2018-11-17 18:03:33 -08:00
|
|
|
# Copyright 2018 Google LLC
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
2018-11-21 13:27:26 -08:00
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
import numpy as onp
|
|
|
|
from absl.testing import absltest
|
|
|
|
from absl.testing import parameterized
|
|
|
|
|
|
|
|
import jax.numpy as np
|
|
|
|
from jax import test_util as jtu
|
|
|
|
from jax.abstract_arrays import ShapedArray
|
2018-11-19 07:43:23 -08:00
|
|
|
from jax import lax
|
2019-02-05 08:39:03 -08:00
|
|
|
from jax import lax_linalg
|
2018-12-30 22:26:22 -08:00
|
|
|
from jax import random
|
2018-12-21 08:11:36 -08:00
|
|
|
from jax.api import jit, grad, jvp, vjp, trace_to_jaxpr, jacfwd, jacrev, hessian
|
2018-11-17 18:03:33 -08:00
|
|
|
from jax.api import vmap
|
|
|
|
from jax.core import unit
|
|
|
|
from jax.interpreters import partial_eval as pe
|
2018-12-09 07:27:03 -08:00
|
|
|
from jax.util import partial, curry
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2018-12-12 09:00:39 -08:00
|
|
|
from jax.config import config
|
|
|
|
config.parse_flags_with_absl()
|
|
|
|
|
2019-01-10 15:35:15 -08:00
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
class BatchingTest(jtu.JaxTestCase):
|
|
|
|
|
2019-02-10 18:36:21 -08:00
|
|
|
def testConstantFunction(self):
|
|
|
|
ans = vmap(lambda x: 3)(onp.ones(4))
|
|
|
|
expected = 3 * onp.ones(4)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def testNestedBatchingMatMat(self):
|
|
|
|
matvec = vmap(np.vdot, in_axes=(0, None))
|
|
|
|
matmat = vmap(matvec, in_axes=(None, 1), out_axes=1)
|
|
|
|
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
A = R(4, 3)
|
|
|
|
B = R(3, 2)
|
|
|
|
|
|
|
|
ans = matmat(A, B)
|
|
|
|
expected = onp.dot(A, B)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
# this is a crude check that we only call a single dot
|
|
|
|
def pv_like(x):
|
|
|
|
aval = ShapedArray(onp.shape(x), onp.result_type(x))
|
|
|
|
return pe.PartialVal((aval, unit))
|
|
|
|
|
|
|
|
def make_jaxpr(fun, example_args):
|
|
|
|
jaxpr, _, _, _ = trace_to_jaxpr(fun, map(pv_like, example_args))
|
|
|
|
return jaxpr
|
|
|
|
|
|
|
|
jaxpr = make_jaxpr(matmat, (A, B))
|
|
|
|
self.assertEqual(len(jaxpr.eqns), 1)
|
|
|
|
|
|
|
|
def testPerExampleGradients(self):
|
|
|
|
def predict(params, inputs):
|
|
|
|
for W, b in params:
|
|
|
|
outputs = np.dot(W, inputs) + b
|
|
|
|
inputs = np.tanh(outputs)
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def loss(params, data):
|
|
|
|
inputs, targets = data
|
|
|
|
predictions = predict(params, inputs)
|
|
|
|
return np.sum((predictions - targets)**2)
|
|
|
|
|
|
|
|
batch_size = 5
|
|
|
|
layer_sizes = [3, 2, 4]
|
|
|
|
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
params = [(R(m, n), R(m))
|
|
|
|
for m, n in zip(layer_sizes[1:], layer_sizes[:-1])]
|
|
|
|
|
|
|
|
input_vec = R(3)
|
|
|
|
target_vec = R(4)
|
|
|
|
datum = (input_vec, target_vec)
|
|
|
|
|
|
|
|
input_batch = R(5, 3)
|
|
|
|
target_batch = R(5, 4)
|
|
|
|
batch = (input_batch, target_batch)
|
|
|
|
|
|
|
|
ans = vmap(partial(grad(loss), params))(batch)
|
|
|
|
|
|
|
|
for ans_pair, param_pair in zip(ans, params):
|
|
|
|
dW, db = ans_pair
|
|
|
|
W, b = param_pair
|
|
|
|
|
|
|
|
self.assertEqual(dW.shape, (batch_size,) + W.shape)
|
|
|
|
self.assertEqual(db.shape, (batch_size,) + b.shape)
|
|
|
|
|
|
|
|
def testJacobians(self):
|
|
|
|
def jacbwd(f, x):
|
|
|
|
y, pullback = vjp(f, x)
|
|
|
|
std_basis = onp.eye(onp.size(y)).reshape((-1,) + onp.shape(y))
|
|
|
|
jac_flat, = vmap(pullback, out_axes=onp.ndim(y))(std_basis)
|
|
|
|
return jac_flat.reshape(onp.shape(y) + onp.shape(x))
|
|
|
|
|
|
|
|
def jacfwd(f, x):
|
|
|
|
pushfwd = lambda v: jvp(f, (x,), (v,))
|
|
|
|
std_basis = onp.eye(onp.size(x)).reshape((-1,) + onp.shape(x))
|
|
|
|
y, jac_flat = vmap(pushfwd, out_axes=(None, 0))(std_basis)
|
|
|
|
return jac_flat.reshape(onp.shape(y) + onp.shape(x))
|
|
|
|
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
|
|
|
|
A = R(4, 3)
|
|
|
|
b = R(4)
|
|
|
|
f = lambda x: np.tanh(np.dot(A, x) + b)
|
|
|
|
|
|
|
|
x = R(3)
|
|
|
|
self.assertAllClose(jacfwd(f, x), jacbwd(f, x), check_dtypes=False)
|
|
|
|
|
|
|
|
def testBatchOfCompile(self):
|
|
|
|
side = []
|
|
|
|
|
|
|
|
@jit
|
|
|
|
def f(x):
|
|
|
|
side.append(None)
|
|
|
|
return x + x
|
|
|
|
|
|
|
|
g = jit(vmap(f))
|
|
|
|
self.assertAllClose(g(onp.ones(2)), 2 * onp.ones(2), check_dtypes=False)
|
|
|
|
self.assertEqual(len(side), 1)
|
|
|
|
self.assertAllClose(g(2 * onp.ones(2)), 4 * onp.ones(2),
|
|
|
|
check_dtypes=False)
|
|
|
|
self.assertEqual(len(side), 1)
|
|
|
|
|
|
|
|
def testSliceLax(self):
|
|
|
|
fun = lambda x: lax.slice(x, (2,), (4,))
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
x = R(5, 10)
|
|
|
|
|
|
|
|
ans = vmap(fun)(x)
|
|
|
|
expected_ans = x[:, 2:4]
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
def testSliceNumpy(self):
|
|
|
|
fun = lambda x: x[:, 2]
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
x = R(10, 5, 3, 7)
|
|
|
|
|
|
|
|
ans = vmap(fun)(x)
|
|
|
|
expected_ans = x[:, :, 2]
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
def testRevLax(self):
|
|
|
|
fun = lambda x: lax.rev(x, [0])
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
x = R(2, 3)
|
|
|
|
|
|
|
|
ans = vmap(fun)(x)
|
|
|
|
expected_ans = x[:, ::-1]
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = vmap(fun, (1,), 1)(x)
|
|
|
|
expected_ans = x[::-1, :]
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
def testRevNumpy(self):
|
|
|
|
fun = lambda x: x[:, ::-1]
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
x = R(3, 2, 4)
|
|
|
|
|
|
|
|
ans = vmap(fun)(x)
|
|
|
|
expected_ans = x[:, :, ::-1]
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = vmap(fun, (1,), 1)(x)
|
|
|
|
expected_ans = x[:, :, ::-1]
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
ans = vmap(fun, (2,), 2)(x)
|
|
|
|
expected_ans = x[:, ::-1, :]
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
def testNpMaximum(self):
|
|
|
|
fun = lambda x: np.maximum(x, 0.0)
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
x = R(10, 5, 3, 7)
|
|
|
|
|
|
|
|
ans = vmap(fun)(x)
|
|
|
|
expected_ans = onp.maximum(x, 0.0)
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
def testNpGtrThan(self):
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
x = R(10, 5, 3, 7)
|
|
|
|
|
|
|
|
ans = vmap(lambda x: x > 1.0)(x)
|
|
|
|
expected_ans = x > 1.0
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=True)
|
|
|
|
|
|
|
|
def testNpMaximumPerExampleGrad(self):
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
x = R(10, 5)
|
|
|
|
W = R(5, 5)
|
|
|
|
|
|
|
|
fun = lambda W, x: np.sum(np.maximum(np.dot(x, W), 0.0) ** 2)
|
|
|
|
|
|
|
|
ans = vmap(partial(grad(fun), W))(x)
|
|
|
|
|
|
|
|
W_t = np.transpose(W)
|
|
|
|
for i in range(10):
|
|
|
|
x_ex = x[i:i + 1]
|
|
|
|
|
|
|
|
expected_ans = 2.0 * np.dot(
|
|
|
|
np.maximum(np.dot(W_t, np.transpose(x_ex)), 0.0), x_ex)
|
|
|
|
expected_ans = np.transpose(expected_ans)
|
|
|
|
|
|
|
|
self.assertAllClose(ans[i], expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
def testDotGeneral(self):
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
|
|
|
|
x = R(10, 3, 4, 5)
|
|
|
|
y = R(10, 3, 5, 6)
|
|
|
|
fun = lambda x, y: lax.dot_general(x, y, [((2,), (1,)), ((0,), (0,))])
|
|
|
|
ans = vmap(fun)(x, y)
|
|
|
|
expected = lax.dot_general(x, y, [((3,), (2,)), ((0, 1), (0, 1))])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
x = R(3, 4, 10, 5)
|
|
|
|
y = R(3, 10, 5, 6)
|
|
|
|
fun = lambda x, y: lax.dot_general(x, y, [((2,), (1,)), ((0,), (0,))])
|
|
|
|
ans = vmap(fun, in_axes=(2, 1))(x, y)
|
|
|
|
fun = lambda x, y: lax.dot_general(x, y, [((2,), (1,)), ((0,), (0,))])
|
|
|
|
expected = onp.stack([fun(x[..., i, :], y[:, i, ...]) for i in range(10)])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
x = R(3, 4, 5, 10)
|
|
|
|
y = R(3, 5, 6)
|
|
|
|
fun = lambda x, y: lax.dot_general(x, y, [((2,), (1,)), ((0,), (0,))])
|
|
|
|
ans = vmap(fun, in_axes=(3, None))(x, y)
|
|
|
|
fun = lambda x, y: lax.dot_general(x, y, [((2,), (1,)), ((0,), (0,))])
|
|
|
|
expected = onp.stack([fun(x[..., i], y) for i in range(10)])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
x = R(3, 4, 5)
|
|
|
|
y = R(3, 5, 10, 6)
|
|
|
|
fun = lambda x, y: lax.dot_general(x, y, [((2,), (1,)), ((0,), (0,))])
|
|
|
|
ans = vmap(fun, in_axes=(None, 2))(x, y)
|
|
|
|
fun = lambda x, y: lax.dot_general(x, y, [((2,), (1,)), ((0,), (0,))])
|
|
|
|
expected = onp.stack([fun(x, y[..., i, :]) for i in range(10)])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
def testDot(self):
|
|
|
|
# these tests are based on @shoyer's notebook studying gufuncs
|
|
|
|
|
|
|
|
def vecvec(a, b):
|
|
|
|
dot = np.dot
|
|
|
|
for ndim in range(1, max(a.ndim, b.ndim)):
|
|
|
|
a_ax = 0 if a.ndim > ndim else None
|
|
|
|
b_ax = 0 if b.ndim > ndim else None
|
|
|
|
dot = vmap(dot, in_axes=(a_ax, b_ax))
|
|
|
|
return dot(a, b)
|
|
|
|
|
|
|
|
assert vecvec(np.zeros((3,)), np.zeros((3,))).shape == ()
|
|
|
|
assert vecvec(np.zeros((2, 3)), np.zeros((3,))).shape == (2,)
|
|
|
|
# TODO(mattjj): this fails due to an xla error in dot_general
|
|
|
|
# assert vecvec(np.zeros((4, 2, 3)), np.zeros((3,))).shape == (4, 2)
|
|
|
|
|
|
|
|
def testPad(self):
|
|
|
|
R = onp.random.RandomState(0).randn
|
|
|
|
|
|
|
|
fun = lambda x: lax.pad(x, onp.float32(0), [(1, 2, 1)])
|
|
|
|
x = R(5, 10).astype(onp.float32)
|
|
|
|
ans = vmap(fun)(x)
|
|
|
|
expected_ans = np.stack(list(map(fun, x)))
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
|
|
|
|
fun = lambda x: lax.pad(x, onp.float32(0), [(1, 2, 1), (0, 1, 0)])
|
|
|
|
x = R(5, 10, 3).astype(onp.float32)
|
|
|
|
ans = vmap(fun)(x)
|
|
|
|
expected_ans = np.stack(list(map(fun, x)))
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
def testConcatenate(self):
|
|
|
|
R = lambda *shape: onp.random.RandomState(0).randn(*shape).astype(onp.float32)
|
|
|
|
|
|
|
|
fun = lambda *args: lax.concatenate(args, dimension=0)
|
|
|
|
x, y, z = R(10, 2, 3), R(1, 10, 3), R(4, 3)
|
|
|
|
ans = vmap(fun, in_axes=(0, 1, None))(x, y, z)
|
|
|
|
expected_ans = onp.concatenate([x, onp.swapaxes(y, 0, 1),
|
|
|
|
onp.broadcast_to(z, (10, 4, 3))], 1)
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
fun = lambda *args: lax.concatenate(args, dimension=1)
|
|
|
|
x, y, z = R(10, 2, 1), R(2, 3), R(2, 4, 10)
|
|
|
|
ans = vmap(fun, in_axes=(0, None, 2))(x, y, z)
|
|
|
|
expected_ans = onp.concatenate([x, onp.broadcast_to(y, (10, 2, 3)),
|
|
|
|
onp.moveaxis(z, 2, 0)], 2)
|
|
|
|
self.assertAllClose(ans, expected_ans, check_dtypes=False)
|
|
|
|
|
|
|
|
def testJacobianIssue54(self):
|
|
|
|
# test modeling the code in https://github.com/google/jax/issues/54
|
|
|
|
|
|
|
|
def func(xs):
|
|
|
|
return np.array([x for x in xs])
|
|
|
|
|
|
|
|
xs = np.ones((5, 1))
|
|
|
|
jacrev(func)(xs) # don't crash
|
|
|
|
jacfwd(func)(xs) # don't crash
|
|
|
|
|
|
|
|
def testAny(self):
|
|
|
|
# test modeling the code in https://github.com/google/jax/issues/108
|
|
|
|
|
|
|
|
ans = vmap(np.any)(np.array([[True, False], [False, False]]))
|
|
|
|
expected = np.array([True, False])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
@jtu.skip_on_devices("tpu")
|
|
|
|
def testHessian(self):
|
|
|
|
# test based on code from sindhwani@google
|
|
|
|
def fun(x, t):
|
|
|
|
return np.sum(np.power(np.maximum(x, 0.0), 2)) + t
|
|
|
|
|
|
|
|
x = onp.array([-1., -0.5, 0., 0.5, 1.0])
|
|
|
|
|
|
|
|
ans = hessian(lambda x: fun(x, 0.0))(x)
|
|
|
|
expected = onp.array([[0., 0., 0., 0., 0.],
|
|
|
|
[0., 0., 0., 0., 0.],
|
|
|
|
[0., 0.,0.5, 0., 0.],
|
|
|
|
[0., 0., 0., 2., 0.],
|
|
|
|
[0., 0., 0., 0., 2.]])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def testDynamicSlice(self):
|
|
|
|
# test dynamic_slice via numpy indexing syntax
|
|
|
|
x = onp.arange(30).reshape((10, 3))
|
|
|
|
|
|
|
|
ans = vmap(lambda x, i: x[i], in_axes=(0, None))(x, 1)
|
|
|
|
expected = x[:, 1]
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
|
|
|
|
idx = onp.array([0, 1, 2, 1, 0] * 2)
|
|
|
|
ans = vmap(lambda x, i: x[i], in_axes=(0, 0))(x, idx)
|
|
|
|
expected = x[onp.arange(10), idx]
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
x = onp.arange(3)
|
|
|
|
idx = onp.array([0, 1, 2, 1, 0] * 2)
|
|
|
|
ans = vmap(lambda x, i: x[i], in_axes=(None, 0))(x, idx)
|
|
|
|
expected = x[idx]
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
def testRandom(self):
|
|
|
|
seeds = vmap(random.PRNGKey)(onp.arange(10))
|
|
|
|
ans = vmap(partial(random.normal, shape=(3, 2)))(seeds)
|
|
|
|
expected = onp.stack([random.normal(random.PRNGKey(seed), (3, 2))
|
|
|
|
for seed in onp.arange(10)])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
assert len(onp.unique(ans)) == 10 * 3 * 2
|
|
|
|
|
|
|
|
def testSortKeyVal(self):
|
|
|
|
k = onp.arange(12)[::-1].reshape(3, 4)
|
|
|
|
v = onp.random.RandomState(0).permutation(12).reshape(3, 4)
|
|
|
|
|
|
|
|
sk, sv = vmap(partial(lax.sort_key_val, dimension=0), (0, 0))(k, v)
|
|
|
|
self.assertAllClose(sk, k[:, ::-1], check_dtypes=True)
|
|
|
|
self.assertAllClose(sv, v[:, ::-1], check_dtypes=True)
|
|
|
|
|
|
|
|
sk, sv = vmap(partial(lax.sort_key_val, dimension=0), (1, 1), 1)(k, v)
|
|
|
|
self.assertAllClose(sk, k[::-1, :], check_dtypes=True)
|
|
|
|
self.assertAllClose(sv, v[::-1, :], check_dtypes=True)
|
|
|
|
|
|
|
|
sk, sv = vmap(partial(lax.sort_key_val, dimension=0), (0, 1))(k, v.T)
|
|
|
|
self.assertAllClose(sk, k[:, ::-1], check_dtypes=True)
|
|
|
|
self.assertAllClose(sv, v[:, ::-1], check_dtypes=True)
|
|
|
|
|
|
|
|
sk, sv = vmap(partial(lax.sort_key_val, dimension=0), (1, 0))(k.T, v)
|
|
|
|
self.assertAllClose(sk, k[:, ::-1], check_dtypes=True)
|
|
|
|
self.assertAllClose(sv, v[:, ::-1], check_dtypes=True)
|
|
|
|
|
|
|
|
sk, sv = vmap(partial(lax.sort_key_val, dimension=0), (None, 0))(k[0], v)
|
|
|
|
self.assertAllClose(sk, onp.broadcast_to(k[0, ::-1], (3, 4)),
|
|
|
|
check_dtypes=True)
|
|
|
|
self.assertAllClose(sv, v[:, ::-1], check_dtypes=True)
|
|
|
|
|
|
|
|
sk, sv = vmap(partial(lax.sort_key_val, dimension=0), (1, None))(k.T, v[0])
|
|
|
|
self.assertAllClose(sk, k[:, ::-1], check_dtypes=True)
|
|
|
|
self.assertAllClose(sv, onp.broadcast_to(v[0, ::-1], (3, 4)),
|
|
|
|
check_dtypes=True)
|
|
|
|
|
|
|
|
def testConvGeneralDilated(self):
|
|
|
|
W = np.array(onp.random.randn(3, 3, 1, 5), dtype=onp.float32)
|
|
|
|
X = np.array(onp.random.randn(10, 5, 5, 1), dtype=onp.float32)
|
|
|
|
|
|
|
|
def f(params, x):
|
|
|
|
one = (1, 1)
|
|
|
|
dimension_numbers = ('NHWC', 'HWIO', 'NHWC')
|
|
|
|
y = lax.conv_general_dilated(
|
|
|
|
x, params, one, 'SAME', one, one, dimension_numbers)
|
|
|
|
return y
|
|
|
|
grad_loss = grad(lambda params, x: np.mean(f(params, x) ** 2))
|
|
|
|
|
|
|
|
# Test forward prop.
|
|
|
|
per_example = vmap(partial(f, W))(np.reshape(X, (10, 1, 5, 5, 1)))
|
|
|
|
per_example = np.reshape(per_example, (10, 5, 5, 5))
|
|
|
|
per_example_direct = f(W, X)
|
|
|
|
self.assertAllClose(per_example, per_example_direct, check_dtypes=True)
|
|
|
|
|
|
|
|
# Test gradients.
|
|
|
|
per_example = vmap(partial(grad_loss, W))(np.reshape(X, (10, 1, 5, 5, 1)))
|
|
|
|
per_example_direct = []
|
|
|
|
for i in range(10):
|
|
|
|
g = grad_loss(W, np.reshape(X[i], (1, 5, 5, 1)))
|
|
|
|
per_example_direct += [
|
|
|
|
np.reshape(g, (1,) + g.shape)]
|
|
|
|
per_example_direct = np.concatenate(per_example_direct, axis=0)
|
|
|
|
self.assertAllClose(per_example, per_example_direct, check_dtypes=True)
|
|
|
|
|
|
|
|
def testMaxPool(self):
|
|
|
|
W = np.array(onp.random.randn(3, 3, 1, 5), dtype=onp.float32)
|
|
|
|
X = np.array(onp.random.randn(10, 5, 5, 1), dtype=onp.float32)
|
|
|
|
|
|
|
|
def f(params, x):
|
|
|
|
one = (1, 1)
|
|
|
|
dimension_numbers = ('NHWC', 'HWIO', 'NHWC')
|
|
|
|
y = lax.conv_general_dilated(
|
|
|
|
x, params, one, 'SAME', one, one, dimension_numbers)
|
|
|
|
y = lax.reduce_window(
|
|
|
|
y, -np.inf, lax.max, (1, 2, 2, 1), (1, 1, 1, 1), 'SAME')
|
|
|
|
return y
|
|
|
|
grad_loss = grad(lambda params, x: np.mean(f(params, x) ** 2))
|
|
|
|
|
|
|
|
# Test forward prop.
|
|
|
|
per_example = vmap(partial(f, W))(np.reshape(X, (10, 1, 5, 5, 1)))
|
|
|
|
per_example = np.reshape(per_example, (10, 5, 5, 5))
|
|
|
|
per_example_direct = f(W, X)
|
|
|
|
self.assertAllClose(per_example, per_example_direct, check_dtypes=True)
|
|
|
|
|
|
|
|
# Test gradients.
|
|
|
|
per_example = vmap(partial(grad_loss, W))(np.reshape(X, (10, 1, 5, 5, 1)))
|
|
|
|
per_example_direct = []
|
|
|
|
for i in range(10):
|
|
|
|
g = grad_loss(W, np.reshape(X[i], (1, 5, 5, 1)))
|
|
|
|
per_example_direct += [
|
|
|
|
np.reshape(g, (1,) + g.shape)]
|
|
|
|
per_example_direct = np.concatenate(per_example_direct, axis=0)
|
|
|
|
self.assertAllClose(per_example, per_example_direct, check_dtypes=True)
|
|
|
|
|
|
|
|
def testSumPool(self):
|
|
|
|
W = np.array(onp.random.randn(3, 3, 1, 5), dtype=onp.float32)
|
|
|
|
X = np.array(onp.random.randn(10, 5, 5, 1), dtype=onp.float32)
|
|
|
|
|
|
|
|
def f(params, x):
|
|
|
|
one = (1, 1)
|
|
|
|
dimension_numbers = ('NHWC', 'HWIO', 'NHWC')
|
|
|
|
y = lax.conv_general_dilated(
|
|
|
|
x, params, one, 'SAME', one, one, dimension_numbers)
|
|
|
|
y = lax.reduce_window(
|
|
|
|
y, 0.0, lax.add, (1, 2, 2, 1), (1, 1, 1, 1), 'SAME')
|
|
|
|
return y
|
|
|
|
grad_loss = grad(lambda params, x: np.mean(f(params, x) ** 2))
|
|
|
|
|
|
|
|
# Test forward prop.
|
|
|
|
per_example = vmap(partial(f, W))(np.reshape(X, (10, 1, 5, 5, 1)))
|
|
|
|
per_example = np.reshape(per_example, (10, 5, 5, 5))
|
|
|
|
per_example_direct = f(W, X)
|
|
|
|
self.assertAllClose(per_example, per_example_direct, check_dtypes=True)
|
|
|
|
|
|
|
|
# Test gradients.
|
|
|
|
per_example = vmap(partial(grad_loss, W))(np.reshape(X, (10, 1, 5, 5, 1)))
|
|
|
|
per_example_direct = []
|
|
|
|
for i in range(10):
|
|
|
|
g = grad_loss(W, np.reshape(X[i], (1, 5, 5, 1)))
|
|
|
|
per_example_direct += [
|
|
|
|
np.reshape(g, (1,) + g.shape)]
|
|
|
|
per_example_direct = np.concatenate(per_example_direct, axis=0)
|
|
|
|
self.assertAllClose(per_example, per_example_direct, check_dtypes=True)
|
|
|
|
|
|
|
|
def testSelect(self):
|
|
|
|
pred = onp.array([True, False])
|
|
|
|
on_true = onp.array([0, 1])
|
|
|
|
on_false = onp.array([2, 3])
|
|
|
|
ans = vmap(lax.select)(pred, on_true, on_false)
|
|
|
|
expected = onp.array([0, 3])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
pred = onp.array([False, True])
|
|
|
|
on_true = onp.array([0, 1])
|
|
|
|
on_false = onp.array([2, 3])
|
|
|
|
ans = vmap(lax.select, (0, None, None))(pred, on_true, on_false)
|
|
|
|
expected = onp.array([[2, 3],
|
|
|
|
[0, 1]])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
pred = True
|
|
|
|
on_true = onp.array([0, 1], onp.float32)
|
|
|
|
on_false = onp.array(3, onp.float32)
|
|
|
|
ans = vmap(lax.select, (None, 0, None))(pred, on_true, on_false)
|
|
|
|
expected = onp.array([0, 1], onp.float32)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
pred = onp.array([False, True])
|
|
|
|
on_true = onp.array([0, 1], onp.float32)
|
|
|
|
on_false = onp.array(3, onp.float32)
|
|
|
|
ans = vmap(lax.select, (0, 0, None))(pred, on_true, on_false)
|
|
|
|
expected = onp.array([3, 1], onp.float32)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
pred = onp.array([False, True])
|
|
|
|
on_true = onp.array([2], onp.float32)
|
|
|
|
on_false = onp.array([[3, 4]], onp.float32)
|
|
|
|
ans = vmap(lax.select, (0, None, 1), 1)(pred, on_true, on_false)
|
|
|
|
expected = onp.array([[3, 2]], onp.float32)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=True)
|
|
|
|
|
|
|
|
def testLaxLinalgCholesky(self):
|
|
|
|
a = onp.random.RandomState(0).randn(10, 5, 5).astype(onp.float32)
|
|
|
|
a = onp.matmul(a, onp.conj(onp.swapaxes(a, -1, -2)))
|
|
|
|
|
|
|
|
ans = vmap(lax_linalg.cholesky)(a)
|
|
|
|
expected = onp.linalg.cholesky(a)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
|
|
|
b = onp.random.RandomState(0).randn(10, 5, 5).astype(onp.float32)
|
|
|
|
b = onp.matmul(b, onp.conj(onp.swapaxes(b, -1, -2)))
|
|
|
|
b_trans = onp.swapaxes(b, 0, 1) # shape is (5, 10, 5)
|
|
|
|
|
|
|
|
ans = vmap(lax_linalg.cholesky, in_axes=1, out_axes=0)(b_trans)
|
|
|
|
expected = onp.linalg.cholesky(b)
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
2019-02-06 10:58:41 -08:00
|
|
|
|
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": "_shape={}_axis={}_idxs={}_dnums={}_slice_sizes={}".format(
|
|
|
|
jtu.format_shape_dtype_string(shape, dtype), axis, idxs, dnums,
|
|
|
|
slice_sizes),
|
|
|
|
"axis": axis, "shape": shape, "dtype": dtype, "idxs": idxs, "dnums": dnums,
|
|
|
|
"slice_sizes": slice_sizes, "rng": rng, "rng_idx": rng_idx}
|
|
|
|
for dtype in [onp.float32, onp.int32]
|
|
|
|
for axis, shape, idxs, dnums, slice_sizes in [
|
|
|
|
(0, (3, 5), onp.array([0, 2]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1,)),
|
|
|
|
(1, (10, 3), onp.array([0, 0, 0]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (2,)),
|
2019-02-11 11:21:29 -08:00
|
|
|
(1, (10, 3, 5), onp.array([0, 2, 1]), lax.GatherDimensionNumbers(
|
2019-02-06 10:58:41 -08:00
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
|
|
|
]
|
|
|
|
for rng_idx in [jtu.rand_int(max(shape))]
|
|
|
|
for rng in [jtu.rand_default()])
|
|
|
|
def testGatherBatchedOperand(self, axis, shape, dtype, idxs, dnums,
|
|
|
|
slice_sizes, rng, rng_idx):
|
|
|
|
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
|
|
|
|
operand = rng(shape, dtype)
|
|
|
|
ans = vmap(fun, (axis, None))(operand, idxs)
|
|
|
|
expected = onp.stack([fun(operand[(slice(None),) * axis + (i,)], idxs)
|
|
|
|
for i in range(operand.shape[axis])])
|
2019-02-05 08:39:03 -08:00
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2019-02-11 10:24:21 -08:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": "_shape={}_axis={}_idxs={}_dnums={}_slice_sizes={}".format(
|
|
|
|
jtu.format_shape_dtype_string(shape, dtype), axis, idxs, dnums,
|
|
|
|
slice_sizes),
|
|
|
|
"axis": axis, "shape": shape, "dtype": dtype, "idxs": idxs, "dnums": dnums,
|
|
|
|
"slice_sizes": slice_sizes, "rng": rng, "rng_idx": rng_idx}
|
|
|
|
for dtype in [onp.float32, onp.float64]
|
|
|
|
for axis, shape, idxs, dnums, slice_sizes in [
|
|
|
|
(0, (3, 5), onp.array([0, 2]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1,)),
|
|
|
|
(1, (10, 3), onp.array([0, 0, 0]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (2,)),
|
|
|
|
(1, (10, 3, 5), onp.array([0, 2, 1]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
|
|
|
(2, (10, 5, 3), onp.array([[0, 2], [1, 0]]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0, 1),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
|
|
|
]
|
|
|
|
for rng_idx in [jtu.rand_int(max(shape))]
|
|
|
|
for rng in [jtu.rand_default()])
|
|
|
|
def testGatherGradBatchedOperand(self, axis, shape, dtype, idxs, dnums,
|
|
|
|
slice_sizes, rng, rng_idx):
|
|
|
|
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
|
|
|
|
gfun = grad(lambda x, idx: np.sum(np.sin(fun(x, idx))))
|
|
|
|
operand = rng(shape, dtype)
|
|
|
|
ans = vmap(gfun, (axis, None))(operand, idxs)
|
|
|
|
expected = onp.stack([gfun(operand[(slice(None),) * axis + (i,)], idxs)
|
|
|
|
for i in range(operand.shape[axis])])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2019-02-10 18:36:21 -08:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": "_shape={}_axis={}_idxs={}_dnums={}_slice_sizes={}".format(
|
|
|
|
jtu.format_shape_dtype_string(shape, dtype), axis, idxs, dnums,
|
|
|
|
slice_sizes),
|
|
|
|
"axis": axis, "shape": shape, "dtype": dtype, "idxs": idxs, "dnums": dnums,
|
|
|
|
"slice_sizes": slice_sizes, "rng": rng, "rng_idx": rng_idx}
|
|
|
|
for dtype in [onp.float32, onp.int32]
|
|
|
|
for axis, shape, idxs, dnums, slice_sizes in [
|
|
|
|
(0, (5,), onp.array([[0, 2], [1, 3]]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1,)),
|
|
|
|
(1, (10,), onp.array([[0, 0, 0], [0, 2, 1]]).T,
|
|
|
|
lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (2,)),
|
2019-02-11 11:21:29 -08:00
|
|
|
(1, (10, 5), onp.array([[0, 2, 1], [0, 3, 3]]).T,
|
2019-02-10 18:36:21 -08:00
|
|
|
lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
2019-02-11 11:21:29 -08:00
|
|
|
(0, (10, 5), onp.array([[[0, 2], [1, 0]],
|
|
|
|
[[1, 2], [0, 3]]]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0, 1),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
2019-02-10 18:36:21 -08:00
|
|
|
]
|
|
|
|
for rng_idx in [jtu.rand_int(max(shape))]
|
|
|
|
for rng in [jtu.rand_default()])
|
|
|
|
def testGatherBatchedIndices(self, axis, shape, dtype, idxs, dnums,
|
|
|
|
slice_sizes, rng, rng_idx):
|
|
|
|
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
|
|
|
|
operand = rng(shape, dtype)
|
|
|
|
ans = vmap(fun, (None, axis))(operand, idxs)
|
|
|
|
expected = onp.stack([fun(operand, idxs[(slice(None),) * axis + (i,)])
|
|
|
|
for i in range(idxs.shape[axis])])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2019-02-11 10:24:21 -08:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": "_shape={}_axis={}_idxs={}_dnums={}_slice_sizes={}".format(
|
|
|
|
jtu.format_shape_dtype_string(shape, dtype), axis, idxs, dnums,
|
|
|
|
slice_sizes),
|
|
|
|
"axis": axis, "shape": shape, "dtype": dtype, "idxs": idxs, "dnums": dnums,
|
|
|
|
"slice_sizes": slice_sizes, "rng": rng, "rng_idx": rng_idx}
|
|
|
|
for dtype in [onp.float32, onp.float64]
|
|
|
|
for axis, shape, idxs, dnums, slice_sizes in [
|
|
|
|
(0, (5,), onp.array([[0, 2], [1, 3]]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1,)),
|
|
|
|
(1, (10,), onp.array([[0, 0, 0], [0, 2, 1]]).T,
|
|
|
|
lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (2,)),
|
|
|
|
(1, (10, 5,), onp.array([[0, 2, 1], [0, 3, 3]]).T,
|
|
|
|
lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
|
|
|
]
|
|
|
|
for rng_idx in [jtu.rand_int(max(shape))]
|
|
|
|
for rng in [jtu.rand_default()])
|
|
|
|
def testGatherGradBatchedIndices(self, axis, shape, dtype, idxs, dnums,
|
|
|
|
slice_sizes, rng, rng_idx):
|
|
|
|
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
|
|
|
|
gfun = grad(lambda x, idx: np.sum(np.sin(fun(x, idx))))
|
|
|
|
operand = rng(shape, dtype)
|
|
|
|
ans = vmap(gfun, (None, axis))(operand, idxs)
|
|
|
|
expected = onp.stack([gfun(operand, idxs[(slice(None),) * axis + (i,)])
|
|
|
|
for i in range(idxs.shape[axis])])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2019-02-11 09:28:21 -08:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": "_shape={}_op_axis={}_idxs_axis={}_idxs={}_dnums={}_slice_sizes={}".format(
|
|
|
|
jtu.format_shape_dtype_string(shape, dtype), op_axis, idxs_axis, idxs,
|
|
|
|
dnums, slice_sizes),
|
|
|
|
"op_axis": op_axis, "idxs_axis": idxs_axis, "shape": shape, "dtype":
|
|
|
|
dtype, "idxs": idxs, "dnums": dnums, "slice_sizes": slice_sizes,
|
|
|
|
"rng": rng, "rng_idx": rng_idx}
|
|
|
|
for dtype in [onp.float32, onp.int32]
|
|
|
|
for op_axis, idxs_axis, shape, idxs, dnums, slice_sizes in [
|
|
|
|
(0, 0, (2, 5), onp.array([[0, 2], [1, 3]]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1,)),
|
|
|
|
(1, 1, (10, 2), onp.array([[0, 0, 0], [0, 2, 1]]).T,
|
|
|
|
lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (2,)),
|
|
|
|
(0, 1, (2, 10, 5,), onp.array([[0, 2, 1], [0, 3, 3]]).T,
|
|
|
|
lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
2019-02-11 11:21:29 -08:00
|
|
|
(2, 0, (10, 5, 2), onp.array([[[0, 2], [1, 0]],
|
|
|
|
[[1, 0], [2, 0]]]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0, 1),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
2019-02-11 09:28:21 -08:00
|
|
|
]
|
|
|
|
for rng_idx in [jtu.rand_int(max(shape))]
|
|
|
|
for rng in [jtu.rand_default()])
|
|
|
|
def testGatherBatchedBoth(self, op_axis, idxs_axis, shape, dtype, idxs, dnums,
|
|
|
|
slice_sizes, rng, rng_idx):
|
|
|
|
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
|
|
|
|
operand = rng(shape, dtype)
|
|
|
|
assert operand.shape[op_axis] == idxs.shape[idxs_axis]
|
|
|
|
ans = vmap(fun, (op_axis, idxs_axis))(operand, idxs)
|
|
|
|
expected = onp.stack([fun(operand[(slice(None),) * op_axis + (i,)],
|
|
|
|
idxs[(slice(None),) * idxs_axis + (i,)])
|
|
|
|
for i in range(idxs.shape[idxs_axis])])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
2019-02-10 18:36:21 -08:00
|
|
|
|
2019-02-11 10:24:21 -08:00
|
|
|
@parameterized.named_parameters(
|
|
|
|
{"testcase_name": "_shape={}_op_axis={}_idxs_axis={}_idxs={}_dnums={}_slice_sizes={}".format(
|
|
|
|
jtu.format_shape_dtype_string(shape, dtype), op_axis, idxs_axis, idxs,
|
|
|
|
dnums, slice_sizes),
|
|
|
|
"op_axis": op_axis, "idxs_axis": idxs_axis, "shape": shape, "dtype":
|
|
|
|
dtype, "idxs": idxs, "dnums": dnums, "slice_sizes": slice_sizes,
|
|
|
|
"rng": rng, "rng_idx": rng_idx}
|
|
|
|
for dtype in [onp.float32, onp.int32]
|
|
|
|
for op_axis, idxs_axis, shape, idxs, dnums, slice_sizes in [
|
|
|
|
(0, 0, (2, 5), onp.array([[0, 2], [1, 3]]), lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1,)),
|
|
|
|
(1, 1, (10, 2), onp.array([[0, 0, 0], [0, 2, 1]]).T,
|
|
|
|
lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (2,)),
|
|
|
|
(0, 1, (2, 10, 5,), onp.array([[0, 2, 1], [0, 3, 3]]).T,
|
|
|
|
lax.GatherDimensionNumbers(
|
|
|
|
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,),
|
|
|
|
index_vector_dim=1), (1, 3)),
|
|
|
|
]
|
|
|
|
for rng_idx in [jtu.rand_int(max(shape))]
|
|
|
|
for rng in [jtu.rand_default()])
|
|
|
|
def testGatherGradBatchedBoth(self, op_axis, idxs_axis, shape, dtype, idxs, dnums,
|
|
|
|
slice_sizes, rng, rng_idx):
|
|
|
|
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
|
|
|
|
gfun = grad(lambda x, idx: np.sum(np.sin(fun(x, idx))))
|
|
|
|
operand = rng(shape, dtype)
|
|
|
|
assert operand.shape[op_axis] == idxs.shape[idxs_axis]
|
|
|
|
ans = vmap(gfun, (op_axis, idxs_axis))(operand, idxs)
|
|
|
|
expected = onp.stack([gfun(operand[(slice(None),) * op_axis + (i,)],
|
|
|
|
idxs[(slice(None),) * idxs_axis + (i,)])
|
|
|
|
for i in range(idxs.shape[idxs_axis])])
|
|
|
|
self.assertAllClose(ans, expected, check_dtypes=False)
|
|
|
|
|
2019-02-10 18:36:21 -08:00
|
|
|
def testNumpyIndexing1(self):
|
2019-02-11 09:28:21 -08:00
|
|
|
a = np.arange(2 * 3 * 4).reshape((2, 3, 4))
|
2019-02-10 18:36:21 -08:00
|
|
|
ind = onp.array([[0, 1],
|
|
|
|
[2, 0]])
|
|
|
|
def f(a, ind):
|
|
|
|
return a[:, ind]
|
|
|
|
expected = onp.stack([f(a, ind[i, :]) for i in range(ind.shape[0])])
|
|
|
|
ans = vmap(f, (None, 0))(a, ind)
|
|
|
|
assert onp.all(ans == expected)
|
|
|
|
|
|
|
|
def testNumpyIndexing2(self):
|
2019-02-11 09:28:21 -08:00
|
|
|
a = np.arange(2 * 3 * 4).reshape((2, 3, 4))
|
2019-02-10 18:36:21 -08:00
|
|
|
def f(a):
|
|
|
|
inds = np.array([0, 2])
|
|
|
|
return a[:, inds]
|
|
|
|
ans = vmap(f)(a)
|
|
|
|
expected = onp.stack([f(a[:, i, :]) for i in range(a.shape[1])], axis=1)
|
|
|
|
assert onp.all(ans == expected)
|
|
|
|
|
2019-02-03 09:52:33 -08:00
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
absltest.main()
|