rocm_jax/jax/_src/earray.py

119 lines
4.2 KiB
Python
Raw Normal View History

# Copyright 2024 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import math
from jax._src import api_util
from jax._src import basearray
from jax._src import core
from jax._src import tree_util
from jax._src import sharding_impls
from jax._src.interpreters import pxla
from jax._src.interpreters import xla
from jax._src.util import safe_zip, safe_map
map, unsafe_map = safe_map, map
zip, unsafe_zip = safe_zip, zip
# EArray is an Array that can contain extended dtypes.
class EArray(basearray.Array):
__slots__ = ['aval', '_data']
__hash__ = None # type: ignore[assignment]
__array_priority__ = 100
def __init__(self, aval, data):
self.aval = aval
self._data = data
def block_until_ready(self):
_ = self._data.block_until_ready()
return self
def copy_to_host_async(self):
self._data.copy_to_host_async()
def copy(self):
return EArray(self.aval, self._data.copy())
def __repr__(self):
return 'E' + repr(self._data)
def __iter__(self):
if self.ndim == 0: raise TypeError('iteration over a 0-d array')
raise NotImplementedError
# forward to aval
shape = property(lambda self: self.aval.shape) # type: ignore[assignment]
dtype = property(lambda self: self.aval.dtype) # type: ignore[assignment]
# computed from shape and dtype
ndim = property(lambda self: len(self.aval.shape)) # type: ignore[assignment]
size = property(lambda self: math.prod(self.aval.shape)) # type: ignore[assignment]
itemsize = property(lambda self: self.aval.dtype.itemsize) # type: ignore[assignment]
def __len__(self):
if self.ndim == 0: raise TypeError('len() of unsized object')
return self.shape[0]
# forward to self._data
devices = property(lambda self: self._data.devices) # type: ignore[assignment]
_committed = property(lambda self: self._data._committed)
is_fully_addressable = property(lambda self: self._data.is_fully_addressable) # type: ignore[assignment]
is_fully_replicated = property(lambda self: self._data.is_fully_replicated) # type: ignore[assignment]
delete = property(lambda self: self._data.delete) # type: ignore[assignment]
is_deleted = property(lambda self: self._data.is_deleted) # type: ignore[assignment]
on_device_size_in_bytes = property(lambda self: self._data.on_device_size_in_bytes) # type: ignore[assignment]
unsafe_buffer_pointer = property(lambda self: self._data.unsafe_buffer_pointer) # type: ignore[assignment]
# defer to extended dtype rules
@property
def sharding(self):
phys_sharding = self._data.sharding
return sharding_impls.logical_sharding(self.aval, phys_sharding)
@property
def device(self):
if isinstance(self._data.sharding, sharding_impls.SingleDeviceSharding):
return self._data.device
return self.sharding
# TODO(mattjj): not implemented below here, need more methods from ArrayImpl
def addressable_data(self, index: int) -> EArray:
raise NotImplementedError
@property
def addressable_shards(self):
raise NotImplementedError
@property
def global_shards(self):
raise NotImplementedError
# TODO(mattjj): _set_array_base_attributes
def _earray_shard_arg_handler(xs, shardings):
arrs = [x._data for x in xs]
phys_shardings = [sharding_impls.physical_sharding(x.aval, sharding)
for x, sharding in zip(xs, shardings)]
return pxla.shard_args(phys_shardings, arrs)
pxla.shard_arg_handlers[EArray] = _earray_shard_arg_handler
api_util._shaped_abstractify_handlers[EArray] = lambda self: self.aval
core.pytype_aval_mappings[EArray] = lambda x: x.aval
xla.canonicalize_dtype_handlers[EArray] = lambda x: x
tree_util.dispatch_registry.register_node(
EArray, lambda x: ((x._data,), x.aval), lambda a, xs: EArray(a, xs[0]))