
|
|
|
|
|
|
|
def test_nested(self):
|
|
|
|
# identity function with an untrue transpose of 0
|
|
|
|
def id_(x):
|
|
|
|
f = api.custom_transpose(lambda _, x: x)
|
|
|
|
t = api.custom_transpose(lambda _, t: 0.)
|
|
|
|
f.def_transpose(t)
|
|
|
|
t.def_transpose(f)
|
|
|
|
return f((), x)
|
|
|
|
|
|
|
|
# identity function with an untrue transpose of 7, and where both
|
|
|
|
# forward and transpose have custom transpositions that should
|
|
|
|
# never end up invoked.
|
|
|
|
def f(x):
|
|
|
|
f_ = api.custom_transpose(lambda _, x: id_(x))
|
|
|
|
t_ = api.custom_transpose(lambda _, t: id_(7.))
|
|
|
|
f_.def_transpose(t_)
|
|
|
|
t_.def_transpose(f_)
|
|
|
|
return f_((), x)
|
|
|
|
|
|
|
|
x = 5.
|
|
|
|
id_t = transpose_unary(id_, x)
|
|
|
|
id_tt = transpose_unary(id_t, x)
|
|
|
|
ft = transpose_unary(f, x)
|
|
|
|
ftt = transpose_unary(ft, x)
|
|
|
|
fttt = transpose_unary(ftt, x)
|
|
|
|
|
|
|
|
self.assertAllClose(id_(x), x)
|
|
|
|
self.assertAllClose(id_t(x), 0.)
|
|
|
|
self.assertAllClose(id_tt(x), x)
|
|
|
|
|
|
|
|
self.assertAllClose(f(x), x)
|
|
|
|
self.assertAllClose(ft(x), 7.)
|
|
|
|
self.assertAllClose(ftt(x), x)
|
|
|
|
self.assertAllClose(fttt(x), 7.)
|
|
|
|
|
|
|
|
def test_one_degree(self):
|
|
|
|
T = lambda f: transpose_unary(f, 0.)
|
|
|
|
|
|
|
|
@api.custom_transpose
|
|
|
|
def f(_, z): return 2. * z
|
|
|
|
@f.def_transpose
|
|
|
|
def ft(_, z): return 3. * z
|
|
|
|
|
|
|
|
f = partial(f, ())
|
|
|
|
self.assertAllClose(2., f(1.))
|
|
|
|
self.assertAllClose(3., T(f)(1.))
|
|
|
|
self.assertAllClose(3., T(T(f))(1.))
|
|
|
|
self.assertAllClose(3., T(T(T(f)))(1.))
|
|
|
|
self.assertAllClose(3., T(T(T(T(f))))(1.)) # ...
|
|
|
|
|
|
|
|
def test_two_degrees(self):
|
|
|
|
T = lambda f: transpose_unary(f, 0.)
|
|
|
|
|
|
|
|
@api.custom_transpose
|
|
|
|
def f(_, z): return 2. * z
|
|
|
|
|
|
|
|
@f.def_transpose
|
|
|
|
@api.custom_transpose
|
|
|
|
def ft(_, z): return 3. * z
|
|
|
|
|
|
|
|
@ft.def_transpose
|
|
|
|
def ftt(_, z): return 7. * z
|
|
|
|
|
|
|
|
f = partial(f, ())
|
|
|
|
self.assertAllClose(2., f(1.))
|
|
|
|
self.assertAllClose(3., T(f)(1.))
|
|
|
|
self.assertAllClose(7., T(T(f))(1.))
|
|
|
|
self.assertAllClose(7., T(T(T(f)))(1.))
|
|
|
|
self.assertAllClose(7., T(T(T(T(f))))(1.)) # ...
|
|
|
|
|
|
|
|
def test_symmetric(self):
|
|
|
|
T = lambda f: transpose_unary(f, 0.)
|
|
|
|
|
|
|
|
@api.custom_transpose
|
|
|
|
def f(_, z): return 2. * z
|
|
|
|
@api.custom_transpose
|
|
|
|
def g(_, z): return 3. * z
|
|
|
|
|
|
|
|
f.def_transpose(g)
|
|
|
|
g.def_transpose(f)
|
|
|
|
|
|
|
|
f = partial(f, ())
|
|
|
|
self.assertAllClose(2., f(1.))
|
|
|
|
self.assertAllClose(3., T(f)(1.))
|
|
|
|
self.assertAllClose(2., T(T(f))(1.))
|
|
|
|
self.assertAllClose(3., T(T(T(f)))(1.))
|
|
|
|
self.assertAllClose(2., T(T(T(T(f))))(1.)) # ...
|
|
|
|
|
|
|
|
def test_recursive(self):
|
|
|
|
T = lambda f: transpose_unary(f, 0.)
|
|
|
|
|
|
|
|
@api.custom_transpose
|
|
|
|
def f(c, z): return c * z
|
|
|
|
|
|
|
|
@f.def_transpose
|
|
|
|
def ft(c, z): return f(c + 1., z)
|
|
|
|
|
|
|
|
g = partial(f, 1.)
|
|
|
|
self.assertAllClose(1., g(1.))
|
|
|
|
self.assertAllClose(2., T(g)(1.))
|
|
|
|
self.assertAllClose(3., T(T(g))(1.))
|
|
|
|
self.assertAllClose(4., T(T(T(g)))(1.))
|
|
|
|
self.assertAllClose(5., T(T(T(T(g))))(1.)) # ...
|
|
|
|
|
|
|
|
def test_jit(self):
|
|
|
|
def f(x, y):
|
|
|
|
@api.custom_transpose
|
|
|
|
def fn(r, x): return x / r
|
|
|
|
@fn.def_transpose
|
|
|
|
def tp(r, t): return t / r
|
|
|
|
|
|
|
|
return x + fn(y, x)
|
|
|
|
|
|
|
|
x = jnp.ones(2) * 6.
|
|
|
|
y = jnp.ones(2) * 3.
|
|
|
|
self.assertAllClose(f(x, y), jax.jit(f)(x, y))
|
|
|
|
|
|
|
|
f_ = lambda x: f(x, y)
|
|
|
|
f_t = transpose_unary(f_, x)
|
|
|
|
self.assertAllClose(f_(x), jax.jit(f_)(x))
|
|
|
|
self.assertAllClose(f_t(x), jax.jit(f_t)(x))
|
2021-09-14 12:04:43 +02:00
|
|
|
|
2021-02-12 12:56:15 -08:00
|
|
|
|
2021-12-30 19:08:51 -08:00
|
|
|
class CustomVmapTest(jtu.JaxTestCase):
|
|
|
|
|
|
|
|
def test_basic(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
self.assertEqual(in_batched, [True])
|
|
|
|
self.assertEqual(axis_size, xs.shape[0])
|
|
|
|
return [jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
x, xs = jnp.array(1.), jnp.arange(3)
|
|
|
|
y = f(x)
|
|
|
|
self.assertAllClose(y, jnp.sin(x))
|
|
|
|
ys = api.vmap(f)(xs)
|
|
|
|
self.assertAllClose(ys, jnp.cos(xs))
|
|
|
|
|
|
|
|
def test_nary(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x, y): return jnp.sin(x) + y ** 2.
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs, ys):
|
|
|
|
self.assertEqual(in_batched, [True, True])
|
|
|
|
self.assertEqual(axis_size, 3)
|
|
|
|
self.assertEqual(axis_size, xs.shape[0])
|
|
|
|
self.assertEqual(axis_size, ys.shape[0])
|
|
|
|
return [jnp.cos(xs) + ys ** 2.], [True]
|
|
|
|
|
|
|
|
xs, ys = jnp.arange(3), jnp.arange(3)
|
|
|
|
zs = api.vmap(f)(xs, ys)
|
|
|
|
self.assertAllClose(zs, jnp.cos(xs) + ys ** 2.)
|
|
|
|
|
|
|
|
def test_nary_mixed_batching(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def vector_dot(u, v):
|
|
|
|
self.assertEqual(u.ndim, 1)
|
|
|
|
self.assertEqual(v.ndim, 1)
|
|
|
|
return u @ v
|
|
|
|
|
|
|
|
size = 4
|
|
|
|
vlen = 3
|
|
|
|
in_batched_log = []
|
|
|
|
|
|
|
|
@vector_dot.def_vmap
|
|
|
|
def vector_dot_vmap_rule(axis_size, in_batched, u, v):
|
|
|
|
in_batched_log.append(in_batched)
|
|
|
|
self.assertEqual(axis_size, size)
|
|
|
|
u_batched, v_batched = in_batched
|
|
|
|
if u_batched:
|
|
|
|
self.assertEqual(u.ndim, 2)
|
|
|
|
self.assertEqual(u.shape[0], size)
|
|
|
|
else:
|
|
|
|
self.assertEqual(u.ndim, 1)
|
|
|
|
self.assertEqual(u.shape[0], vlen)
|
|
|
|
if v_batched:
|
|
|
|
self.assertEqual(v.ndim, 2)
|
|
|
|
self.assertEqual(v.shape[0], size)
|
|
|
|
else:
|
|
|
|
self.assertEqual(v.ndim, 1)
|
|
|
|
self.assertEqual(v.shape[0], vlen)
|
|
|
|
if u_batched and v_batched:
|
|
|
|
out = jnp.sum(u * v, axis=1)
|
|
|
|
else:
|
|
|
|
out = u @ v if u_batched else v @ u
|
|
|
|
return [out], [u_batched or v_batched]
|
|
|
|
|
|
|
|
f = vector_dot
|
|
|
|
v = lambda *shape: jnp.ones(shape)
|
|
|
|
|
|
|
|
y = api.vmap(f, in_axes=(0, None))(v(4, 3), v(3))
|
|
|
|
self.assertAllClose(y, v(4, 3) @ v(3))
|
|
|
|
y = api.vmap(f, in_axes=(1, None))(v(3, 4), v(3))
|
|
|
|
self.assertAllClose(y, v(3, 4).T @ v(3))
|
|
|
|
y = api.vmap(f, in_axes=(None, 0))(v(3), v(4, 3))
|
|
|
|
self.assertAllClose(y, v(3) @ v(4, 3).T)
|
|
|
|
y = api.vmap(f, in_axes=(0, 0))(v(4, 3), v(4, 3))
|
|
|
|
self.assertAllClose(y, jnp.sum(v(4, 3) * v(4, 3), axis=1))
|
|
|
|
self.assertEqual(in_batched_log[0], [True, False])
|
|
|
|
self.assertEqual(in_batched_log[1], [True, False])
|
|
|
|
self.assertEqual(in_batched_log[2], [False, True])
|
|
|
|
self.assertEqual(in_batched_log[3], [True, True])
|
|
|
|
|
|
|
|
def test_rule_input_signature(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
rule_args = []
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
rule_args.append((axis_size, in_batched))
|
|
|
|
return [jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
xs = jnp.arange(3)
|
|
|
|
_ = api.vmap(f)(xs)
|
|
|
|
(axis_size, in_batched), = rule_args
|
|
|
|
self.assertIs(type(axis_size), int)
|
|
|
|
self.assertIs(type(in_batched), list)
|
|
|
|
|
|
|
|
def test_rule_output_signature_any_sequence(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
Box = collections.namedtuple('Box', 'value')
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
# custom vmap machinery should handle any sequence type for either output
|
|
|
|
return Box(jnp.cos(xs)), tuple(in_batched)
|
|
|
|
|
|
|
|
xs = jnp.arange(3)
|
|
|
|
ys = api.vmap(f)(xs)
|
|
|
|
self.assertAllClose(ys, jnp.cos(xs))
|
|
|
|
|
|
|
|
def test_rule_output_mismatch(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def test_rule_abc(axis_size, in_batched, xs):
|
|
|
|
return [jnp.sin(xs), jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
xs = jnp.arange(3)
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
ValueError,
|
|
|
|
'structure of output values and output batching specification '
|
|
|
|
r'returned by custom vmap rule \(test_rule_abc\) do not match.*',
|
|
|
|
lambda: api.vmap(f)(xs))
|
|
|
|
|
|
|
|
def test_rule_output_array(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
# common to overlook the need to box up single output value in a list
|
|
|
|
return jnp.cos(xs), in_batched
|
|
|
|
|
|
|
|
xs = jnp.arange(3)
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
TypeError,
|
|
|
|
'custom vmap rule output values must be a sequence.*',
|
|
|
|
lambda: api.vmap(f)(xs))
|
|
|
|
|
2021-12-31 11:40:57 -08:00
|
|
|
def test_jvp_basic(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
self.assertEqual(axis_size, 3)
|
|
|
|
self.assertEqual(in_batched, [True])
|
|
|
|
return [jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
f_jvp = lambda x, tx: api.jvp(f, [x], [tx])
|
|
|
|
|
|
|
|
x, tx = jnp.array(1.), jnp.array(2.)
|
|
|
|
xs, txs = jnp.arange(3.), jnp.arange(3.) * 2.
|
|
|
|
|
|
|
|
y, ty = f_jvp(x, tx)
|
|
|
|
self.assertAllClose(y, jnp.sin(x))
|
|
|
|
self.assertAllClose(ty, jnp.cos(x) * tx)
|
|
|
|
|
|
|
|
ys, tys = api.vmap(f_jvp)(xs, txs)
|
|
|
|
self.assertAllClose(ys, jnp.cos(xs))
|
|
|
|
self.assertAllClose(tys, -jnp.sin(xs) * txs)
|
|
|
|
|
|
|
|
ys, tys = api.jvp(api.vmap(f), [xs], [txs])
|
|
|
|
self.assertAllClose(ys, jnp.cos(xs))
|
|
|
|
self.assertAllClose(tys, -jnp.sin(xs) * txs)
|
|
|
|
|
|
|
|
def test_jvp_nary(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x, y): return jnp.sin(x) + y
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs, ys):
|
|
|
|
self.assertEqual(axis_size, 3)
|
|
|
|
self.assertEqual(in_batched, [True, True])
|
|
|
|
return [jnp.cos(xs) + ys], [True]
|
|
|
|
|
|
|
|
f_jvp = lambda x, y, tx, ty: api.jvp(f, [x, y], [tx, ty])
|
|
|
|
|
|
|
|
x, y, tx, ty = jnp.arange(4.)
|
|
|
|
xs, ys, txs, tys = 4. + jnp.arange(3. * 4).reshape((4, 3))
|
|
|
|
|
|
|
|
zs, tzs = api.vmap(f_jvp)(xs, ys, txs, tys)
|
|
|
|
self.assertAllClose(zs, jnp.cos(xs) + ys)
|
|
|
|
self.assertAllClose(tzs, -jnp.sin(xs) * txs + tys)
|
|
|
|
|
|
|
|
zs, tzs = api.jvp(api.vmap(f), [xs, ys], [txs, tys])
|
|
|
|
self.assertAllClose(zs, jnp.cos(xs) + ys)
|
|
|
|
self.assertAllClose(tzs, -jnp.sin(xs) * txs + tys)
|
|
|
|
|
|
|
|
def test_jvp_extra_batched_tangents(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
self.assertEqual(axis_size, 3)
|
|
|
|
self.assertEqual(in_batched, [False])
|
|
|
|
return [jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
f_jvp = lambda x, tx: api.jvp(f, [x], [tx])
|
|
|
|
|
|
|
|
x, txs = jnp.array(1.), 2. + jnp.arange(3.)
|
|
|
|
y, tys = api.vmap(f_jvp, in_axes=(None, 0), out_axes=(None, 0))(x, txs)
|
|
|
|
self.assertAllClose(y, jnp.cos(x))
|
|
|
|
self.assertAllClose(tys, -jnp.sin(x) * txs)
|
|
|
|
|
|
|
|
def test_jacfwd(self):
|
|
|
|
# jacfwd is another way to exercise extra-batched tangents
|
|
|
|
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
self.assertEqual(axis_size, 3)
|
|
|
|
self.assertEqual(in_batched, [False])
|
|
|
|
return [jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
x = jnp.arange(3.) + .72
|
|
|
|
j = api.jacfwd(f)(x)
|
|
|
|
self.assertAllClose(j, -jnp.diag(jnp.sin(x)))
|
|
|
|
|
|
|
|
def test_jvp_extra_batched_primals(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
self.assertEqual(axis_size, 3)
|
|
|
|
self.assertEqual(in_batched, [False])
|
|
|
|
return [jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
f_jvp = lambda x, tx: api.jvp(f, [x], [tx])
|
|
|
|
|
|
|
|
xs, tx = jnp.arange(3.), jnp.array(4.)
|
|
|
|
ys, tys = api.vmap(f_jvp, in_axes=(0, None))(xs, tx)
|
|
|
|
self.assertAllClose(ys, jnp.cos(xs))
|
|
|
|
self.assertAllClose(tys, -jnp.sin(xs) * tx)
|
|
|
|
|
|
|
|
def test_jvp_extra_batched_primals_with_linear_vmap_rule(self):
|
|
|
|
# When a function is linear, its Jacobian is constant. JAX's JVP
|
|
|
|
# of linear functions takes advantage of this: when mapping over a
|
|
|
|
# batch of primals relative to a fixed (i.e. symbolically
|
|
|
|
# replicated) tangent, output tangents remain replicated as well
|
|
|
|
# (i.e. JAX will not broadcast them). This is true in general, and
|
|
|
|
# this test checks that vmapped JVPs continue to behave this way
|
|
|
|
# when custom_vmap is involved and the custom vmap rule is linear.
|
|
|
|
|
|
|
|
@api.custom_vmap
|
|
|
|
def f_linear(x): return 7. * x
|
|
|
|
|
|
|
|
@f_linear.def_vmap
|
|
|
|
def linear_rule(axis_size, in_batched, xs):
|
|
|
|
return [11. * xs], in_batched
|
|
|
|
|
|
|
|
@api.custom_vmap
|
|
|
|
def f_nonlinear(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f_nonlinear.def_vmap
|
|
|
|
def nonlinear_rule(axis_size, in_batched, xs):
|
|
|
|
return [jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
f_lin_jvp = lambda x, tx: api.jvp(f_linear, [x], [tx])
|
|
|
|
f_non_jvp = lambda x, tx: api.jvp(f_nonlinear, [x], [tx])
|
|
|
|
xs, tx = jnp.arange(3.), jnp.array(4.)
|
|
|
|
|
|
|
|
# doesn't err
|
|
|
|
_ = api.vmap(f_lin_jvp, in_axes=(0, None), out_axes=(0, None))(xs, tx)
|
|
|
|
|
|
|
|
# does err
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
ValueError, 'vmap has mapped output but out_axes is None',
|
|
|
|
lambda: api.vmap(
|
|
|
|
f_non_jvp, in_axes=(0, None), out_axes=(0, None))(xs, tx))
|
|
|
|
|
|
|
|
def test_jvp_dataflow_violation(self):
|
|
|
|
# The jvp-of-custom-vmap machinery should not assume the standard
|
|
|
|
# dataflow constraint on the JVP of the custom vmap rule (primal
|
|
|
|
# outputs independent of tangent inputs). Both jvp and vmap are
|
|
|
|
# "forward" transformations under which, at present, we don't
|
|
|
|
# enforce the JVP dependence diagram. Because output primals can
|
|
|
|
# depend on input tangents, extra-batched input tangents can
|
|
|
|
# create batched output primals, as this test checks.
|
|
|
|
|
|
|
|
@api.custom_jvp
|
|
|
|
def cos_with_invalid_dataflow_jvp(x): return jnp.cos(x)
|
|
|
|
|
|
|
|
@cos_with_invalid_dataflow_jvp.defjvp
|
|
|
|
def invalid_dataflow_jvp(x, tx):
|
|
|
|
[x], [tx] = x, tx
|
|
|
|
return jnp.cos(x * tx), tx
|
|
|
|
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
return [cos_with_invalid_dataflow_jvp(xs)], in_batched
|
|
|
|
|
|
|
|
f_jvp = lambda x, tx: api.jvp(f, [x], [tx])
|
|
|
|
x, txs = jnp.array(1.), 2. + jnp.arange(3.)
|
|
|
|
|
|
|
|
# doesn't err
|
|
|
|
ys, tys = api.vmap(f_jvp, in_axes=(None, 0))(x, txs)
|
|
|
|
self.assertAllClose(ys, jnp.cos(x * txs))
|
|
|
|
self.assertAllClose(tys, txs)
|
|
|
|
|
|
|
|
# does err
|
|
|
|
self.assertRaisesRegex(
|
|
|
|
ValueError, 'vmap has mapped output but out_axes is None',
|
|
|
|
lambda: api.vmap(
|
|
|
|
f_jvp, in_axes=(None, 0), out_axes=(None, 0))(x, txs))
|
|
|
|
|
2022-01-14 16:52:43 -08:00
|
|
|
def test_tree(self):
|
|
|
|
tree_sin = partial(tree_util.tree_map, jnp.sin)
|
|
|
|
tree_cos = partial(tree_util.tree_map, jnp.cos)
|
|
|
|
|
|
|
|
x, xs = jnp.array(1.), jnp.arange(3)
|
|
|
|
x = (x, [x + 1, x + 2], [x + 3], x + 4)
|
|
|
|
xs = (xs, [xs + 1, xs + 2], [xs + 3], xs + 4)
|
|
|
|
in_batched_ref = tree_util.tree_map(lambda _: True, x)
|
|
|
|
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(xs): return tree_sin(xs)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
self.assertEqual(in_batched, [in_batched_ref])
|
|
|
|
sz, = set([z.shape[0] for z in tree_util.tree_leaves(xs)])
|
|
|
|
self.assertEqual(axis_size, sz)
|
|
|
|
return [tree_cos(xs)], in_batched
|
|
|
|
|
|
|
|
y = f(x)
|
|
|
|
self.assertAllClose(y, tree_sin(x))
|
|
|
|
ys = api.vmap(f)(xs)
|
|
|
|
self.assertAllClose(ys, tree_cos(xs))
|
|
|
|
|
|
|
|
def test_tree_with_nones(self):
|
|
|
|
tree_sin = partial(tree_util.tree_map, jnp.sin)
|
|
|
|
tree_cos = partial(tree_util.tree_map, jnp.cos)
|
|
|
|
|
|
|
|
x, xs = jnp.array(1.), jnp.arange(3)
|
|
|
|
x = (x, [x + 1, None], [x + 3], None)
|
|
|
|
xs = (xs, [xs + 1, None], [xs + 3], None)
|
|
|
|
in_batched_ref = tree_util.tree_map(lambda _: True, x)
|
|
|
|
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(xs): return tree_sin(xs)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
self.assertEqual(in_batched, [in_batched_ref])
|
|
|
|
sz, = set([z.shape[0] for z in tree_util.tree_leaves(xs)])
|
|
|
|
self.assertEqual(axis_size, sz)
|
|
|
|
return [tree_cos(xs)], in_batched
|
|
|
|
|
|
|
|
y = f(x)
|
|
|
|
self.assertAllClose(y, tree_sin(x))
|
|
|
|
ys = api.vmap(f)(xs)
|
|
|
|
self.assertAllClose(ys, tree_cos(xs))
|
|
|
|
|
|
|
|
def test_jit(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
def f(x): return jnp.sin(x)
|
|
|
|
|
|
|
|
@f.def_vmap
|
|
|
|
def rule(axis_size, in_batched, xs):
|
|
|
|
self.assertEqual(in_batched, [True])
|
|
|
|
self.assertEqual(axis_size, xs.shape[0])
|
|
|
|
return [jnp.cos(xs)], in_batched
|
|
|
|
|
|
|
|
x, xs = jnp.array(1.), jnp.arange(3)
|
|
|
|
self.assertAllClose(f(x), jit(f)(x))
|
|
|
|
self.assertAllClose(jit(api.vmap(f))(xs), api.vmap(f)(xs))
|
|
|
|
self.assertAllClose(api.vmap(jit(f))(xs), api.vmap(f)(xs))
|
|
|
|
|
2021-12-30 19:08:51 -08:00
|
|
|
|
2022-01-10 20:18:57 -08:00
|
|
|
class CustomApiTest(jtu.JaxTestCase):
|
|
|
|
"""Test interactions among the custom_{vmap,jvp,vjp,transpose,*} APIs"""
|
|
|
|
|
|
|
|
def test_method_forwarding(self):
|
|
|
|
@api.custom_vmap
|
|
|
|
@api.custom_jvp
|
|
|
|
@api.custom_transpose
|
|
|
|
def f(x): return 2. * x
|
|
|
|
|
|
|
|
# none of these err:
|
|
|
|
@f.def_vmap
|
|
|
|
def f_batch(sz, b, xs): return 2. * xs
|
|
|
|
@f.defjvp
|
|
|
|
def f_jvp(x, tx): return 2. * x, 2. * tx
|
|
|
|
@f.def_transpose
|
|
|
|
def f_transpose(x): return 2. * x
|
|
|
|
|
|
|
|
def test_def_method_forwarding_all_permutations(self):
|
|
|
|
for wraps in it.permutations([
|
|
|
|
api.custom_jvp, api.custom_transpose, api.custom_vmap]):
|
|
|
|
f = lambda x: x + 1.
|
|
|
|
for wrap in wraps:
|
|
|
|
f = wrap(f)
|
|
|
|
for methods in it.permutations(['defjvp', 'def_vmap', 'def_transpose']):
|
|
|
|
for method in methods:
|
|
|
|
self.assertIsInstance(getattr(f, method), Callable)
|
|
|
|
|
|
|
|
for decorators in it.permutations([
|
|
|
|
api.custom_vjp, api.custom_transpose, api.custom_vmap]):
|
|
|
|
f = lambda x: x + 1.
|
|
|
|
for decorator in decorators:
|
|
|
|
f = decorator(f)
|
|
|
|
for methods in it.permutations(['defvjp', 'def_vmap', 'def_transpose']):
|
|
|
|
for method in methods:
|
|
|
|
self.assertIsInstance(getattr(f, method), Callable)
|
|
|
|
|
|
|
|
|
Initial version of invertible AD implementation (#3232)
This is a prototype implementation of the memory-efficient VJP method
for invertible function. The general idea is that thanks to
invertibility, we don't have to memoize any intermediate primal values,
but can simply reconstruct them in lock-step with gradient computation.
The API is such that the only thing a user has to do, is decorate a
function with `@invertible`, which will make AD apply the more efficient
transpose than usual.
The current version is expressive enough to support e.g. the Reversible
ResNet, but there are still some caveats:
- The definition of "invertible" function is a one that produces a jaxpr
that can be inverted correctly if only we iterate over its equations
in reverse. This is a bit strict, because users generally don't have
too much control over that, and there are functions that produce
jaxprs which will be treated as invertible when one topological
ordering of equations is used, while they will be considered
non-invertible for other valid orderings.
- It doesn't follow the usual jvp + transpose path, and it turns out
that zero argument pruning in JVPTrace makes it pretty much impossible
to implement correctly.
- `custom_ivjp` is an initial-style primitive.
- Invertible reverse-mode implementation (`rev_backward_pass`) assumes
that all the VJPs of primal primitives are jittable (not sure if
that's a problem, but worth pointing out).
- Not having a dedicated linearization pass makes the JVP of
`custom_ivjp` inefficient if it is being staged out.
2020-06-15 12:35:06 +02:00
|
|
|
class InvertibleADTest(jtu.JaxTestCase):
|
|
|
|
|
2021-03-21 13:39:57 -07:00
|
|
|
@jtu.ignore_warning(message="Values that an @invertible function closes")
|
Initial version of invertible AD implementation (#3232)
This is a prototype implementation of the memory-efficient VJP method
for invertible function. The general idea is that thanks to
invertibility, we don't have to memoize any intermediate primal values,
but can simply reconstruct them in lock-step with gradient computation.
The API is such that the only thing a user has to do, is decorate a
function with `@invertible`, which will make AD apply the more efficient
transpose than usual.
The current version is expressive enough to support e.g. the Reversible
ResNet, but there are still some caveats:
- The definition of "invertible" function is a one that produces a jaxpr
that can be inverted correctly if only we iterate over its equations
in reverse. This is a bit strict, because users generally don't have
too much control over that, and there are functions that produce
jaxprs which will be treated as invertible when one topological
ordering of equations is used, while they will be considered
non-invertible for other valid orderings.
- It doesn't follow the usual jvp + transpose path, and it turns out
that zero argument pruning in JVPTrace makes it pretty much impossible
to implement correctly.
- `custom_ivjp` is an initial-style primitive.
- Invertible reverse-mode implementation (`rev_backward_pass`) assumes
that all the VJPs of primal primitives are jittable (not sure if
that's a problem, but worth pointing out).
- Not having a dedicated linearization pass makes the JVP of
`custom_ivjp` inefficient if it is being staged out.
2020-06-15 12:35:06 +02:00
|
|
|
def test_invertible_basic(self):
|
|
|
|
def f(x):
|
2021-08-10 06:48:55 -07:00
|
|
|
return lax.mul(lax.mul(lax.exp(x), 4.), x)
|
Initial version of invertible AD implementation (#3232)
This is a prototype implementation of the memory-efficient VJP method
for invertible function. The general idea is that thanks to
invertibility, we don't have to memoize any intermediate primal values,
but can simply reconstruct them in lock-step with gradient computation.
The API is such that the only thing a user has to do, is decorate a
function with `@invertible`, which will make AD apply the more efficient
transpose than usual.
The current version is expressive enough to support e.g. the Reversible
ResNet, but there are still some caveats:
- The definition of "invertible" function is a one that produces a jaxpr
that can be inverted correctly if only we iterate over its equations
in reverse. This is a bit strict, because users generally don't have
too much control over that, and there are functions that produce
jaxprs which will be treated as invertible when one topological
ordering of equations is used, while they will be considered
non-invertible for other valid orderings.
- It doesn't follow the usual jvp + transpose path, and it turns out
that zero argument pruning in JVPTrace makes it pretty much impossible
to implement correctly.
- `custom_ivjp` is an initial-style primitive.
- Invertible reverse-mode implementation (`rev_backward_pass`) assumes
that all the VJPs of primal primitives are jittable (not sure if
that's a problem, but worth pointing out).
- Not having a dedicated linearization pass makes the JVP of
`custom_ivjp` inefficient if it is being staged out.
2020-06-15 12:35:06 +02:00
|
|
|
|
|
|
|
finv = jax.invertible(f)
|
2020-08-11 11:45:58 +02:00
|
|
|
x = jnp.ones((5,))
|
Initial version of invertible AD implementation (#3232)
This is a prototype implementation of the memory-efficient VJP method
for invertible function. The general idea is that thanks to
invertibility, we don't have to memoize any intermediate primal values,
but can simply reconstruct them in lock-step with gradient computation.
The API is such that the only thing a user has to do, is decorate a
function with `@invertible`, which will make AD apply the more efficient
transpose than usual.
The current version is expressive enough to support e.g. the Reversible
ResNet, but there are still some caveats:
- The definition of "invertible" function is a one that produces a jaxpr
that can be inverted correctly if only we iterate over its equations
in reverse. This is a bit strict, because users generally don't have
too much control over that, and there are functions that produce
jaxprs which will be treated as invertible when one topological
ordering of equations is used, while they will be considered
non-invertible for other valid orderings.
- It doesn't follow the usual jvp + transpose path, and it turns out
that zero argument pruning in JVPTrace makes it pretty much impossible
to implement correctly.
- `custom_ivjp` is an initial-style primitive.
- Invertible reverse-mode implementation (`rev_backward_pass`) assumes
that all the VJPs of primal primitives are jittable (not sure if
that's a problem, but worth pointing out).
- Not having a dedicated linearization pass makes the JVP of
`custom_ivjp` inefficient if it is being staged out.
2020-06-15 12:35:06 +02:00
|
|
|
|
|
|
|
jaxpr = jax.make_jaxpr(lambda p, ct: jax.vjp(finv, p)[1](ct))(x, x)
|
|
|
|
|
2021-03-21 13:39:57 -07:00
|
|
|
# expected = """
|
|
|
|
# { lambda ; a b.
|
|
|
|
# let c = exp a
|
|
|
|
# d = mul c 4.0
|
|
|
|
# e = mul d a
|
|
|
|
# f = mul b a
|
|
|
|
# g = div e a
|
|
|
|
# h = mul b g
|
|
|
|
# i = mul f 4.0
|
|
|
|
# j = div g 4.0
|
|
|
|
# k = mul f j
|
|
|
|
# _ = reduce_sum[ axes=(0,) ] k
|
|
|
|
# _ = log j
|
|
|
|
# l = mul i j
|
|
|
|
# m = add_any h l
|
|
|
|
# in (m,) }
|
|
|
|
# """
|
|
|
|
# self.assertMultiLineStrippedEqual(expected, str(jaxpr)) # no jaxpr test
|
|
|
|
|
|
|
|
self.assertIn('div', str(jaxpr))
|
|
|
|
self.assertIn('log', str(jaxpr)) # assumes no DCE
|
Initial version of invertible AD implementation (#3232)
This is a prototype implementation of the memory-efficient VJP method
for invertible function. The general idea is that thanks to
invertibility, we don't have to memoize any intermediate primal values,
but can simply reconstruct them in lock-step with gradient computation.
The API is such that the only thing a user has to do, is decorate a
function with `@invertible`, which will make AD apply the more efficient
transpose than usual.
The current version is expressive enough to support e.g. the Reversible
ResNet, but there are still some caveats:
- The definition of "invertible" function is a one that produces a jaxpr
that can be inverted correctly if only we iterate over its equations
in reverse. This is a bit strict, because users generally don't have
too much control over that, and there are functions that produce
jaxprs which will be treated as invertible when one topological
ordering of equations is used, while they will be considered
non-invertible for other valid orderings.
- It doesn't follow the usual jvp + transpose path, and it turns out
that zero argument pruning in JVPTrace makes it pretty much impossible
to implement correctly.
- `custom_ivjp` is an initial-style primitive.
- Invertible reverse-mode implementation (`rev_backward_pass`) assumes
that all the VJPs of primal primitives are jittable (not sure if
that's a problem, but worth pointing out).
- Not having a dedicated linearization pass makes the JVP of
`custom_ivjp` inefficient if it is being staged out.
2020-06-15 12:35:06 +02:00
|
|
|
self.assertAllClose(jax.value_and_grad(lambda x: np.sum(f(x)))(x),
|
|
|
|
jax.value_and_grad(lambda x: np.sum(finv(x)))(x),
|
|
|
|
check_dtypes=True)
|
|
|
|
|
|
|
|
def test_invertible_blocks(self):
|
|
|
|
# NB: This is the reversible ResNet block
|
|
|
|
def mk_reversible_block(f, g):
|
|
|
|
@jax.custom_ivjp
|
|
|
|
def rev_block(x1, x2):
|
|
|
|
y1 = f(x2) + x1
|
|
|
|
y2 = g(y1) + x2
|
|
|
|
return y1, y2
|
|
|
|
|
|
|
|
@rev_block.defivjp
|
|
|
|
def rev_block_ivjp(xs, ys, dys):
|
|
|
|
(y1, y2) = ys
|
|
|
|
(dy1, dy2) = dys
|
|
|
|
|
|
|
|
dgo, dx2 = dy2, dy2
|
|
|
|
go, gvjp = jax.vjp(g, y1)
|
|
|
|
dy1 += gvjp(dgo)[0]
|
|
|
|
del gvjp
|
|
|
|
x2 = y2 - go
|
|
|
|
|
|
|
|
dfo, dx1 = dy1, dy1
|
|
|
|
fo, fvjp = jax.vjp(f, x2)
|
|
|
|
dx2 += fvjp(dfo)[0]
|
|
|
|
del fvjp
|
|
|
|
x1 = y1 - fo
|
|
|
|
|
|
|
|
return (x1, x2), (dx1, dx2)
|
|
|
|
|
|
|
|
return rev_block
|
|
|
|
|
|
|
|
rev_block = mk_reversible_block(jnp.sin, jnp.cos)
|
|
|
|
|
|
|
|
def g(x1, x2):
|
|
|
|
for i in range(2):
|
|
|
|
x1, x2 = rev_block(x1, x2)
|
|
|
|
return x1, x2
|
|
|
|
|
|
|
|
def reduce(f, x1, x2):
|
|
|
|
y1, y2 = f(x1, x2)
|
|
|
|
return np.sum(y1) + np.sum(y2)
|
|
|
|
|
|
|
|
x = np.ones((1,))
|
|
|
|
# FIXME: This breaks when argnums is left as default (i.e. 0), because JVP prunes
|
|
|
|
# zero tangents from call primitives.
|
|
|
|
self.assertAllClose(jax.value_and_grad(partial(reduce, jax.invertible(g)), argnums=(0, 1))(x, x + 2),
|
|
|
|
jax.value_and_grad(partial(reduce, g), argnums=(0, 1))(x, x + 2),
|
|
|
|
check_dtypes=True)
|
|
|
|
|
2020-08-11 11:45:58 +02:00
|
|
|
def test_invertible_partial_diff(self):
|
|
|
|
# Check that we don't have to differentiate with respect to inputs
|
|
|
|
# of the invertible function.
|
|
|
|
def f(x, y):
|
2021-08-10 06:48:55 -07:00
|
|
|
return lax.mul(lax.mul(lax.exp(x), 4.), x), lax.add(y, 4.)
|
2020-08-11 11:45:58 +02:00
|
|
|
|
|
|
|
finv = jax.invertible(f)
|
|
|
|
o = np.ones((5,))
|
|
|
|
self.assertAllClose(jax.value_and_grad(lambda x: np.sum(f(x, o)[0]))(o),
|
|
|
|
jax.value_and_grad(lambda x: np.sum(finv(x, o)[0]))(o),
|
|
|
|
check_dtypes=True)
|
|
|
|
|
2020-11-08 18:45:24 +01:00
|
|
|
def test_invertible_pytree(self):
|
|
|
|
def f(x, y):
|
2021-08-10 06:48:55 -07:00
|
|
|
return lax.add(lax.mul(lax.exp(x[0]), x[1]), y)
|
2020-11-08 18:45:24 +01:00
|
|
|
|
|
|
|
finv = jax.invertible(f)
|
|
|
|
o = np.ones((5,))
|
|
|
|
self.assertAllClose(jax.value_and_grad(lambda x: np.sum(f((x, x), x)[0]))(o),
|
|
|
|
jax.value_and_grad(lambda x: np.sum(finv((x, x), x)[0]))(o),
|
|
|
|
check_dtypes=True)
|
|
|
|
|
2020-08-11 11:45:58 +02:00
|
|
|
|
2021-02-04 14:53:38 +00:00
|
|
|
class BufferDonationTest(jtu.BufferDonationTestCase):
|
Add support for buffer donation in `jit` and `pmap`. (#2936)
For a computation of the form:
>>> f = lambda x: x ** 2
>>> f = jax.jit(f)
>>> while run:
... x = f(x)
JAX must currently always have two copies of `x` in device memory since there
is no reliable way in Python to determine whether there will be future uses of
`x`. This causes two classes of problem:
1. Users at the limit of available device are constrained by the additional
copy of their parameters and other state while they typically only require
one copy. This typically frees 100M+ of device memory and is a critical
optimization for larger models to match state of the art performance in
other frameworks.
2. This constant alloc/free of the input/output buffers can cause memory
fragmentation on some platforms (although having a reusing allocator and
limiting run-ahead may be a better solution for this problem).
We propose fixing this by using input/output aliasing as supported by XLA. We
will support this in JAX by allowing certain arguments of jit/pmap decorated
functions to be donated and reused as outputs:
>>> f = lambda x: x ** 2
>>> f = jit(f, donate_argnums=0)
>>> while run:
... x = f(x)
JAX will determine that the donated input `x` can alias with the output of the
function and it will instruct XLA it _must_ write the result to this buffer.
If a user tries to reuse a buffer after it has been donated they get an error
that the buffer is invalid:
>>> y = f(x)
>>> jax.device_get(x)
...
RuntimeError: Invalid argument: CopyToHostAsync() called on invalid buffer.
The semantics of `donate_argnums` follows that of `static_argnums`, namely that
it identifies positional arguments to the computation that are to be donated
to the computation and used as part of the output.
One feature that is also enabled by this is invalidating buffers that should
only be used once, for example PRNGKeys:
>>> @partial(jit, donate_argnums=0)
... def move(x):
... # Do something complex enough for JAX to just optimize it away.
... return tree_map(lambda x: x + x - x, x)
>>> def safe_eager_uniform(key, *a, **k):
... assert hasattr(key, 'device_buffer'), "random must run eagerly"
... key = move(key)
... return jax.random.uniform(key, *a, **k)
This is not a complete answer to random safety since it is still possible to
reuse a key as part of a traced computation, however it can be used to support
this feature (somewhat inefficiently) in eager mode.
2020-05-31 23:00:16 +01:00
|
|
|
|
2020-07-20 14:59:13 +02:00
|
|
|
@jtu.skip_on_devices("cpu") # In/out aliasing not supported on CPU.
|
Add support for buffer donation in `jit` and `pmap`. (#2936)
For a computation of the form:
>>> f = lambda x: x ** 2
>>> f = jax.jit(f)
>>> while run:
... x = f(x)
JAX must currently always have two copies of `x` in device memory since there
is no reliable way in Python to determine whether there will be future uses of
`x`. This causes two classes of problem:
1. Users at the limit of available device are constrained by the additional
copy of their parameters and other state while they typically only require
one copy. This typically frees 100M+ of device memory and is a critical
optimization for larger models to match state of the art performance in
other frameworks.
2. This constant alloc/free of the input/output buffers can cause memory
fragmentation on some platforms (although having a reusing allocator and
limiting run-ahead may be a better solution for this problem).
We propose fixing this by using input/output aliasing as supported by XLA. We
will support this in JAX by allowing certain arguments of jit/pmap decorated
functions to be donated and reused as outputs:
>>> f = lambda x: x ** 2
>>> f = jit(f, donate_argnums=0)
>>> while run:
... x = f(x)
JAX will determine that the donated input `x` can alias with the output of the
function and it will instruct XLA it _must_ write the result to this buffer.
If a user tries to reuse a buffer after it has been donated they get an error
that the buffer is invalid:
>>> y = f(x)
>>> jax.device_get(x)
...
RuntimeError: Invalid argument: CopyToHostAsync() called on invalid buffer.
The semantics of `donate_argnums` follows that of `static_argnums`, namely that
it identifies positional arguments to the computation that are to be donated
to the computation and used as part of the output.
One feature that is also enabled by this is invalidating buffers that should
only be used once, for example PRNGKeys:
>>> @partial(jit, donate_argnums=0)
... def move(x):
... # Do something complex enough for JAX to just optimize it away.
... return tree_map(lambda x: x + x - x, x)
>>> def safe_eager_uniform(key, *a, **k):
... assert hasattr(key, 'device_buffer'), "random must run eagerly"
... key = move(key)
... return jax.random.uniform(key, *a, **k)
This is not a complete answer to random safety since it is still possible to
reuse a key as part of a traced computation, however it can be used to support
this feature (somewhat inefficiently) in eager mode.
2020-05-31 23:00:16 +01:00
|
|
|
def test_pmap_donate_argnums_invalidates_input(self):
|
|
|
|
move = api.pmap(lambda x: x + x - x, donate_argnums=0)
|
|
|
|
n = jax.local_device_count()
|
|
|
|
x = api.pmap(lambda x: x)(jnp.ones([n]))
|
|
|
|
y = move(x)
|
|
|
|
self.assertDeleted(x)
|
|
|
|
np.testing.assert_allclose(y, [1.] * n)
|
|
|
|
|
2020-07-30 12:59:36 -07:00
|
|
|
def test_pmap_nested_donate_ignored(self):
|
Add support for buffer donation in `jit` and `pmap`. (#2936)
For a computation of the form:
>>> f = lambda x: x ** 2
>>> f = jax.jit(f)
>>> while run:
... x = f(x)
JAX must currently always have two copies of `x` in device memory since there
is no reliable way in Python to determine whether there will be future uses of
`x`. This causes two classes of problem:
1. Users at the limit of available device are constrained by the additional
copy of their parameters and other state while they typically only require
one copy. This typically frees 100M+ of device memory and is a critical
optimization for larger models to match state of the art performance in
other frameworks.
2. This constant alloc/free of the input/output buffers can cause memory
fragmentation on some platforms (although having a reusing allocator and
limiting run-ahead may be a better solution for this problem).
We propose fixing this by using input/output aliasing as supported by XLA. We
will support this in JAX by allowing certain arguments of jit/pmap decorated
functions to be donated and reused as outputs:
>>> f = lambda x: x ** 2
>>> f = jit(f, donate_argnums=0)
>>> while run:
... x = f(x)
JAX will determine that the donated input `x` can alias with the output of the
function and it will instruct XLA it _must_ write the result to this buffer.
If a user tries to reuse a buffer after it has been donated they get an error
that the buffer is invalid:
>>> y = f(x)
>>> jax.device_get(x)
...
RuntimeError: Invalid argument: CopyToHostAsync() called on invalid buffer.
The semantics of `donate_argnums` follows that of `static_argnums`, namely that
it identifies positional arguments to the computation that are to be donated
to the computation and used as part of the output.
One feature that is also enabled by this is invalidating buffers that should
only be used once, for example PRNGKeys:
>>> @partial(jit, donate_argnums=0)
... def move(x):
... # Do something complex enough for JAX to just optimize it away.
... return tree_map(lambda x: x + x - x, x)
>>> def safe_eager_uniform(key, *a, **k):
... assert hasattr(key, 'device_buffer'), "random must run eagerly"
... key = move(key)
... return jax.random.uniform(key, *a, **k)
This is not a complete answer to random safety since it is still possible to
reuse a key as part of a traced computation, however it can be used to support
this feature (somewhat inefficiently) in eager mode.
2020-05-31 23:00:16 +01:00
|
|
|
pmap_fun = jit(lambda x: api.pmap(lambda y: y ** 2, donate_argnums=0)(x))
|
|
|
|
a = api.pmap(lambda x: x)(jnp.array([1]))
|
2020-06-23 09:39:45 -07:00
|
|
|
|
|
|
|
# NOTE(mattjj): stopped raising error here and instead just ignored
|
|
|
|
# with self.assertRaisesRegex(ValueError, "nested.*not supported"):
|
|
|
|
# pmap_fun(a)
|
|
|
|
|
|
|
|
pmap_fun(a) # doesn't crash
|
Add support for buffer donation in `jit` and `pmap`. (#2936)
For a computation of the form:
>>> f = lambda x: x ** 2
>>> f = jax.jit(f)
>>> while run:
... x = f(x)
JAX must currently always have two copies of `x` in device memory since there
is no reliable way in Python to determine whether there will be future uses of
`x`. This causes two classes of problem:
1. Users at the limit of available device are constrained by the additional
copy of their parameters and other state while they typically only require
one copy. This typically frees 100M+ of device memory and is a critical
optimization for larger models to match state of the art performance in
other frameworks.
2. This constant alloc/free of the input/output buffers can cause memory
fragmentation on some platforms (although having a reusing allocator and
limiting run-ahead may be a better solution for this problem).
We propose fixing this by using input/output aliasing as supported by XLA. We
will support this in JAX by allowing certain arguments of jit/pmap decorated
functions to be donated and reused as outputs:
>>> f = lambda x: x ** 2
>>> f = jit(f, donate_argnums=0)
>>> while run:
... x = f(x)
JAX will determine that the donated input `x` can alias with the output of the
function and it will instruct XLA it _must_ write the result to this buffer.
If a user tries to reuse a buffer after it has been donated they get an error
that the buffer is invalid:
>>> y = f(x)
>>> jax.device_get(x)
...
RuntimeError: Invalid argument: CopyToHostAsync() called on invalid buffer.
The semantics of `donate_argnums` follows that of `static_argnums`, namely that
it identifies positional arguments to the computation that are to be donated
to the computation and used as part of the output.
One feature that is also enabled by this is invalidating buffers that should
only be used once, for example PRNGKeys:
>>> @partial(jit, donate_argnums=0)
... def move(x):
... # Do something complex enough for JAX to just optimize it away.
... return tree_map(lambda x: x + x - x, x)
>>> def safe_eager_uniform(key, *a, **k):
... assert hasattr(key, 'device_buffer'), "random must run eagerly"
... key = move(key)
... return jax.random.uniform(key, *a, **k)
This is not a complete answer to random safety since it is still possible to
reuse a key as part of a traced computation, however it can be used to support
this feature (somewhat inefficiently) in eager mode.
2020-05-31 23:00:16 +01:00
|
|
|
|
2020-08-19 18:39:25 +02:00
|
|
|
|
2020-11-04 21:01:42 -08:00
|
|
|
class NamedCallTest(jtu.JaxTestCase):
|
|
|
|
|
|
|
|
def test_default_name(self):
|
|
|
|
|
|
|
|
@api.named_call
|
|
|
|
def my_test_function(x):
|
|
|
|
return x**2
|
|
|
|
|
|
|
|
@jax.jit
|
|
|
|
def f(x):
|
|
|
|
return my_test_function(x)
|
|
|
|
|
|
|
|
c = jax.xla_computation(f)(2)
|
|
|
|
self.assertIn("my_test_function", c.as_hlo_text())
|
|
|
|
|
|
|
|
def test_non_jaxtype_arg(self):
|
|
|
|
# For the test to fail without the invalid JaxType filter we need to pass
|
|
|
|
# in a valid JaxType that forces the invalid Jaxtype to be raised to an
|
|
|
|
# abstract value.
|
|
|
|
def f(not_a_jaxtype, a_jaxtype):
|
|
|
|
# then Jax needs to try and evaluate the abstractified non-JaxType
|
|
|
|
if not_a_jaxtype:
|
|
|
|
return a_jaxtype
|
|
|
|
return 0
|
|
|
|
|
|
|
|
f = api.named_call(f, name="test")
|
|
|
|
out = jax.jit(f, static_argnums=(0,))("not a Jaxtype", 1)
|
|
|
|
self.assertEqual(out, 1)
|
|
|
|
|
|
|
|
@parameterized.parameters(jax.jit, jax.grad, jax.vmap, jax.remat)
|
|
|
|
def test_jax_transforms(self, transform):
|
|
|
|
f = jnp.sum
|
|
|
|
x = jnp.array([1.])
|
|
|
|
|
|
|
|
unnamed_out = transform(f)(x)
|
|
|
|
named_out = transform(api.named_call(f, name="test"))(x)
|
|
|
|
|
|
|
|
self.assertEqual(unnamed_out, named_out)
|
|
|
|
|
|
|
|
def test_static_argnums(self):
|
|
|
|
f = api.named_call(lambda x, y: y if x else None, name="test")
|
|
|
|
f = jax.jit(f, static_argnums=(0,))
|
|
|
|
out = f(True, 5)
|
|
|
|
self.assertEqual(out, 5)
|
|
|
|
|
|
|
|
def test_partial_eval(self):
|
|
|
|
f = api.named_call(lambda x, y: y if x else None, name="test")
|
|
|
|
f = jax.jit(functools.partial(f, True))
|
|
|
|
out = f(5)
|
|
|
|
self.assertEqual(out, 5)
|
|
|
|
|
2021-03-29 09:26:19 -07:00
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
|
|
{"testcase_name": "_jit_type={}_func={}".format(jit_type, func),
|
|
|
|
"jit_type": jit_type, "func": func}
|
|
|
|
for func in ['identity', 'asarray', 'device_put']
|
|
|
|
for jit_type in [None, "python", "cpp"]
|
|
|
|
if not (jit_type is None and func == 'identity')))
|
|
|
|
def test_integer_overflow(self, jit_type, func):
|
2021-03-30 10:05:03 -07:00
|
|
|
funcdict = {
|
2021-03-29 09:26:19 -07:00
|
|
|
'identity': lambda x: x,
|
|
|
|
'asarray': jnp.asarray,
|
2021-03-30 10:05:03 -07:00
|
|
|
'device_put': api.device_put,
|
|
|
|
}
|
|
|
|
jit = {
|
|
|
|
'python': api._python_jit,
|
|
|
|
'cpp': api._cpp_jit,
|
|
|
|
None: lambda x: x,
|
|
|
|
}
|
|
|
|
f = jit[jit_type](funcdict[func])
|
|
|
|
|
|
|
|
int_dtype = dtypes.canonicalize_dtype(jnp.int_)
|
|
|
|
int_max = np.iinfo(int_dtype).max
|
|
|
|
int_min = np.iinfo(int_dtype).min
|
|
|
|
|
|
|
|
self.assertEqual(f(int_max).dtype, int_dtype)
|
|
|
|
self.assertEqual(f(int_min).dtype, int_dtype)
|
|
|
|
self.assertRaises(OverflowError, f, int_max + 1)
|
|
|
|
self.assertRaises(OverflowError, f, int_min - 1)
|
2021-03-29 09:26:19 -07:00
|
|
|
|
2020-11-04 21:01:42 -08:00
|
|
|
|
2021-06-28 12:54:21 -07:00
|
|
|
class BackendsTest(jtu.JaxTestCase):
|
|
|
|
|
|
|
|
@unittest.skipIf(not sys.executable, "test requires sys.executable")
|
|
|
|
@jtu.skip_on_devices("gpu", "tpu")
|
|
|
|
def test_cpu_warning_suppression(self):
|
|
|
|
warning_expected = (
|
|
|
|
"import jax; "
|
|
|
|
"jax.numpy.arange(10)")
|
|
|
|
warning_not_expected = (
|
|
|
|
"import jax; "
|
|
|
|
"jax.config.update('jax_platform_name', 'cpu'); "
|
|
|
|
"jax.numpy.arange(10)")
|
|
|
|
|
|
|
|
result = subprocess.run([sys.executable, '-c', warning_expected],
|
|
|
|
check=True, capture_output=True)
|
|
|
|
assert "No GPU/TPU found" in result.stderr.decode()
|
|
|
|
|
|
|
|
result = subprocess.run([sys.executable, '-c', warning_not_expected],
|
|
|
|
check=True, capture_output=True)
|
|
|
|
assert "No GPU/TPU found" not in result.stderr.decode()
|
|
|
|
|
|
|
|
|
2022-01-05 15:48:15 -08:00
|
|
|
class CleanupTest(jtu.JaxTestCase):
|
|
|
|
def test_call_wrapped_second_phase_cleanup(self):
|
|
|
|
try:
|
|
|
|
jax.vmap(lambda x: x, out_axes=None)(jnp.arange(3))
|
|
|
|
except:
|
|
|
|
assert core.trace_state_clean() # this is the hard one
|
|
|
|
assert core.trace_state_clean()
|
|
|
|
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
if __name__ == '__main__':
|
2020-06-24 16:24:33 -07:00
|
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|