2023-04-20 12:21:41 +03:00
# Copyright 2023 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2023-10-06 21:32:28 +02:00
from __future__ import annotations
2024-06-10 16:54:35 +02:00
from collections . abc import Sequence
2023-04-26 08:46:52 +02:00
import contextlib
2023-12-13 15:43:12 +01:00
import dataclasses
2023-07-24 14:38:38 +03:00
import functools
import logging
2023-09-05 22:15:22 -07:00
import math
2023-06-06 13:26:35 -07:00
import re
2023-04-20 12:21:41 +03:00
import unittest
2024-06-10 09:45:09 +02:00
from typing import Callable
2023-04-20 12:21:41 +03:00
2023-05-27 06:15:50 +02:00
from absl . testing import absltest
2023-04-20 12:21:41 +03:00
import jax
2023-10-27 03:04:39 +03:00
from jax import lax
2023-04-20 12:21:41 +03:00
from jax import numpy as jnp
2024-06-10 09:45:09 +02:00
from jax import export
2023-10-06 21:32:28 +02:00
from jax . experimental import pjit
2024-01-08 05:29:11 -08:00
from jax . experimental . shard_map import shard_map
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
from jax . sharding import NamedSharding
2023-10-06 21:32:28 +02:00
from jax . sharding import Mesh
from jax . sharding import PartitionSpec as P
2023-05-27 06:15:50 +02:00
2023-10-12 13:15:22 +01:00
from jax . _src import config
2023-04-20 12:21:41 +03:00
from jax . _src import core
2023-12-11 23:22:16 -08:00
from jax . _src import dtypes
2023-08-25 15:01:09 +02:00
from jax . _src import effects
2023-04-20 12:21:41 +03:00
from jax . _src import test_util as jtu
from jax . _src import xla_bridge as xb
2023-05-27 06:15:50 +02:00
from jax . _src . interpreters import mlir
2023-04-20 12:21:41 +03:00
2023-05-27 06:15:50 +02:00
from jax . _src . lib . mlir . dialects import hlo
2023-04-20 12:21:41 +03:00
2023-05-27 06:15:50 +02:00
import numpy as np
2023-04-20 12:21:41 +03:00
config . parse_flags_with_absl ( )
2024-06-06 14:18:27 -07:00
_exit_stack = contextlib . ExitStack ( )
2023-10-06 21:32:28 +02:00
def setUpModule ( ) :
2024-06-06 14:18:27 -07:00
_exit_stack . enter_context ( jtu . set_host_platform_device_count ( 2 ) )
2023-10-06 21:32:28 +02:00
def tearDownModule ( ) :
2024-06-06 14:18:27 -07:00
_exit_stack . close ( )
2023-10-06 21:32:28 +02:00
2023-08-25 15:01:09 +02:00
### Setup for testing lowering with effects
2023-12-13 15:43:12 +01:00
@dataclasses.dataclass ( frozen = True )
class ForTestingOrderedEffect1 ( effects . Effect ) :
pass
2023-08-25 15:01:09 +02:00
2023-12-13 15:43:12 +01:00
@dataclasses.dataclass ( frozen = True )
class ForTestingOrderedEffect2 ( effects . Effect ) :
pass
@dataclasses.dataclass ( frozen = True )
class ForTestingUnorderedEffect1 ( effects . Effect ) :
pass
class ForTestingOrderedEffect4NoNullary ( effects . Effect ) :
def __init__ ( self , _ ) :
pass
@dataclasses.dataclass ( eq = False )
class ForTestingOrderedEffect5NoEq ( effects . Effect ) :
pass
2023-08-25 15:01:09 +02:00
_testing_effects = dict (
2023-12-13 15:43:12 +01:00
ForTestingOrderedEffect1 = ForTestingOrderedEffect1 ( ) ,
ForTestingOrderedEffect2 = ForTestingOrderedEffect2 ( ) ,
ForTestingUnorderedEffect1 = ForTestingUnorderedEffect1 ( ) ,
ForTestingOrderedEffect4NoNullary = ForTestingOrderedEffect4NoNullary ( 42 ) ,
ForTestingOrderedEffect5NoEq = ForTestingOrderedEffect5NoEq ( ) ,
)
2023-08-25 15:01:09 +02:00
# Register the effects
for effect in _testing_effects . values ( ) :
effect_class = effect . __class__
effects . lowerable_effects . add_type ( effect_class )
effects . control_flow_allowed_effects . add_type ( effect_class )
effects . remat_allowed_effects . add_type ( effect_class )
effects . custom_derivatives_allowed_effects . add_type ( effect_class )
if " Ordered " in str ( effect_class ) :
effects . ordered_effects . add_type ( effect_class )
# A primitive that takes a effect_class_name kwarg with the name of the effect class
# and just doubles its argument.
testing_primitive_with_effect_p = core . Primitive ( " testing_primitive_with_effect " )
testing_primitive_with_effect_p . def_effectful_abstract_eval (
2023-11-14 23:34:30 -05:00
lambda aval , * x , effect_class_name : ( aval , { _testing_effects [ effect_class_name ] } ) )
2023-08-25 15:01:09 +02:00
def lowering_testing_primitive_with_effect ( ctx , a , * , effect_class_name : str ) :
if " Ordered " in effect_class_name :
token_in = ctx . tokens_in . get ( _testing_effects [ effect_class_name ] ) [ 0 ]
ctx . set_tokens_out ( mlir . TokenSet ( { _testing_effects [ effect_class_name ] : ( token_in , ) } ) )
2023-11-17 11:46:24 -08:00
return [ mlir . hlo . add ( a , a ) ]
2023-08-25 15:01:09 +02:00
mlir . register_lowering ( testing_primitive_with_effect_p ,
lowering_testing_primitive_with_effect )
## Setup for multi-platform lowering
2023-09-04 11:03:55 +03:00
_testing_multi_platform_to_add = dict ( cpu = 2. , tpu = 3. , cuda = 4. , rocm = 5. )
2023-08-25 15:01:09 +02:00
def _testing_multi_platform_func ( x , * ,
2023-12-08 12:09:04 +00:00
effect_class_name : str | None = None ) :
2023-10-27 03:04:39 +03:00
# Behaves like x + 2 * _testing_multi_platform_to_add[platform]
def for_platform ( platform : str ) :
if effect_class_name is None :
return 2. * _testing_multi_platform_to_add [ platform ]
else :
return testing_primitive_with_effect_p . bind (
_testing_multi_platform_to_add [ platform ] ,
effect_class_name = effect_class_name )
return x + lax . platform_dependent (
tpu = lambda : for_platform ( " tpu " ) ,
cuda = lambda : for_platform ( " cuda " ) ,
rocm = lambda : for_platform ( " rocm " ) ,
default = lambda : for_platform ( " cpu " ) ,
)
2023-08-25 15:01:09 +02:00
def _testing_multi_platform_fun_expected ( x ,
platform : str | None = None ) :
2023-10-27 03:04:39 +03:00
return x + 2. * _testing_multi_platform_to_add [
2023-08-25 15:01:09 +02:00
xb . canonicalize_platform ( platform or jtu . device_under_test ( ) )
]
2023-04-20 12:21:41 +03:00
2024-06-10 09:45:09 +02:00
def get_exported ( fun : Callable , vjp_order = 0 ,
2023-12-11 23:22:16 -08:00
* * export_kwargs ) :
""" Like export.export but with serialization + deserialization. """
def serde_exported ( * fun_args , * * fun_kwargs ) :
exp = export . export ( fun , * * export_kwargs ) ( * fun_args , * * fun_kwargs )
2024-06-10 09:45:09 +02:00
serialized = exp . serialize ( vjp_order = vjp_order )
2024-01-08 05:29:11 -08:00
return export . deserialize ( serialized )
2023-12-11 23:22:16 -08:00
return serde_exported
2023-04-20 12:21:41 +03:00
2024-06-04 16:08:16 -07:00
# Run tests with the maximum supported version by default
@jtu.with_config ( jax_serialization_version = export . maximum_supported_serialization_version )
class JaxExportTest ( jtu . JaxTestCase ) :
2023-07-24 14:38:38 +03:00
2023-10-06 21:32:28 +02:00
@classmethod
def setUpClass ( cls ) :
# Find the available platforms
cls . platforms = [ ]
for backend in [ " cpu " , " gpu " , " tpu " ] :
try :
jax . devices ( backend )
except RuntimeError :
continue
cls . platforms . append ( backend )
2023-12-08 12:09:04 +00:00
super ( ) . setUpClass ( )
2023-10-06 21:32:28 +02:00
2023-04-20 12:21:41 +03:00
def test_basic_export_only ( self ) :
2024-06-10 09:45:09 +02:00
@jax.jit
2023-04-20 12:21:41 +03:00
def my_fun ( x ) :
return jnp . sin ( x )
2023-12-11 23:22:16 -08:00
exp = get_exported ( my_fun ) ( jax . ShapeDtypeStruct ( ( 4 , ) , dtype = np . float32 ) )
2023-04-20 12:21:41 +03:00
self . assertEqual ( " my_fun " , exp . fun_name )
2024-06-10 09:45:09 +02:00
expected_lowering_platform = xb . canonicalize_platform ( jax . default_backend ( ) )
self . assertEqual ( ( expected_lowering_platform , ) ,
2023-10-13 10:30:11 -07:00
exp . lowering_platforms )
2024-02-26 14:17:18 -08:00
self . assertEqual ( jax . tree . flatten ( ( ( 1 , ) , { } ) ) [ 1 ] , exp . in_tree )
2023-04-20 12:21:41 +03:00
self . assertEqual ( ( core . ShapedArray ( ( 4 , ) , dtype = np . float32 ) , ) , exp . in_avals )
self . assertEqual ( ( core . ShapedArray ( ( 4 , ) , dtype = np . float32 ) , ) , exp . out_avals )
def test_pytree_export_only ( self ) :
a = np . arange ( 4 , dtype = np . float32 )
b = np . arange ( 6 , dtype = np . float32 )
def f ( a_b_pair , * , a , b ) :
return ( dict ( res = a_b_pair , a = a , b = b ) , jnp . sin ( a ) , jnp . cos ( b ) )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( f ) , lowering_platforms = ( " cpu " , ) ) ( ( a , b ) , a = a , b = b )
2023-04-20 12:21:41 +03:00
a_aval = core . ShapedArray ( a . shape , a . dtype )
b_aval = core . ShapedArray ( b . shape , b . dtype )
2023-10-13 10:30:11 -07:00
self . assertEqual ( exp . lowering_platforms , ( " cpu " , ) )
2023-04-20 12:21:41 +03:00
args = ( ( a , b ) , )
kwargs = dict ( a = a , b = b )
2024-02-26 14:17:18 -08:00
self . assertEqual ( exp . in_tree , jax . tree . flatten ( ( args , kwargs ) ) [ 1 ] )
2023-04-20 12:21:41 +03:00
self . assertEqual ( exp . in_avals , ( a_aval , b_aval , a_aval , b_aval ) )
2024-02-26 14:17:18 -08:00
self . assertEqual ( exp . out_tree , jax . tree . flatten ( f ( * args , * * kwargs ) ) [ 1 ] )
2023-04-20 12:21:41 +03:00
self . assertEqual ( exp . out_avals , ( a_aval , b_aval , a_aval , b_aval , a_aval , b_aval ) )
def test_basic ( self ) :
f = jnp . sin
x = np . arange ( 4 , dtype = np . float32 )
2023-12-11 23:22:16 -08:00
exp_f = get_exported ( f ) ( x )
2023-04-20 12:21:41 +03:00
2024-06-10 09:45:09 +02:00
self . assertAllClose ( f ( x ) , exp_f . call ( x ) )
2023-04-20 12:21:41 +03:00
2024-04-26 02:11:38 -07:00
def test_jit_static_arg ( self ) :
with self . subTest ( " static_argnames " ) :
@functools.partial ( jax . jit , static_argnames = [ " c " ] )
def f ( x , * , c ) :
return c * jnp . sin ( x )
x = np . arange ( 4 , dtype = np . float32 )
exp_f = get_exported ( f ) ( x , c = 0.1 )
2024-06-10 09:45:09 +02:00
self . assertAllClose ( f ( x , c = 0.1 ) , exp_f . call ( x ) )
2024-04-26 02:11:38 -07:00
with self . subTest ( " static_argnums " ) :
@functools.partial ( jax . jit , static_argnums = [ 1 ] )
def g ( x , c ) :
return c * jnp . sin ( x )
x = np . arange ( 4 , dtype = np . float32 )
exp_g = get_exported ( g ) ( x , 0.1 )
2024-06-10 09:45:09 +02:00
self . assertAllClose ( g ( x , 0.1 ) , exp_g . call ( x ) )
def test_export_error_no_jit ( self ) :
# Can export a lambda, without jit
with self . assertRaisesRegex ( ValueError ,
" Function to be exported must be the result of `jit` " ) :
_ = export . export ( lambda x : jnp . sin ( x ) )
def test_export_experimental_back_compat ( self ) :
from jax . experimental import export
# Can export a lambda, without jit
exp = export . export ( lambda x : jnp . sin ( x ) ) ( .1 )
self . assertAllClose ( exp . call ( 1. ) , np . sin ( 1. ) )
blob = export . serialize ( exp , vjp_order = 1 )
rehydrated = export . deserialize ( blob )
self . assertAllClose ( export . call ( exp ) ( 1. ) , np . sin ( 1. ) )
self . assertAllClose ( export . call_exported ( exp ) ( 1. ) , np . sin ( 1. ) )
2024-04-26 02:11:38 -07:00
2023-04-20 12:21:41 +03:00
def test_call_exported_lambda ( self ) :
# When we export a lambda, the exported.fun_name is not a valid MLIR function name
2024-06-10 09:45:09 +02:00
f = jax . jit ( lambda x : jnp . sin ( x ) )
2023-04-20 12:21:41 +03:00
x = np . arange ( 4 , dtype = np . float32 )
2023-12-11 23:22:16 -08:00
exp_f = get_exported ( f ) ( x )
2024-06-10 09:45:09 +02:00
self . assertAllClose ( f ( x ) , exp_f . call ( x ) )
2023-04-20 12:21:41 +03:00
2024-04-29 17:20:20 +03:00
def test_call_name_conflict ( self ) :
@jax.jit
def inner ( x ) :
# The lowering will contain a _where private function
return jnp . where ( x > 0 , jnp . ones_like ( x ) , jnp . zeros_like ( x ) )
x = jnp . arange ( - 20 , 20 , dtype = np . int32 )
exp_inner = export . export ( inner ) ( x )
self . assertIn ( " @_where( " , str ( exp_inner . mlir_module ( ) ) )
@jax.jit
def outer ( x ) :
# There should be no conflict on _where
2024-06-10 09:45:09 +02:00
x = exp_inner . call ( x )
2024-04-29 17:20:20 +03:00
return inner ( x )
export . export ( outer ) ( x )
2023-04-20 12:21:41 +03:00
def test_call_twice_exported ( self ) :
def f ( x ) : return jnp . sin ( x )
x = np . arange ( 4 , dtype = np . float32 )
@jax.jit
def f1 ( x ) :
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f ) ) ( x )
return exp_f . call ( x ) + exp_f . call ( x )
2023-04-20 12:21:41 +03:00
self . assertAllClose ( 2. * f ( x ) , f1 ( x ) )
def test_unused_args ( self ) :
2024-06-10 09:45:09 +02:00
f = jax . jit ( lambda x , y : jnp . sin ( x ) )
2023-04-20 12:21:41 +03:00
x = np . arange ( 4 , dtype = np . float32 )
y = np . arange ( 6 , dtype = np . float32 )
2023-12-11 23:22:16 -08:00
exp_f = get_exported ( f ) ( x , y )
2023-04-20 12:21:41 +03:00
2024-06-10 09:45:09 +02:00
self . assertAllClose ( f ( x , y ) , exp_f . call ( x , y ) )
2023-04-20 12:21:41 +03:00
def test_pytree ( self ) :
a = np . arange ( 4 , dtype = np . float32 )
b = np . arange ( 6 , dtype = np . float32 )
def f ( a_b_pair , a , b ) :
return ( dict ( res = a_b_pair , a = a , b = b ) , jnp . sin ( a ) , jnp . cos ( b ) )
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f ) ) ( ( a , b ) , a = a , b = b )
2023-04-20 12:21:41 +03:00
self . assertAllClose ( f ( ( a , b ) , a = a , b = b ) ,
2024-06-10 09:45:09 +02:00
exp_f . call ( ( a , b ) , a = a , b = b ) )
2023-04-20 12:21:41 +03:00
def test_error_wrong_intree ( self ) :
def f ( a_b_pair , * , c ) :
return jnp . sin ( a_b_pair [ 0 ] ) + jnp . cos ( a_b_pair [ 1 ] ) + c
a = b = c = np . arange ( 4 , dtype = np . float32 )
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f ) ) ( ( a , b ) , c = c )
2023-04-20 12:21:41 +03:00
with self . assertRaisesRegex (
ValueError ,
" The invocation args and kwargs must have the same pytree structure " ) :
2024-06-10 09:45:09 +02:00
exp_f . call ( a , b , c = ( a , b ) )
2023-04-20 12:21:41 +03:00
def test_error_wrong_avals ( self ) :
2023-04-26 08:46:52 +02:00
def f ( a , * , b ) : # a: f32[4] and b: f32[4]
2023-04-20 12:21:41 +03:00
return jnp . sin ( a ) + jnp . cos ( b )
2023-04-26 08:46:52 +02:00
f32_4 = np . arange ( 4 , dtype = np . float32 )
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f ) ) ( f32_4 , b = f32_4 )
2023-04-20 12:21:41 +03:00
2023-04-26 08:46:52 +02:00
with self . assertRaisesRegex ( ValueError ,
2023-05-13 16:57:27 +02:00
r " Shape mismatch for args \ [0 \ ].shape \ [0 \ ] " ) :
2024-06-10 09:45:09 +02:00
exp_f . call ( np . arange ( 6 , dtype = np . float32 ) , b = f32_4 )
2023-04-26 08:46:52 +02:00
with self . assertRaisesRegex ( ValueError ,
2023-05-13 16:57:27 +02:00
r " Shape mismatch for kwargs \ [ ' b ' \ ].shape \ [0 \ ] " ) :
2024-06-10 09:45:09 +02:00
exp_f . call ( f32_4 , b = np . arange ( 6 , dtype = np . float32 ) )
2023-04-26 08:46:52 +02:00
with self . assertRaisesRegex ( ValueError ,
r " Rank mismatch for args \ [0 \ ] " ) :
2024-06-10 09:45:09 +02:00
exp_f . call ( f32_4 . reshape ( ( 1 , 4 ) ) , b = f32_4 )
2023-04-26 08:46:52 +02:00
with self . assertRaisesRegex ( ValueError ,
r " Dtype mismatch for args \ [0 \ ] " ) :
2024-06-10 09:45:09 +02:00
exp_f . call ( f32_4 . astype ( np . float16 ) , b = f32_4 )
def test_default_lowering_platform ( self ) :
test_platform = jtu . device_under_test ( )
if test_platform == " gpu " : test_platform = " cuda "
self . assertEqual ( export . default_lowering_platform ( ) , test_platform )
exp = export . export ( jnp . sin ) ( 1. )
self . assertEqual ( exp . lowering_platforms , ( export . default_lowering_platform ( ) , ) )
2023-04-20 12:21:41 +03:00
2023-05-27 06:15:50 +02:00
@jtu.parameterized_filterable (
testcase_name = lambda kw : kw [ " platform " ] ,
kwargs = [ dict ( platform = p )
for p in ( " cpu " , " cuda " , " rocm " , " tpu " ) ] )
2023-04-20 12:21:41 +03:00
def test_error_wrong_platform ( self , platform ) :
a = np . arange ( 4 , dtype = np . float32 )
2023-12-11 23:22:16 -08:00
exp_f = get_exported ( jnp . sin , lowering_platforms = ( platform , ) ) ( a )
2023-04-20 12:21:41 +03:00
if xb . canonicalize_platform ( jtu . device_under_test ( ) ) == platform :
2023-08-27 13:27:34 +02:00
raise unittest . SkipTest ( " Uninteresting scenario " )
2023-04-20 12:21:41 +03:00
with self . assertRaisesRegex (
ValueError , " The exported function .* was lowered for platform " ) :
2024-06-10 09:45:09 +02:00
exp_f . call ( a )
2023-04-20 12:21:41 +03:00
2023-06-10 09:27:42 +03:00
# Now try with the platform check disabled
2023-12-11 23:22:16 -08:00
exp_f_no_platform_check = get_exported (
2023-10-13 10:30:11 -07:00
jnp . sin , lowering_platforms = ( platform , ) ,
2023-09-05 22:15:22 -07:00
disabled_checks = [ export . DisabledSafetyCheck . platform ( ) ] ) ( a )
2024-06-10 09:45:09 +02:00
res = exp_f_no_platform_check . call ( a )
2023-06-10 09:27:42 +03:00
self . assertAllClose ( res , jnp . sin ( a ) )
2023-06-18 13:17:57 +03:00
@jtu.parameterized_filterable (
testcase_name = lambda kw : kw [ " dialect " ] ,
kwargs = [ dict ( dialect = dialect )
2024-01-15 02:12:52 -08:00
for dialect in ( " stablehlo " , ) ]
2023-06-18 13:17:57 +03:00
)
def test_error_disallowed_custom_call ( self , dialect ) :
2024-01-15 02:12:52 -08:00
# If we use hlo.custom_call we detect invalid custom call targets.
2023-06-18 13:17:57 +03:00
# Set up a primitive with custom lowering rules
test_primitive = core . Primitive ( " _test_primitive_disallowed_custom_call " )
test_primitive . def_abstract_eval ( lambda in_aval : in_aval )
def test_primitive_lowering ( ctx , arg ) :
2024-01-15 02:12:52 -08:00
op = dict ( stablehlo = hlo . CustomCallOp ) [ dialect ]
2023-06-18 13:17:57 +03:00
return op ( [ arg . type ] , [ arg ] , " disallowed_call_target " ) . results
mlir . register_lowering ( test_primitive , test_primitive_lowering )
self . addCleanup ( lambda : mlir . register_lowering ( test_primitive , None ) )
a = np . arange ( 3 , dtype = np . float32 )
2023-06-10 09:27:42 +03:00
with self . assertRaisesRegex ( ValueError ,
" Cannot serialize code with custom calls whose targets .* " ) :
2023-12-11 23:22:16 -08:00
get_exported (
2024-06-10 09:45:09 +02:00
jax . jit ( lambda a : a + test_primitive . bind ( a ) )
2023-06-18 13:17:57 +03:00
) ( a )
2023-06-10 09:27:42 +03:00
# Now try again with the safety check disabled
2023-12-11 23:22:16 -08:00
exp = get_exported (
2024-06-10 09:45:09 +02:00
jax . jit ( lambda a : a + test_primitive . bind ( a ) ) ,
2023-09-05 22:15:22 -07:00
disabled_checks = [ export . DisabledSafetyCheck . custom_call ( " disallowed_call_target " ) ]
2023-06-18 13:17:57 +03:00
) ( a )
2023-07-24 15:11:54 +03:00
self . assertIn ( " disallowed_call_target " , exp . mlir_module ( ) )
2023-06-10 09:27:42 +03:00
2024-06-05 06:38:29 +01:00
def test_lowering_parameters_for_export ( self ) :
# Test that we propagate properly the LoweringParameters.for_export
test_primitive = core . Primitive ( " _test_primitive_for_export " )
test_primitive . def_abstract_eval ( lambda in_aval : in_aval )
def test_primitive_lowering ( ctx , arg ) :
if ctx . module_context . lowering_parameters . for_export :
raise ValueError ( " Lowering for export not supported " )
return mlir . hlo . AddOp ( arg , arg ) . results
mlir . register_lowering ( test_primitive , test_primitive_lowering )
self . addCleanup ( lambda : mlir . register_lowering ( test_primitive , None ) )
f = test_primitive . bind
a = np . arange ( 3 , dtype = np . float32 )
res = jax . jit ( f ) ( a ) # Works with JIT
self . assertAllClose ( res , a + a )
jax . jit ( f ) . lower ( a ) # Works with most AOT
with self . assertRaisesRegex ( ValueError ,
" Lowering for export not supported " ) :
2024-06-10 09:45:09 +02:00
export . export ( jax . jit ( f ) ) ( a )
2024-06-05 06:38:29 +01:00
2023-04-20 12:21:41 +03:00
def test_grad ( self ) :
f = lambda x : jnp . sum ( jnp . sin ( x ) )
x = np . arange ( 4 , dtype = np . float32 )
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f ) , vjp_order = 1 ) ( x )
2023-04-20 12:21:41 +03:00
2024-06-10 09:45:09 +02:00
f1 = exp_f . call
2023-04-20 12:21:41 +03:00
self . assertAllClose ( jax . grad ( f ) ( x ) , jax . grad ( f1 ) ( x ) )
2023-09-19 11:45:38 +02:00
def test_higher_order_grad ( self ) :
f = lambda x : x * * 3
x = np . float32 ( 4. )
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f ) , vjp_order = 3 ) ( x )
2023-09-19 11:45:38 +02:00
2024-06-10 09:45:09 +02:00
f1 = exp_f . call
2023-09-19 11:45:38 +02:00
self . assertAllClose ( jax . grad ( f ) ( x ) ,
jax . grad ( f1 ) ( x ) )
self . assertAllClose ( jax . grad ( jax . grad ( f ) ) ( x ) ,
jax . grad ( jax . grad ( f1 ) ) ( x ) )
self . assertAllClose ( jax . grad ( jax . grad ( jax . grad ( f ) ) ) ( x ) ,
jax . grad ( jax . grad ( jax . grad ( f1 ) ) ) ( x ) )
2023-12-16 10:09:01 +02:00
def test_grad_int ( self ) :
def f ( xi , xf ) :
return ( 2 * xi . T , xf . T * xf . T )
xi = np . arange ( 6 , dtype = np . int32 ) . reshape ( ( 2 , 3 ) )
xf = np . arange ( 12 , dtype = np . float32 ) . reshape ( ( 3 , 4 ) )
# Native JAX 1st order vjp
( f_outi , f_outf ) , f_vjp = jax . vjp ( f , xi , xf )
f_outi_ct = np . ones ( f_outi . shape , dtype = f_outi . dtype )
f_outf_ct = np . ones ( f_outf . shape , dtype = f_outf . dtype )
xi_ct , xf_ct = f_vjp ( ( f_outi_ct , f_outf_ct ) )
# Native JAX 2nd order vjp
res , f_vjp2 = jax . vjp ( f_vjp , ( f_outi_ct , f_outf_ct ) )
self . assertAllClose ( res , ( xi_ct , xf_ct ) )
( f_outi_ct2 , f_outf_ct2 ) , = f_vjp2 ( ( xi_ct , xf_ct ) )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( f ) , vjp_order = 2 ) ( xi , xf )
fr = exp . call
2023-12-16 10:09:01 +02:00
res = fr ( xi , xf )
self . assertAllClose ( res , ( f_outi , f_outf ) )
# Reloaded 1st order vjp
( fr_outi , fr_outf ) , fr_vjp = jax . vjp ( fr , xi , xf )
self . assertAllClose ( fr_outi , f_outi )
self . assertAllClose ( fr_outf , f_outf )
xri_ct , xrf_ct = fr_vjp ( ( f_outi_ct , f_outf_ct ) )
self . assertAllClose ( xri_ct , xi_ct )
self . assertAllClose ( xrf_ct , xf_ct )
# Reloaded 2nd order vjp
res , f_vjp2 = jax . vjp ( fr_vjp , ( f_outi_ct , f_outf_ct ) )
self . assertAllClose ( res , ( xi_ct , xf_ct ) )
( fr_outi_ct2 , fr_outf_ct2 ) , = f_vjp2 ( ( xi_ct , xf_ct ) )
self . assertAllClose ( fr_outi_ct2 , f_outi_ct2 )
self . assertAllClose ( fr_outf_ct2 , f_outf_ct2 )
2023-04-20 12:21:41 +03:00
def test_pytree_vjp ( self ) :
def f ( a_b_pair , * , a , b ) :
return ( dict ( res = a_b_pair , a = 2. * a , b = 3. * b ) ,
jnp . sin ( 4. * a ) )
a = np . arange ( 4 , dtype = np . float32 )
b = np . arange ( 6 , dtype = np . float32 )
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f ) , vjp_order = 1 ) ( ( a , b ) , a = a , b = b )
2023-04-20 12:21:41 +03:00
out_ct = f ( ( a , b ) , a = a , b = b ) # The output has the right structure as the cotangent
def f1_jax ( a , b ) : # For VJP, make a function without kwargs
res = f ( ( a , b ) , a = a , b = b )
return res
def f1_exp ( a , b ) : # For VJP, make a function without kwargs
2024-06-10 09:45:09 +02:00
res = exp_f . call ( ( a , b ) , a = a , b = b )
2023-04-20 12:21:41 +03:00
return res
jax_vjp = jax . vjp ( f1_jax , a , b ) [ 1 ] ( out_ct )
exp_vjp = jax . vjp ( f1_exp , a , b ) [ 1 ] ( out_ct )
self . assertAllClose ( jax_vjp , exp_vjp )
def test_roundtrip ( self ) :
def f1 ( x ) :
return jnp . sin ( x )
a = np . arange ( 4 , dtype = np . float32 )
2024-06-10 09:45:09 +02:00
exp_f1 = get_exported ( jax . jit ( f1 ) ) ( a )
2023-04-20 12:21:41 +03:00
def f2 ( x ) :
2024-06-10 09:45:09 +02:00
res1 = exp_f1 . call ( x )
res2 = exp_f1 . call ( res1 )
2023-04-20 12:21:41 +03:00
return jnp . cos ( res2 )
2024-06-10 09:45:09 +02:00
exp_f2 = get_exported ( jax . jit ( f2 ) ) ( a )
2023-04-20 12:21:41 +03:00
self . assertAllClose ( jnp . cos ( jnp . sin ( jnp . sin ( a ) ) ) ,
2024-06-10 09:45:09 +02:00
exp_f2 . call ( a ) )
2023-04-20 12:21:41 +03:00
2023-10-20 03:48:36 +02:00
def test_poly_export_only ( self ) :
a = np . arange ( 12 , dtype = np . float32 ) . reshape ( ( 3 , 4 ) )
def f ( a , b ) : # a: f32[2w,h] b: f32[w,h]
return jnp . concatenate ( [ a , b ] , axis = 0 )
2024-01-01 23:09:42 +07:00
scope = export . SymbolicScope ( )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( f ) ) (
2024-01-01 23:09:42 +07:00
jax . ShapeDtypeStruct ( export . symbolic_shape ( " (2*w, h) " , scope = scope ) , a . dtype ) ,
jax . ShapeDtypeStruct ( export . symbolic_shape ( " (w, h) " , scope = scope ) , a . dtype ) )
2023-10-20 03:48:36 +02:00
self . assertEqual ( " (2*w, h) " , str ( exp . in_avals [ 0 ] . shape ) )
self . assertEqual ( " (w, h) " , str ( exp . in_avals [ 1 ] . shape ) )
self . assertEqual ( " (3*w, h) " , str ( exp . out_avals [ 0 ] . shape ) )
# Peek at the module
module_str = exp . mlir_module ( )
self . assertEqual ( config . jax_serialization_version . value > = 7 ,
" shape_assertion " in module_str )
self . assertIn ( " jax.uses_shape_polymorphism = true " , module_str )
wrapped_main_expected_re = (
r " @_wrapped_jax_export_main \ ( "
2024-04-05 20:08:48 -07:00
r " %a rg0: tensor<i..> { jax.global_constant = \" h \" .* "
r " %a rg1: tensor<i..> { jax.global_constant = \" w \" .* "
2023-10-20 03:48:36 +02:00
r " %a rg2: tensor< \ ?x \ ?xf32> "
)
self . assertRegex ( module_str , wrapped_main_expected_re )
# Look for private inner functions that are generated to compute the
# dimension variables and shape assertions. All those functions must
# have jax.global_constant attributes on all the arguments.
for func_name , func_args in re . findall (
r " func.func private @([ \ w]+) \ ((.+) \ ) -> " ,
module_str ) :
if func_name == " _wrapped_jax_export_main " :
continue
func_args_count = len ( re . findall ( r " %a rg \ d+ " , func_args ) )
func_args_constant_attrs = len ( re . findall ( r " jax.global_constant = " ,
func_args ) )
self . assertEqual ( func_args_count , func_args_constant_attrs )
def test_poly_pytree_export_only ( self ) :
a = np . arange ( 12 , dtype = np . float32 ) . reshape ( ( 3 , 4 ) )
def f ( a0 , a1 , * , ak ) :
return jnp . concatenate ( [ a0 , a1 , ak ] , axis = 0 )
2023-11-23 09:05:37 +02:00
a_poly_spec = jax . ShapeDtypeStruct ( export . symbolic_shape ( " (w, h) " ) , a . dtype )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( f ) ) ( a_poly_spec , a_poly_spec , ak = a_poly_spec )
2023-10-20 03:48:36 +02:00
self . assertEqual ( " (w, h) " , str ( exp . in_avals [ 0 ] . shape ) )
self . assertEqual ( " (3*w, h) " , str ( exp . out_avals [ 0 ] . shape ) )
2024-01-01 23:09:42 +07:00
def test_poly_export_error_symbolic_scope ( self ) :
a = np . arange ( 12 , dtype = np . float32 ) . reshape ( ( 3 , 4 ) )
def f ( x , y ) :
return jnp . concatenate ( [ x , y ] , axis = 1 )
x_poly_spec = jax . ShapeDtypeStruct ( export . symbolic_shape ( " (w, h1) " ) , a . dtype )
y_poly_spec = jax . ShapeDtypeStruct ( export . symbolic_shape ( " (w, h2) " ) , a . dtype )
with self . assertRaisesRegex (
ValueError ,
re . compile (
" Invalid mixing of symbolic scopes when exporting f.* "
r " Expected current \ (from args \ [0 \ ] \ ) scope .* "
r " and found for ' w ' \ (args \ [1 \ ] \ ) scope .* " , re . DOTALL ) ) :
2024-06-10 09:45:09 +02:00
get_exported ( jax . jit ( f ) ) ( x_poly_spec , y_poly_spec )
2024-01-01 23:09:42 +07:00
2024-05-31 20:38:16 -07:00
def test_poly_export_callable_with_no_name ( self ) :
# This was reported by a user
class MyCallable :
def __call__ ( self , x ) :
return jnp . sin ( x )
# This makes it look like a jitted-function
2024-06-06 11:36:59 -07:00
def lower ( self , x , _experimental_lowering_parameters = None ) :
2024-05-31 20:38:16 -07:00
return jax . jit ( self . __call__ ) . lower (
x ,
_experimental_lowering_parameters = _experimental_lowering_parameters )
2024-06-06 17:42:25 -07:00
def trace ( self , x , _experimental_lowering_parameters = None ) :
return jax . jit ( self . __call__ ) . trace (
2024-06-06 11:36:59 -07:00
x ,
_experimental_lowering_parameters = _experimental_lowering_parameters )
2024-05-31 20:38:16 -07:00
a , = export . symbolic_shape ( " a, " )
# No error
2024-06-10 09:45:09 +02:00
_ = get_exported ( jax . jit ( MyCallable ( ) ) ) (
2024-05-31 20:38:16 -07:00
jax . ShapeDtypeStruct ( ( a , a ) , dtype = np . float32 )
)
2023-07-24 14:38:38 +03:00
@jtu.parameterized_filterable (
kwargs = [
dict ( v = v )
2023-09-05 22:15:22 -07:00
for v in range ( export . minimum_supported_serialization_version - 1 ,
export . maximum_supported_serialization_version + 2 ) ] )
2023-10-20 03:48:36 +02:00
def test_poly_basic_versions ( self , v : int ) :
2024-06-04 16:08:16 -07:00
with config . jax_serialization_version ( v ) :
logging . info (
" Using JAX serialization version %s " ,
config . jax_serialization_version . value )
with contextlib . ExitStack ( ) as e :
if not ( export . minimum_supported_serialization_version < = v
< = export . maximum_supported_serialization_version ) :
e . enter_context ( self . assertRaisesRegex (
ValueError ,
f " The requested jax_serialization version { v } is outside the range of supported versions " ) )
exp = get_exported ( jnp . sin ) (
jax . ShapeDtypeStruct ( export . symbolic_shape ( " w, h " ) , np . float32 ) )
x = np . arange ( 30 , dtype = np . float32 ) . reshape ( ( 5 , 6 ) )
2024-06-10 09:45:09 +02:00
res = exp . call ( x )
2024-06-04 16:08:16 -07:00
self . assertAllClose ( res , np . sin ( x ) )
2023-07-24 14:38:38 +03:00
2023-05-27 06:15:50 +02:00
# A function is exported with f32[poly_spec] and is called with different arg
2024-06-07 06:51:26 -07:00
# shapes. We use export.call and we also run the shape check
2023-05-27 06:15:50 +02:00
# module.
@jtu.parameterized_filterable (
testcase_name = lambda kw : f " poly_spec= { kw [ ' poly_spec ' ] } _arg_shape= { kw [ ' arg_shape ' ] } " , # type: ignore
kwargs = [
dict ( poly_spec = " 3,4,12 " , arg_shape = ( 3 , 4 , 12 ) ) ,
dict ( poly_spec = " 3,4,12 " , arg_shape = ( 3 , 4 , 13 ) ,
# The shape check module does not test constant dimensions
2023-07-03 17:31:31 +03:00
expect_error = re . escape (
2023-05-27 06:15:50 +02:00
r " Shape mismatch for args[0].shape[2] (expected same constant) " ) ) ,
dict ( poly_spec = " 3,4,6*a " , arg_shape = ( 3 , 4 , 12 ) ) ,
dict ( poly_spec = " 3,a,a+8 " , arg_shape = ( 3 , 4 , 12 ) ) ,
dict ( poly_spec = " 3,4,a+1 " , arg_shape = ( 3 , 4 , 1 ) ,
expect_error = re . escape (
2023-07-21 14:46:30 +03:00
" Expected value >= 1 for dimension variable ' a ' . "
" Using the following polymorphic shapes specifications: args[0].shape = (3, 4, a + 1). "
" Obtained dimension variables: ' a ' = 0 "
) ) ,
2023-05-27 06:15:50 +02:00
dict ( poly_spec = " 3,4,6*a " , arg_shape = ( 3 , 4 , 13 ) ,
expect_error = re . escape (
2023-07-21 14:46:30 +03:00
" Division had remainder 1 when computing the value of ' a ' "
) ) ,
2023-05-27 06:15:50 +02:00
dict ( poly_spec = " 3,a,a+8 " , arg_shape = ( 3 , 4 , 13 ) ,
expect_error = re . escape (
2023-07-21 14:46:30 +03:00
" Found inconsistency between dimension size "
" args[0].shape[2] (= 13) and the specification ' a + 8 ' (= 12) "
) ) ,
2023-05-27 06:15:50 +02:00
] )
def test_poly_shape_checks (
self , poly_spec = " 3,a,a+8 " ,
arg_shape = ( 3 , 4 , 12 ) , arg_dtype = np . float32 ,
2023-07-03 17:31:31 +03:00
expect_error = None ) : # If given, error from running the exported module
2023-05-27 06:15:50 +02:00
def f ( x ) : # x: f32[poly_spec]
return jnp . reshape ( x , ( - 1 , x . shape [ 1 ] ) )
2023-08-01 08:52:54 -07:00
disabled_checks = ( )
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f ) , disabled_checks = disabled_checks ) (
2023-11-23 09:05:37 +02:00
jax . ShapeDtypeStruct ( export . symbolic_shape ( poly_spec ) , np . float32 ) )
2023-07-24 14:38:38 +03:00
self . assertEqual ( exp_f . uses_shape_polymorphism , poly_spec != " 3,4,12 " )
2023-05-27 06:15:50 +02:00
arg = np . arange ( np . prod ( arg_shape ) ,
dtype = arg_dtype ) . reshape ( arg_shape ) # arg : f32[3,4,12]
with contextlib . ExitStack ( ) as stack :
2023-07-03 17:31:31 +03:00
if expect_error is not None :
stack . push ( self . assertRaisesRegex ( Exception , expect_error ) )
2023-05-27 06:15:50 +02:00
2023-07-03 17:31:31 +03:00
assert core . is_constant_shape ( arg . shape )
2024-06-10 09:45:09 +02:00
res = exp_f . call ( arg )
2023-05-27 06:15:50 +02:00
2023-07-03 17:31:31 +03:00
if not expect_error :
2023-05-27 06:15:50 +02:00
self . assertAllClose ( res , f ( arg ) )
2023-04-26 09:11:04 +02:00
# An inner function is exported with polymorphic shapes inner_poly_spec, and
2023-05-13 16:57:27 +02:00
# is called from an outer function, which is exported with outer_poly_spec.
2023-05-27 06:15:50 +02:00
@jtu.parameterized_filterable (
testcase_name = lambda kw : f " inner= { kw [ ' inner_poly_spec ' ] } _outer= { kw [ ' outer_poly_spec ' ] } " , # type: ignore
#one_containing="",
# By default arg_shape = (3, 4, 12) for both the outer function and the inner
# The inner function is exported for f32.
kwargs = [
# Both inner and outer are static shapes
dict ( inner_poly_spec = " 3,4,12 " , outer_poly_spec = " 3,4,12 " ) ,
2023-07-21 14:46:30 +03:00
# Inner has poly shapes but outer has static shapes. When we call inner
# we do the shape constraint checking
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,a,a+b " , outer_poly_spec = " 3,4,12 " ) ,
dict ( inner_poly_spec = " 3,4,3*a " , outer_poly_spec = " 3,4,12 " ) ,
dict ( inner_poly_spec = " 3,a,a " , outer_poly_spec = " 3,4,12 " ,
expect_error_outer_exp = re . escape (
2023-07-21 14:46:30 +03:00
" Found inconsistency between dimension size "
" args[0].shape[2] (= 12) and the specification ' a ' (= 4) " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,4,5*a " , outer_poly_spec = " 3,4,12 " ,
expect_error_outer_exp = re . escape (
2023-07-21 14:46:30 +03:00
" Division had remainder 2 when computing the value of ' a ' " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,4,12+a " , outer_poly_spec = " 3,4,12 " ,
expect_error_outer_exp = re . escape (
2023-07-21 14:46:30 +03:00
" Expected value >= 1 for dimension variable ' a ' . "
" Using the following polymorphic shapes specifications: args[0].shape = (3, 4, a + 12). "
" Obtained dimension variables: ' a ' = 0 from specification "
" ' a + 12 ' for dimension args[0].shape[2] (= 12) " ) ) ,
2023-05-27 06:15:50 +02:00
# Both inner and outer have poly shapes.
dict ( inner_poly_spec = " 3,a,b " , outer_poly_spec = " 3,4,c " ) ,
dict ( inner_poly_spec = " 3,4,3*a " , outer_poly_spec = " 3,4,6*c " ) ,
dict ( inner_poly_spec = " 3,a,a+8 " , outer_poly_spec = " 3,c+2,c+10 " ) ,
dict ( inner_poly_spec = " 3,a,a+b " , outer_poly_spec = " 3,4,c " ,
expect_error_outer_exp = re . escape (
2023-07-21 14:46:30 +03:00
" Expected value >= 1 for dimension variable ' b ' . "
2024-01-05 14:48:53 +07:00
" Using the following polymorphic shapes specifications: args[0].shape = (3, a, b + a). "
2023-07-21 14:46:30 +03:00
" Obtained dimension variables: ' a ' = 4 from specification "
" ' a ' for dimension args[0].shape[1] (= 4), "
2024-01-05 14:48:53 +07:00
" ' b ' = c - 4 from specification ' b + a ' for dimension args[0].shape[2] (= c), " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,a,a " , outer_poly_spec = " 3,4,c " ,
expect_error_outer_exp = re . escape (
2023-07-21 14:46:30 +03:00
" Found inconsistency between dimension size "
" args[0].shape[2] (= c) and the specification ' a ' (= 4) " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,a,a " , arg_shape = ( 3 , 4 ) ,
outer_poly_spec = " 3,c " ,
expect_error_outer_exp = r " Rank mismatch for args \ [0 \ ] " ) ,
dict ( inner_poly_spec = " 3,a,a+b " , arg_dtype = np . int32 ,
outer_poly_spec = " 3,c,d " ,
expect_error_outer_exp = r " Dtype mismatch for args \ [0 \ ] " ) ,
dict ( inner_poly_spec = " 3,4,5*a " , outer_poly_spec = " 3,4,c " ,
expect_error_outer_exp = re . escape (
2023-07-21 14:46:30 +03:00
" Division had remainder mod(c, 5) when computing the value of ' a ' " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,a,a+b " , outer_poly_spec = " 3,c,c " ,
expect_error_outer_exp = re . escape (
2023-07-21 14:46:30 +03:00
" Expected value >= 1 for dimension variable ' b ' . "
2024-01-05 14:48:53 +07:00
" Using the following polymorphic shapes specifications: args[0].shape = (3, a, b + a). "
2023-07-21 14:46:30 +03:00
" Obtained dimension variables: ' a ' = c from "
" specification ' a ' for dimension args[0].shape[1] (= c), "
2024-01-05 14:48:53 +07:00
" ' b ' = 0 from specification ' b + a ' for dimension args[0].shape[2] (= c) " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,a,a+b " , outer_poly_spec = " c,4,12 " ,
expect_error_outer_exp = re . escape (
2023-07-21 14:46:30 +03:00
" Shape mismatch for args[0].shape[0] (expected same constant) " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,4,5*a " , outer_poly_spec = " 3,4,25*c " ,
expect_error_run = re . escape (
2023-07-21 14:46:30 +03:00
" Division had remainder 12 when computing the value of ' c ' " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,a,b " , outer_poly_spec = " 3,c+4,12 " ,
expect_error_run = re . escape (
2023-07-21 14:46:30 +03:00
" Expected value >= 1 for dimension variable ' c ' . "
" Using the following polymorphic shapes specifications: args[0].shape = (3, c + 4, 12). "
" Obtained dimension variables: ' c ' = 0 " ) ) ,
2023-05-27 06:15:50 +02:00
dict ( inner_poly_spec = " 3,a,a " , outer_poly_spec = " 3,a,a " ,
expect_error_run = re . escape (
2023-07-21 14:46:30 +03:00
" Found inconsistency between dimension size "
" args[0].shape[2] (= 12) and the specification ' a ' (= 4) " ) ) ,
2023-05-27 06:15:50 +02:00
] )
def test_poly_shape_checks_nested (
self , inner_poly_spec = " 3,4,5*a " ,
arg_shape = ( 3 , 4 , 12 ) , arg_dtype = np . float32 ,
outer_poly_spec = " 3,4,25*c " ,
expect_error_outer_exp = None ,
expect_error_run = None ) :
2023-04-26 09:11:04 +02:00
# Polymorphic export called with static or polymorphic shapes
2023-05-13 16:57:27 +02:00
def inner ( x ) : # x: inner_poly_spec
return jnp . reshape ( x , ( - 1 , x . shape [ 1 ] ) )
2023-04-26 09:11:04 +02:00
2023-05-27 06:15:50 +02:00
arg = np . arange ( np . prod ( arg_shape ) ,
dtype = arg_dtype ) . reshape ( arg_shape ) # x : f32[3,4,12]
2024-06-10 09:45:09 +02:00
inner_exp = get_exported ( jax . jit ( inner ) ) (
2023-11-23 09:05:37 +02:00
jax . ShapeDtypeStruct ( export . symbolic_shape ( inner_poly_spec ) , np . float32 ) )
2023-04-26 09:11:04 +02:00
2023-07-24 14:38:38 +03:00
self . assertEqual ( inner_exp . uses_shape_polymorphism ,
2023-05-31 11:00:08 +03:00
( inner_poly_spec != " 3,4,12 " ) )
2023-05-13 16:57:27 +02:00
def outer ( x ) : # x: outer_poly_spec
2023-04-26 09:11:04 +02:00
# Use an addition to test that the shapes are refined properly for the
# result of the call_exported.
2024-06-10 09:45:09 +02:00
return inner_exp . call ( x ) + inner ( x )
2023-04-26 09:11:04 +02:00
with contextlib . ExitStack ( ) as stack :
2023-05-27 06:15:50 +02:00
if expect_error_outer_exp is not None :
stack . push ( self . assertRaisesRegex ( ValueError , expect_error_outer_exp ) )
2023-04-26 09:11:04 +02:00
# Call it after exporting again, with polymorphic shapes
2024-06-10 09:45:09 +02:00
outer_exp = get_exported ( jax . jit ( outer ) ) (
2023-11-23 09:05:37 +02:00
jax . ShapeDtypeStruct ( export . symbolic_shape ( outer_poly_spec ) , arg . dtype ) )
2023-04-20 12:21:41 +03:00
2023-05-27 06:15:50 +02:00
if expect_error_outer_exp is not None :
return
2023-06-02 21:48:45 -07:00
2023-07-24 14:38:38 +03:00
self . assertEqual ( outer_exp . uses_shape_polymorphism ,
2023-05-27 06:15:50 +02:00
( inner_poly_spec != " 3,4,12 " or outer_poly_spec != " 3,4,12 " ) )
2023-06-02 21:48:45 -07:00
2023-05-27 06:15:50 +02:00
with contextlib . ExitStack ( ) as stack :
if expect_error_run is not None :
stack . push ( self . assertRaisesRegex ( Exception , expect_error_run ) )
2023-06-02 21:48:45 -07:00
2024-06-10 09:45:09 +02:00
res = outer_exp . call ( arg )
2023-05-27 06:15:50 +02:00
if expect_error_run is not None :
return
self . assertAllClose ( 2. * inner ( arg ) , res )
2023-06-02 21:48:45 -07:00
2023-07-21 14:46:30 +03:00
# Tests details of the shape constraints errors
# This test exists also in shape_poly_test.py. Here we test the
# call_exported error reporting.
@jtu.parameterized_filterable (
2023-08-17 11:19:04 +02:00
testcase_name = lambda kw : kw [ " shape " ] , # assume "shape" is unique
2023-07-21 14:46:30 +03:00
kwargs = [
dict ( shape = ( 8 , 2 , 9 ) , # a = 2, b = 3, c = 4
poly_spec = " (a + 2*b, a, a + b + c) " ) ,
dict ( shape = ( 2 , 2 , 6 ) , # a = 2, b = 0, c = 4
poly_spec = " (a + 2*b, a, a + b + c) " ,
expect_error = (
" Input shapes do not match the polymorphic shapes specification. "
" Expected value >= 1 for dimension variable ' b ' . "
2024-01-05 14:48:53 +07:00
" Using the following polymorphic shapes specifications: args[0].shape = (2*b + a, a, c + b + a). "
2023-07-21 14:46:30 +03:00
" Obtained dimension variables: ' a ' = 2 from specification ' a ' for dimension args[0].shape[1] (= 2), "
2024-01-05 14:48:53 +07:00
" ' b ' = 0 from specification ' 2*b + a ' for dimension args[0].shape[0] (= 2), . "
2023-07-21 14:46:30 +03:00
" Please see https://github.com/google/jax/blob/main/jax/experimental/jax2tf/README.md#shape-assertion-errors for more details. "
) ) ,
dict ( shape = ( 3 , 2 , 6 ) , # a = 2, b = 0.5, c = 4 - b is not integer
poly_spec = " (a + 2*b, a, a + b + c) " ,
expect_error = (
" Input shapes do not match the polymorphic shapes specification. "
" Division had remainder 1 when computing the value of ' b ' . "
2024-01-05 14:48:53 +07:00
" Using the following polymorphic shapes specifications: args[0].shape = (2*b + a, a, c + b + a). "
2023-07-21 14:46:30 +03:00
" Obtained dimension variables: ' a ' = 2 from specification ' a ' for dimension args[0].shape[1] (= 2), . "
" Please see https://github.com/google/jax/blob/main/jax/experimental/jax2tf/README.md#shape-assertion-errors for more details. "
) ) ,
dict ( shape = ( 8 , 2 , 6 ) , # a = 2, b = 3 - inconsistency
poly_spec = " (a + 2*b, a, a + b) " ,
expect_error = (
" Input shapes do not match the polymorphic shapes specification. "
2024-01-05 14:48:53 +07:00
" Found inconsistency between dimension size args[0].shape[0] (= 8) and the specification ' 2*b + a ' (= 10). "
" Using the following polymorphic shapes specifications: args[0].shape = (2*b + a, a, b + a). "
2023-07-21 14:46:30 +03:00
" Obtained dimension variables: ' a ' = 2 from specification ' a ' for dimension args[0].shape[1] (= 2), "
2024-01-05 14:48:53 +07:00
" ' b ' = 4 from specification ' b + a ' for dimension args[0].shape[2] (= 6), . "
2023-07-21 14:46:30 +03:00
" Please see https://github.com/google/jax/blob/main/jax/experimental/jax2tf/README.md#shape-assertion-errors for more details. "
) ) ,
dict ( shape = ( 7 , 2 , 36 ) , # a = 2, b = 3, c = 6 - cannot solve c
poly_spec = " (2 * a + b, a, c * c) " ,
expect_error = (
" Cannot solve for values of dimension variables { ' c ' }. "
" We can only solve linear uni-variate constraints. "
2024-01-05 14:48:53 +07:00
" Using the following polymorphic shapes specifications: args[0].shape = (b + 2*a, a, c^2). "
2023-07-21 14:46:30 +03:00
" Unprocessed specifications: ' c^2 ' for dimension size args[0].shape[2]. "
" Please see https://github.com/google/jax/blob/main/jax/experimental/jax2tf/README.md#dimension-variables-must-be-solvable-from-the-input-shapes for more details. "
) ) ,
] )
def test_shape_constraints_errors ( self , * ,
2023-10-06 21:32:28 +02:00
shape , poly_spec : str , expect_error : str | None = None ) :
2023-07-21 14:46:30 +03:00
def f_jax ( x ) : # x: f32[a + 2*b, a, a + b + c]
return 0.
x = np . arange ( math . prod ( shape ) , dtype = np . float32 ) . reshape ( shape )
with contextlib . ExitStack ( ) as stack :
if expect_error is not None :
stack . push ( self . assertRaisesRegex ( Exception , re . escape ( expect_error ) ) )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( f_jax ) ) (
2023-11-23 09:05:37 +02:00
jax . ShapeDtypeStruct ( export . symbolic_shape ( poly_spec ) , x . dtype ) )
2024-06-10 09:45:09 +02:00
exp . call ( x )
2023-07-21 14:46:30 +03:00
2023-11-14 09:29:32 +01:00
def test_poly_booleans ( self ) :
# For booleans we use a special case ConvertOp to cast to and from
# dynamic shapes arguments.
2024-06-10 09:45:09 +02:00
@jax.jit
2023-11-14 09:29:32 +01:00
def f_jax ( x ) : # x: bool[b]
return jnp . logical_not ( x )
x = np . array ( [ True , False , True , False ] , dtype = np . bool_ )
2023-12-11 23:22:16 -08:00
exp = get_exported ( f_jax ) ( jax . ShapeDtypeStruct ( export . symbolic_shape ( " b " ) ,
2024-01-08 05:29:11 -08:00
x . dtype ) )
2024-06-10 09:45:09 +02:00
res = exp . call ( x )
2023-11-14 09:29:32 +01:00
self . assertAllClose ( f_jax ( x ) , res )
2023-12-11 23:22:16 -08:00
@jtu.parameterized_filterable (
kwargs = [
dict ( dtype = dtype )
for dtype in dtypes . _jax_types if dtype != np . dtype ( " bool " )
] )
def test_poly_numeric_dtypes ( self , dtype = np . int32 ) :
if str ( dtype ) in { " float8_e4m3b11fnuz " ,
" float8_e4m3fnuz " ,
" float8_e5m2fnuz " ,
" int4 " ,
" uint4 " } :
self . skipTest ( f " TODO: serialization not supported for { str ( dtype ) } " )
2024-06-10 09:45:09 +02:00
@jax.jit
2023-12-11 23:22:16 -08:00
def f_jax ( x ) :
return x + x
x = np . arange ( 6 , dtype = dtype )
exp = get_exported ( f_jax ) ( jax . ShapeDtypeStruct ( export . symbolic_shape ( " b " ) ,
x . dtype ) )
2024-06-10 09:45:09 +02:00
res = exp . call ( x )
2023-12-11 23:22:16 -08:00
self . assertAllClose ( f_jax ( x ) , res )
2023-11-14 10:41:31 +01:00
def test_poly_expressions ( self ) :
# Calling an Exported module whose output shape contains symbolic
# expressions
def output_shape ( b ) :
return ( b + b , b - b , b * b ,
( b + 13 ) / / b , ( b + 13 ) % b ,
2023-12-13 10:14:27 +01:00
core . max_dim ( b - 5 , 0 ) )
2024-06-10 09:45:09 +02:00
@jax.jit
2023-11-14 10:41:31 +01:00
def f ( x ) : # x: f32[b]
b = x . shape [ 0 ]
return jnp . ones ( output_shape ( b ) , dtype = x . dtype )
x = np . arange ( 5 , dtype = np . float32 )
2023-12-11 23:22:16 -08:00
exp = get_exported ( f ) ( jax . ShapeDtypeStruct ( export . symbolic_shape ( " b " ) ,
2023-11-23 09:05:37 +02:00
x . dtype ) )
2023-11-14 10:41:31 +01:00
# Call with static shapes
2024-06-10 09:45:09 +02:00
res = exp . call ( x )
2023-11-14 10:41:31 +01:00
self . assertAllClose ( res , f ( x ) )
# Now re-export with shape polymorphism
2023-11-23 09:05:37 +02:00
x_spec = jax . ShapeDtypeStruct ( export . symbolic_shape ( " a " ) , x . dtype )
2024-06-10 09:45:09 +02:00
exp2 = get_exported ( jax . jit ( exp . call ) ) ( x_spec )
2024-01-01 23:09:42 +07:00
a = exp2 . in_avals [ 0 ] . shape [ 0 ]
2023-11-14 10:41:31 +01:00
self . assertEqual ( exp2 . out_avals [ 0 ] . shape , output_shape ( a ) )
2024-05-28 16:15:30 +03:00
def test_poly_call_pmap ( self ) :
if len ( jax . devices ( ) ) < 2 :
self . skipTest ( " Need at least 2 devices " )
def f ( x ) : # x: f32[a, 4]
return x + jnp . arange ( x . shape [ 0 ] , dtype = x . dtype ) . reshape ( ( x . shape [ 0 ] , 1 ) )
a , = export . symbolic_shape ( " a " )
2024-06-10 09:45:09 +02:00
exp = export . export ( jax . jit ( f ) ) (
2024-05-28 16:15:30 +03:00
jax . ShapeDtypeStruct ( ( a , 4 ) , np . float32 ) )
2024-06-10 09:45:09 +02:00
f_exp = exp . call
2024-05-28 16:15:30 +03:00
x_jit = np . arange ( 12 , dtype = np . float32 ) . reshape ( ( 3 , 4 ) )
res_jit = jax . jit ( f_exp ) ( x_jit )
self . assertAllClose ( res_jit , f ( x_jit ) )
x_pmap = np . arange ( 24 , dtype = np . float32 ) . reshape ( ( 2 , 3 , 4 ) )
res_pmap = jax . pmap ( f_exp ) ( x_pmap )
self . assertAllClose ( res_pmap , jnp . stack ( [ f ( x ) for x in x_pmap ] ) )
2023-10-06 21:32:28 +02:00
def test_with_sharding ( self ) :
nr_devices = 2
if len ( jax . devices ( ) ) < nr_devices :
self . skipTest ( " Need at least 2 devices " )
export_devices = jax . devices ( ) [ 0 : nr_devices ]
export_mesh = Mesh ( export_devices , axis_names = ( " x " , ) )
a = np . arange ( 16 * 4 , dtype = np . float32 ) . reshape ( ( 16 , 4 ) )
@functools.partial (
jax . jit ,
in_shardings = ( jax . sharding . NamedSharding ( export_mesh , P ( " x " , None ) , ) , ) ,
out_shardings = jax . sharding . NamedSharding ( export_mesh , P ( None , " x " ) ) )
def f_jax ( b ) : # b: f32[16 // DEVICES, 4]
return b * 2.
res_native = f_jax ( a )
2023-12-11 23:22:16 -08:00
exp = get_exported ( f_jax ) ( a )
2023-10-06 21:32:28 +02:00
2023-12-11 23:22:16 -08:00
self . assertEqual ( exp . nr_devices , len ( export_devices ) )
2023-10-06 21:32:28 +02:00
run_devices = export_devices [ : : - 1 ] # We can use other devices
run_mesh = Mesh ( run_devices , " y " )
a_device = jax . device_put ( a , jax . sharding . NamedSharding ( run_mesh , P ( ) ) )
expected_re = re . compile (
# The top-level input it replicated
2023-11-15 09:24:07 -08:00
r " func.func .* @main \ ( %a rg0: tensor<16x4xf32>.*mhlo.sharding = \" {replicated} \" } \ ).* "
2023-10-06 21:32:28 +02:00
# We apply the in_shardings for f_jax
2023-11-15 09:24:07 -08:00
r " .*custom_call @Sharding \ ( %a rg0 \ ).*mhlo.sharding = \" { devices= \ [2,1 \ ]<= \ [2 \ ]} \" }.* "
2023-10-06 21:32:28 +02:00
r " % 1 = .*call @call_exported_f_jax.* "
# We apply the out_shardings for f_jax
2023-11-15 09:24:07 -08:00
r " .*custom_call @Sharding \ ( % 1 \ ).*mhlo.sharding = \" { devices= \ [1,2 \ ]<= \ [2 \ ]} \" }.* " ,
2023-10-06 21:32:28 +02:00
re . DOTALL )
2024-06-10 09:45:09 +02:00
hlo = jax . jit ( exp . call ) . lower ( a_device ) . as_text ( )
2023-10-06 21:32:28 +02:00
self . assertRegex ( hlo , expected_re )
2024-06-10 09:45:09 +02:00
res_exported = exp . call ( a_device )
2023-10-06 21:32:28 +02:00
self . assertAllClose ( res_native , res_exported )
# Test error reporting
with self . assertRaisesRegex (
NotImplementedError ,
" Exported module .* was lowered for 2 devices and is called in a context with 1 device " ) :
2024-06-10 09:45:09 +02:00
_ = exp . call ( a )
2023-10-06 21:32:28 +02:00
with self . assertRaisesRegex (
NotImplementedError ,
" Exported module .* was lowered for 2 devices and is called in a context with 1 device " ) :
mesh1 = Mesh ( jax . devices ( ) [ 0 : 1 ] , axis_names = ( " x " , ) )
_ = jax . jit (
2024-06-10 09:45:09 +02:00
exp . call ,
2023-10-06 21:32:28 +02:00
in_shardings = ( jax . sharding . NamedSharding ( mesh1 , P ( " x " , None ) ) , )
) ( a )
2024-06-03 18:37:30 +01:00
def test_input_shardings_unused_args ( self ) :
nr_devices = 2
if len ( jax . devices ( ) ) < nr_devices :
self . skipTest ( " Need at least 2 devices " )
devices = jax . devices ( ) [ 0 : nr_devices ]
export_mesh = Mesh ( np . array ( devices ) ,
axis_names = ( " x " , ) )
a = np . arange ( 16 * 4 , dtype = np . float32 ) . reshape ( ( 16 , 4 ) )
f = jax . jit ( lambda x , y : jnp . sin ( x ) ,
in_shardings = ( jax . sharding . NamedSharding ( export_mesh , P ( " x " , None ) , ) ,
None ) ,
out_shardings = ( jax . sharding . NamedSharding ( export_mesh , P ( " x " , None ) , ) ) )
exp = get_exported ( f ) ( a , a )
# We can use other devices and other meshes for running
run_devices = devices [ : : - 1 ]
run_mesh = Mesh ( run_devices , " a " )
2024-06-06 18:43:25 +01:00
run_input_shardings = exp . in_shardings_jax ( run_mesh )
2024-06-03 18:37:30 +01:00
a_run = jax . device_put ( a , run_input_shardings [ 0 ] )
b_run = jax . device_put ( a , run_input_shardings [ 1 ] )
2024-06-10 09:45:09 +02:00
res = exp . call ( a_run , b_run )
2024-06-03 18:37:30 +01:00
self . assertEqual ( res . addressable_shards [ 0 ] . device , run_devices [ 0 ] )
self . assertEqual ( res . addressable_shards [ 1 ] . device , run_devices [ 1 ] )
2024-05-13 14:32:24 +03:00
def test_call_with_different_no_of_devices ( self ) :
if jax . local_device_count ( ) < 2 :
self . skipTest ( " Need at least 2 devices " )
@jax.jit
def f_without_shardings ( x ) :
return jnp . sum ( x * * 2 , axis = 0 )
a = jnp . arange ( jax . local_device_count ( ) * 10 , dtype = np . float32 ) . reshape (
( jax . local_device_count ( ) , 10 )
)
res_native = f_without_shardings ( a )
exp = get_exported ( f_without_shardings ) ( a )
self . assertEqual ( exp . nr_devices , 1 )
run_devices = jax . local_devices ( )
run_mesh = Mesh ( run_devices , " i " )
b = jax . device_put ( a , jax . sharding . NamedSharding ( run_mesh , P ( " i " ) ) )
2024-06-10 09:45:09 +02:00
res_exported = exp . call ( b )
2024-05-13 14:32:24 +03:00
self . assertAllClose ( res_native , res_exported )
def test_call_with_different_no_of_devices_error_has_in_shardings ( self ) :
if jax . local_device_count ( ) < 2 :
self . skipTest ( " Need at least 2 devices " )
mesh_1 = Mesh ( jax . local_devices ( ) [ : 1 ] , " i " )
@functools.partial ( pjit . pjit ,
in_shardings = NamedSharding ( mesh_1 , P ( " i " ) ) )
def f_with_sharding ( x ) :
return jnp . sum ( x * * 2 , axis = 0 )
a = jnp . arange ( jax . device_count ( ) * 10 , dtype = np . float32 ) . reshape (
( jax . device_count ( ) , 10 )
)
exp = get_exported ( f_with_sharding ) ( a )
self . assertEqual ( exp . nr_devices , 1 )
run_devices = jax . local_devices ( )
run_mesh = Mesh ( run_devices , " i " )
b = jax . device_put ( a , jax . sharding . NamedSharding ( run_mesh , P ( " i " ) ) )
with self . assertRaisesRegex (
NotImplementedError ,
" Exported module .* was lowered for 1 devices and is called in a "
f " context with { jax . local_device_count ( ) } devices.* module contains "
" non-replicated sharding annotations " ) :
2024-06-10 09:45:09 +02:00
exp . call ( b )
2024-05-13 14:32:24 +03:00
2024-05-22 00:36:34 -07:00
def test_call_with_different_no_of_devices_pmap ( self ) :
if len ( jax . devices ( ) ) < 2 :
self . skipTest ( " Need at least 2 devices " )
@jax.jit
def f_jax ( x ) :
return jnp . sum ( x * * 2 , axis = 0 )
a = jnp . arange ( 100 , dtype = jnp . float32 ) . reshape ( ( 1 , 100 ) )
res_native = f_jax ( a )
exp = get_exported ( f_jax ) ( a )
self . assertEqual ( exp . nr_devices , 1 )
b = jnp . arange ( jax . device_count ( ) * 100 , dtype = jnp . float32 ) . reshape (
( - 1 , 1 , 100 )
)
2024-06-10 09:45:09 +02:00
res_exported = jax . pmap ( exp . call ) ( b )
2024-05-22 00:36:34 -07:00
self . assertAllClose ( res_native , res_exported [ 0 ] )
2024-05-13 14:32:24 +03:00
def test_call_with_different_no_of_devices_error_has_sharding_constraint ( self ) :
if jax . device_count ( ) < 2 :
self . skipTest ( " Need at least 2 devices " )
mesh_1 = Mesh ( jax . local_devices ( ) [ : 1 ] , " i " )
@jax.jit
def f_with_sharding ( x ) :
x = jax . lax . with_sharding_constraint ( x , NamedSharding ( mesh_1 , P ( " i " ) ) )
return jnp . sum ( x * * 2 , axis = 0 )
a = jnp . arange ( jax . device_count ( ) * 10 , dtype = np . float32 ) . reshape (
( jax . device_count ( ) , 10 )
)
exp = get_exported ( f_with_sharding ) ( a )
self . assertEqual ( exp . nr_devices , 1 )
run_devices = jax . local_devices ( )
run_mesh = Mesh ( run_devices , " i " )
b = jax . device_put ( a , jax . sharding . NamedSharding ( run_mesh , P ( " i " ) ) )
with self . assertRaisesRegex (
NotImplementedError ,
" Exported module .* was lowered for 1 devices and is called in a "
f " context with { jax . local_device_count ( ) } devices.* module contains "
" non-replicated sharding annotations " ) :
2024-06-10 09:45:09 +02:00
exp . call ( b )
2024-05-13 14:32:24 +03:00
2023-12-16 17:08:38 +02:00
@jtu.parameterized_filterable (
kwargs = [
dict ( testcase_name = f " _poly= { poly } " , poly = poly )
for poly in ( None , " 2*b1,_ " , " _,b2 " , " 2*b1,b2 " )
] )
def test_shard_map_collective_permute ( self , poly = None ) :
if len ( jax . devices ( ) ) < 2 :
self . skipTest ( " Test requires at least 2 local devices " )
devices = np . array ( jax . devices ( ) [ : 2 ] ) # use 2 devices
mesh = Mesh ( devices , axis_names = ( " x " , ) )
a = np . arange ( 4 * 4 , dtype = np . float32 ) . reshape ( ( 4 , 4 ) )
@functools.partial (
pjit . pjit ,
in_shardings = NamedSharding ( mesh , P ( " x " , None ) , ) ,
out_shardings = NamedSharding ( mesh , P ( " x " , None ) ) )
@functools.partial (
shard_map , mesh = mesh ,
in_specs = ( P ( " x " , None ) , ) , out_specs = P ( " x " , None ) )
def f_jax ( b ) : # b: f32[2, 4]
axis_size = lax . psum ( 1 , " x " )
perm = [ ( j , ( j + 1 ) % axis_size ) for j in range ( axis_size ) ]
return lax . ppermute ( b , " x " , perm = perm )
2024-01-10 09:44:31 +02:00
args_specs = export . symbolic_args_specs ( ( a , ) , polymorphic_shapes = poly )
2023-12-16 17:08:38 +02:00
exp = get_exported ( f_jax ) ( * args_specs )
# Test JAX native execution
res_jax = f_jax ( a )
b0 , b1 = np . split ( a , 2 , axis = 0 ) # The shard_map splits on axis 0
b0 , b1 = b1 , b0
expected = np . concatenate ( [ b0 , b1 ] , axis = 0 ) # out_specs concatenates on axis 0
self . assertAllClose ( res_jax , expected )
self . assertLen ( res_jax . addressable_shards , len ( devices ) )
# Test reloaded execution.
2024-06-10 09:45:09 +02:00
f_r = exp . call
2023-12-16 17:08:38 +02:00
with self . assertRaisesRegex (
Exception ,
" Exported module .* was lowered for 2 devices and is "
" called in a context with 1 devices " ) :
_ = f_r ( a ) # A is all on the default device
# Replicate the input so that the execution knows
# that we are using multiple devices
a_replicated = jax . device_put ( a , NamedSharding ( mesh , None ) )
res_r = f_r ( a_replicated )
self . assertAllClose ( res_r , expected )
self . assertLen ( res_r . addressable_shards , len ( devices ) )
for i in range ( len ( devices ) ) :
self . assertEqual ( res_jax . addressable_shards [ i ] . device ,
res_r . addressable_shards [ i ] . device )
self . assertEqual ( res_jax . addressable_shards [ i ] . index ,
res_r . addressable_shards [ i ] . index )
self . assertAllClose ( res_jax . addressable_shards [ i ] . data ,
res_r . addressable_shards [ i ] . data )
2023-10-06 21:32:28 +02:00
@jtu.parameterized_filterable (
kwargs = [
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
dict ( in_shardings = in_shardings , out_shardings = out_shardings ,
2024-05-17 06:48:04 -07:00
with_mesh_context = with_mesh_context )
2023-10-06 21:32:28 +02:00
for in_shardings in ( " missing " , None , " P " )
for out_shardings in ( " missing " , None , " P " )
2024-05-17 06:48:04 -07:00
for with_mesh_context in ( True , False )
2023-10-06 21:32:28 +02:00
] )
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
def test_grad_with_sharding ( self , in_shardings = " P " , out_shardings = None ,
2024-05-17 06:48:04 -07:00
with_mesh_context = False ) :
2023-10-06 21:32:28 +02:00
if len ( jax . devices ( ) ) < 2 :
self . skipTest ( " Test requires at least 2 devices " )
x_shape = ( 10 , 20 )
x = np . arange ( np . prod ( x_shape ) , dtype = np . float32 ) . reshape ( x_shape )
2024-05-17 06:48:04 -07:00
# The input has shape f32[10,20] and output f32[20,10] in order to
# distinguish them in the HLO.
2023-10-06 21:32:28 +02:00
def f_jax ( x ) : # x: f32[10,20] -> f32[20,10]
return jnp . sin ( x . T )
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
mesh = Mesh ( jax . devices ( ) [ : 2 ] , " d " )
2023-10-06 21:32:28 +02:00
pjit_kwargs = { }
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
# Use NamedShardings if we don't have a mesh_context
2024-05-17 06:48:04 -07:00
if with_mesh_context :
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
sharding_None_d = P ( None , " d " )
sharding_d_None = P ( " d " , None )
else :
sharding_None_d = NamedSharding ( mesh , P ( None , " d " ) )
sharding_d_None = NamedSharding ( mesh , P ( " d " , None ) )
2023-10-06 21:32:28 +02:00
if in_shardings != " missing " :
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
pjit_kwargs [ " in_shardings " ] = (
sharding_None_d if in_shardings == " P " else None )
2023-10-06 21:32:28 +02:00
if out_shardings != " missing " :
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
pjit_kwargs [ " out_shardings " ] = (
sharding_d_None if out_shardings == " P " else None )
f_jax_pjit = pjit . pjit ( f_jax , * * pjit_kwargs )
with contextlib . ExitStack ( ) as stack :
2024-05-17 06:48:04 -07:00
if with_mesh_context :
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
stack . enter_context ( mesh )
# Serialize higher-order gradiends
2023-12-16 10:09:01 +02:00
exp = get_exported ( f_jax_pjit , vjp_order = 2 ) ( x )
2023-10-06 21:32:28 +02:00
exp_vjp = exp . vjp ( )
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
# Try 2nd order grad as well
exp_vjp2 = exp_vjp . vjp ( )
2023-10-06 21:32:28 +02:00
vjp_module_str = str ( exp_vjp . mlir_module ( ) )
2024-05-17 06:48:04 -07:00
# The MHLO attributes of the args and the result of the main function
# Arg0 are the primal inputs, arg1 are the output cotangent, res is the input cotangent
arg0_attrs , arg1_attrs , res_attrs = re . search (
r " func.func public @main \ ( %a rg0: tensor<10x20xf32> (.*) "
r " , %a rg1: tensor<20x10xf32> (.*) "
r " \ ) -> \ (tensor<10x20xf32> (.*) " , # the result
vjp_module_str ) . groups ( )
2023-10-06 21:32:28 +02:00
if in_shardings == " P " :
2024-05-17 06:48:04 -07:00
self . assertRegex ( arg0_attrs , re . escape ( " { devices=[1,2]<=[2]} " ) )
self . assertRegex ( res_attrs , re . escape ( " { devices=[1,2]<=[2]} " ) )
2023-10-06 21:32:28 +02:00
primal_in_sharding = " { devices=[1,2]<=[2]} "
else :
primal_in_sharding = " {replicated} "
2024-05-17 06:48:04 -07:00
if with_mesh_context :
self . assertRegex ( arg0_attrs , re . escape ( " replicated " ) )
self . assertRegex ( res_attrs , re . escape ( " replicated " ) )
else :
# If there is no mesh context, we have used NamedSharding(None)
# and then the sharding is unspecified!
self . assertNotIn ( " mhlo.sharding " , arg0_attrs )
self . assertNotIn ( " mhlo.sharding " , res_attrs )
2023-10-06 21:32:28 +02:00
if out_shardings == " P " :
2024-05-17 06:48:04 -07:00
self . assertRegex ( arg1_attrs , re . escape ( " { devices=[2,1]<=[2]} " ) )
2023-10-06 21:32:28 +02:00
primal_out_sharding = " { devices=[2,1]<=[2]} "
else :
primal_out_sharding = " {replicated} "
2024-05-17 06:48:04 -07:00
if with_mesh_context :
self . assertRegex ( arg1_attrs , re . escape ( " replicated " ) )
else :
self . assertNotIn ( " mhlo.sharding " , arg1_attrs )
2023-10-06 21:32:28 +02:00
2024-05-17 06:48:04 -07:00
# Sharding custom calls for the primal input shape all match primal_in_sharding
primal_in_sharding_calls = re . findall (
2023-11-15 18:38:04 +01:00
r " custom_call @Sharding.*mhlo.sharding = \" (.+) \" .*:.*tensor<10x20xf32> " ,
2023-10-06 21:32:28 +02:00
vjp_module_str )
self . assertTrue (
2024-05-17 06:48:04 -07:00
all ( s == primal_in_sharding for s in primal_in_sharding_calls ) ,
primal_in_sharding_calls
2023-10-06 21:32:28 +02:00
)
2023-11-15 18:38:04 +01:00
# Custom calls for the primal output shape all match primal_out_sharding
2024-05-17 06:48:04 -07:00
primal_out_sharding_calls = re . findall (
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
r " custom_call @Sharding.*mhlo.sharding = \" (.+) \" .*:.*tensor<20x10xf32> " ,
2023-10-06 21:32:28 +02:00
vjp_module_str )
self . assertTrue (
2024-05-17 06:48:04 -07:00
all ( s == primal_out_sharding for s in primal_out_sharding_calls ) ,
primal_out_sharding_calls
2023-10-06 21:32:28 +02:00
)
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
# Call the exported gradient functions. In order to set the device context
# we replicate the inputs. If we don't use a mesh context and there are
# no shardings on inputs or outputs, then we have serialized for one
# device.
2024-05-17 06:48:04 -07:00
if in_shardings != " P " and out_shardings != " P " and not with_mesh_context :
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
self . assertEqual ( exp_vjp . nr_devices , 1 )
self . assertEqual ( exp_vjp2 . nr_devices , 1 )
call_mesh = Mesh ( jax . devices ( ) [ : 1 ] , " e " )
else :
self . assertEqual ( exp_vjp . nr_devices , 2 )
self . assertEqual ( exp_vjp2 . nr_devices , 2 )
call_mesh = Mesh ( jax . devices ( ) [ : 2 ] , " e " )
2024-06-10 09:45:09 +02:00
g1 = pjit . pjit ( exp_vjp . call ,
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
in_shardings = ( NamedSharding ( call_mesh , None ) ,
NamedSharding ( call_mesh , None ) ) ) ( x , x . T )
_ , f_jax_vjp = jax . vjp ( f_jax , x )
xbar = f_jax_vjp ( x . T )
self . assertAllClose ( xbar , g1 )
2024-06-10 09:45:09 +02:00
g2 = pjit . pjit ( exp_vjp2 . call ,
[export] Add and fix a test for exporting higher-order gradients with sharding
There was a test for export with gradients, we changed the test to
(a) export 2nd order gradient also, and (b) to export both with
a mesh context and without a mesh context (using NamedSharding).
This test currently fails, only in the case when we do NOT have a
mesh context, as explained below:
When exporting gradient functions, we first export the primal functions
and we use the in/out-shardings to construct shardings of the gradient
function. Since Exported shardings now contain only HloSharding objects,
and to lower the gradient function we must use `pjit(vjp(f)).lower()`, we
construct GSPMDSharding objects using the current devices and the HloSharding
object from the Exported primal.
However, these objects do not have the `_original_sharding` attribute.
Later in `pjit._resource_typing_pjit` we attempt to `parse_flatten_op_sharding`
using the mesh context (which is empty). This fails.
This PR contains one workaround, to skip `parse_flatten_op_sharding` if
the physical mesh of the `resource_env` is empty.
Another, probably better solution, is to ensure that `resource_env` is
`None` when then is no mesh context. That seemed reasonable, but currently
the code returns an empty mesh from the resource_env if there is no
mesh context. Changing this would have effects in more parts of the code,
so I have not done it here, but it may be worth doing.
2023-12-04 10:24:01 +02:00
in_shardings = ( NamedSharding ( call_mesh , None ) ,
NamedSharding ( call_mesh , None ) ,
NamedSharding ( call_mesh , None ) ) ) ( x , x . T , x )
_ , f_jax_vjp2 = jax . vjp ( f_jax_vjp , x . T )
xbar2 , = f_jax_vjp2 ( ( x , ) )
self . assertAllClose ( xbar2 , g2 [ 1 ] )
2024-05-20 06:27:05 -07:00
def test_grad_sharding_different_mesh ( self ) :
# Export and serialize with two similar meshes, the only difference being
# the order of the devices. grad and serialization should not fail.
# https://github.com/google/jax/issues/21314
def f ( x ) :
return jnp . sum ( x * 2. )
mesh = Mesh ( jax . local_devices ( ) , " i " )
mesh_rev = Mesh ( list ( reversed ( jax . local_devices ( ) ) ) , " i " )
shardings = NamedSharding ( mesh , jax . sharding . PartitionSpec ( ( " i " , ) ) )
shardings_rev = NamedSharding ( mesh_rev , jax . sharding . PartitionSpec ( ( " i " , ) ) )
input_no_shards = jnp . ones ( shape = ( jax . local_device_count ( ) , ) )
input = jnp . ones ( shape = ( jax . local_device_count ( ) , ) , device = shardings )
input_rev = jax . device_put ( input_no_shards , device = shardings_rev )
exp = export . export ( pjit . pjit ( f , in_shardings = shardings ) ) ( input )
exp_rev = export . export ( pjit . pjit ( f , in_shardings = shardings_rev ) ) ( input_no_shards )
2024-06-10 09:45:09 +02:00
_ = exp . serialize ( vjp_order = 1 )
_ = exp_rev . serialize ( vjp_order = 1 )
2024-05-20 06:27:05 -07:00
2024-06-10 09:45:09 +02:00
g = jax . grad ( exp_rev . call ) ( input_rev )
g_rev = jax . grad ( exp . call ) ( input )
2024-05-20 06:27:05 -07:00
self . assertAllClose ( g , g_rev )
2023-08-27 13:27:34 +02:00
def test_multi_platform ( self ) :
2023-10-06 21:32:28 +02:00
x = np . arange ( 8 , dtype = np . float32 )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( _testing_multi_platform_func ) ,
lowering_platforms = ( " tpu " , " cpu " , " cuda " , " rocm " ) ) ( x )
2024-02-01 22:59:46 +00:00
self . assertEqual ( exp . lowering_platforms , ( " tpu " , " cpu " , " cuda " , " rocm " ) )
2023-09-25 10:13:30 +02:00
module_str = str ( exp . mlir_module ( ) )
2023-09-04 11:03:55 +03:00
expected_main_re = (
r " @main \ ( "
2023-11-15 18:38:04 +01:00
r " %a rg0: tensor<i..>.*jax.global_constant = \" _platform_index \" .*, "
r " %a rg1: tensor<8xf32>.*-> " )
2023-09-04 11:03:55 +03:00
self . assertRegex ( module_str , expected_main_re )
[export] Ensure that we run shape refinement for modules that use multi-platform lowering
For multi-platform lowering we use a constant platform index argument
threaded through all function calls, and we use conditionals
for the lowering of primitives that have multiple lowerings.
In many cases, but not all, these conditionals are removed
by constant folding prior to conversion to HLO, and the XLA
compiler will only see the code for the compilation platform.
However, in some cases these conditionals are not constant-folded
and the XLA compiler will either see code for other platforms
that is does not expect (the TPU tests failing before),
or will simply generate slightly different code
(e.g., the conv_general_dilated tests on CPU,
where we saw numerical differences before).
To address this, we ensure that we run shape refinement
for modules that use multi-platform lowering. The shape refinement
pass already handles inter-procedural constant folding for dimension
value arguments.
At the moment, the platform index argument is modelled as a dimension
value during lowering, so it makes some sense to use the same
shape refinement pass to clean it up before compilation. But
a cleaner solution would be to separate the shape refinement
pass into an interprocedural constant folding, followed by
proper shape refinement. Then we'd introduce a separate
attribute `jax.needs_constant_folding` in addition to
`jax.uses_shape_polymorphism`.
This change fixes the remaining failures in the
multi_platform_export_test for TPU, and the
conv_general_dilated test for CPU.
PiperOrigin-RevId: 571254037
2023-10-06 00:41:27 -07:00
self . assertIn ( " jax.uses_shape_polymorphism = true " ,
module_str )
2023-10-06 21:32:28 +02:00
# Call with argument placed on different plaforms
for platform in self . __class__ . platforms :
x_device = jax . device_put ( x , jax . devices ( platform ) [ 0 ] )
2024-06-10 09:45:09 +02:00
res_exp = exp . call ( x_device )
2023-10-06 21:32:28 +02:00
self . assertAllClose (
res_exp ,
_testing_multi_platform_fun_expected ( x , platform = platform ) )
2023-08-27 13:27:34 +02:00
def test_multi_platform_nested ( self ) :
x = np . arange ( 5 , dtype = np . float32 )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( lambda x : _testing_multi_platform_func ( jnp . sin ( x ) ) ) ,
lowering_platforms = ( " cpu " , " tpu " , " cuda " , " rocm " ) ) ( x )
2024-02-01 22:59:46 +00:00
self . assertEqual ( exp . lowering_platforms , ( " cpu " , " tpu " , " cuda " , " rocm " ) )
2023-08-27 13:27:34 +02:00
# Now serialize the call to the exported using a different sequence of
# lowering platforms, but included in the lowering platforms for the
# nested exported.
2024-06-10 09:45:09 +02:00
exp2 = get_exported ( jax . jit ( exp . call ) ,
lowering_platforms = ( " cpu " , " cuda " , " rocm " ) ) ( x )
2023-10-18 16:37:38 -07:00
# Ensure that we do not have multiple lowerings of the exported function
exp2_module_str = str ( exp2 . mlir_module ( ) )
count_sine = len ( re . findall ( " stablehlo.sine " , exp2_module_str ) )
self . assertEqual ( 1 , count_sine )
2023-10-06 21:32:28 +02:00
# Call with argument placed on different plaforms
for platform in self . __class__ . platforms :
if platform == " tpu " : continue
x_device = jax . device_put ( x , jax . devices ( platform ) [ 0 ] )
2024-06-10 09:45:09 +02:00
res_exp = exp2 . call ( x_device )
2023-10-06 21:32:28 +02:00
self . assertAllClose (
res_exp ,
2023-10-18 16:37:38 -07:00
_testing_multi_platform_fun_expected ( np . sin ( x ) , platform = platform ) )
2023-08-27 13:27:34 +02:00
[export] Ensure that we run shape refinement for modules that use multi-platform lowering
For multi-platform lowering we use a constant platform index argument
threaded through all function calls, and we use conditionals
for the lowering of primitives that have multiple lowerings.
In many cases, but not all, these conditionals are removed
by constant folding prior to conversion to HLO, and the XLA
compiler will only see the code for the compilation platform.
However, in some cases these conditionals are not constant-folded
and the XLA compiler will either see code for other platforms
that is does not expect (the TPU tests failing before),
or will simply generate slightly different code
(e.g., the conv_general_dilated tests on CPU,
where we saw numerical differences before).
To address this, we ensure that we run shape refinement
for modules that use multi-platform lowering. The shape refinement
pass already handles inter-procedural constant folding for dimension
value arguments.
At the moment, the platform index argument is modelled as a dimension
value during lowering, so it makes some sense to use the same
shape refinement pass to clean it up before compilation. But
a cleaner solution would be to separate the shape refinement
pass into an interprocedural constant folding, followed by
proper shape refinement. Then we'd introduce a separate
attribute `jax.needs_constant_folding` in addition to
`jax.uses_shape_polymorphism`.
This change fixes the remaining failures in the
multi_platform_export_test for TPU, and the
conv_general_dilated test for CPU.
PiperOrigin-RevId: 571254037
2023-10-06 00:41:27 -07:00
def test_multi_platform_nested_inside_single_platform_export ( self ) :
x = np . arange ( 5 , dtype = np . float32 )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( _testing_multi_platform_func ) ,
lowering_platforms = ( " cpu " , " tpu " , " cuda " , " rocm " ) ) ( x )
2024-02-01 22:59:46 +00:00
self . assertEqual ( exp . lowering_platforms , ( " cpu " , " tpu " , " cuda " , " rocm " ) )
[export] Ensure that we run shape refinement for modules that use multi-platform lowering
For multi-platform lowering we use a constant platform index argument
threaded through all function calls, and we use conditionals
for the lowering of primitives that have multiple lowerings.
In many cases, but not all, these conditionals are removed
by constant folding prior to conversion to HLO, and the XLA
compiler will only see the code for the compilation platform.
However, in some cases these conditionals are not constant-folded
and the XLA compiler will either see code for other platforms
that is does not expect (the TPU tests failing before),
or will simply generate slightly different code
(e.g., the conv_general_dilated tests on CPU,
where we saw numerical differences before).
To address this, we ensure that we run shape refinement
for modules that use multi-platform lowering. The shape refinement
pass already handles inter-procedural constant folding for dimension
value arguments.
At the moment, the platform index argument is modelled as a dimension
value during lowering, so it makes some sense to use the same
shape refinement pass to clean it up before compilation. But
a cleaner solution would be to separate the shape refinement
pass into an interprocedural constant folding, followed by
proper shape refinement. Then we'd introduce a separate
attribute `jax.needs_constant_folding` in addition to
`jax.uses_shape_polymorphism`.
This change fixes the remaining failures in the
multi_platform_export_test for TPU, and the
conv_general_dilated test for CPU.
PiperOrigin-RevId: 571254037
2023-10-06 00:41:27 -07:00
# Now serialize the call for the current platform.
2024-06-10 09:45:09 +02:00
exp2 = get_exported ( jax . jit ( exp . call ) ) ( x )
[export] Ensure that we run shape refinement for modules that use multi-platform lowering
For multi-platform lowering we use a constant platform index argument
threaded through all function calls, and we use conditionals
for the lowering of primitives that have multiple lowerings.
In many cases, but not all, these conditionals are removed
by constant folding prior to conversion to HLO, and the XLA
compiler will only see the code for the compilation platform.
However, in some cases these conditionals are not constant-folded
and the XLA compiler will either see code for other platforms
that is does not expect (the TPU tests failing before),
or will simply generate slightly different code
(e.g., the conv_general_dilated tests on CPU,
where we saw numerical differences before).
To address this, we ensure that we run shape refinement
for modules that use multi-platform lowering. The shape refinement
pass already handles inter-procedural constant folding for dimension
value arguments.
At the moment, the platform index argument is modelled as a dimension
value during lowering, so it makes some sense to use the same
shape refinement pass to clean it up before compilation. But
a cleaner solution would be to separate the shape refinement
pass into an interprocedural constant folding, followed by
proper shape refinement. Then we'd introduce a separate
attribute `jax.needs_constant_folding` in addition to
`jax.uses_shape_polymorphism`.
This change fixes the remaining failures in the
multi_platform_export_test for TPU, and the
conv_general_dilated test for CPU.
PiperOrigin-RevId: 571254037
2023-10-06 00:41:27 -07:00
module_str = str ( exp2 . mlir_module ( ) )
self . assertIn ( " jax.uses_shape_polymorphism = true " ,
module_str )
2024-06-10 09:45:09 +02:00
res2 = exp2 . call ( x )
[export] Ensure that we run shape refinement for modules that use multi-platform lowering
For multi-platform lowering we use a constant platform index argument
threaded through all function calls, and we use conditionals
for the lowering of primitives that have multiple lowerings.
In many cases, but not all, these conditionals are removed
by constant folding prior to conversion to HLO, and the XLA
compiler will only see the code for the compilation platform.
However, in some cases these conditionals are not constant-folded
and the XLA compiler will either see code for other platforms
that is does not expect (the TPU tests failing before),
or will simply generate slightly different code
(e.g., the conv_general_dilated tests on CPU,
where we saw numerical differences before).
To address this, we ensure that we run shape refinement
for modules that use multi-platform lowering. The shape refinement
pass already handles inter-procedural constant folding for dimension
value arguments.
At the moment, the platform index argument is modelled as a dimension
value during lowering, so it makes some sense to use the same
shape refinement pass to clean it up before compilation. But
a cleaner solution would be to separate the shape refinement
pass into an interprocedural constant folding, followed by
proper shape refinement. Then we'd introduce a separate
attribute `jax.needs_constant_folding` in addition to
`jax.uses_shape_polymorphism`.
This change fixes the remaining failures in the
multi_platform_export_test for TPU, and the
conv_general_dilated test for CPU.
PiperOrigin-RevId: 571254037
2023-10-06 00:41:27 -07:00
self . assertAllClose ( res2 , _testing_multi_platform_fun_expected ( x ) )
2024-06-10 16:54:35 +02:00
def test_multi_platform_mlir_lower_fun_with_platform_specific_primitives ( self ) :
# A primitive with multiple lowering rules, which themselves involve
# tracing primitives with per-platform rules, using mlir.lower_fun.
# This situation arises for Pallas lowering.
def times_n_lowering ( n : int , ctx : mlir . LoweringRuleContext ,
x : mlir . ir . Value ) - > Sequence [ mlir . ir . Value ] :
# Lowering n * x
res = x
for i in range ( n - 1 ) :
res = mlir . hlo . AddOp ( res , x )
return res . results
times_2 = core . Primitive ( " __testing_times_2 " ) # x2 for cpu
times_2 . def_abstract_eval ( lambda x : x )
# Define lowering rules only for the relevant platforms, ensure there
# is no error about missing lowering rules
mlir . register_lowering ( times_2 , functools . partial ( times_n_lowering , 2 ) ,
" cpu " )
times_3 = core . Primitive ( " __testing_times_3 " ) # x3 for cuda
times_3 . def_abstract_eval ( lambda x : x )
mlir . register_lowering ( times_3 , functools . partial ( times_n_lowering , 3 ) ,
" cuda " )
times_4 = core . Primitive ( " __testing_times_4 " ) # x4 for tpu
times_4 . def_abstract_eval ( lambda x : x )
mlir . register_lowering ( times_4 , functools . partial ( times_n_lowering , 4 ) ,
" tpu " )
times_2_or_3 = core . Primitive ( " __testing_times_2_or_3 " ) # x2 for cpu, x3 for cuda
times_2_or_3 . def_abstract_eval ( lambda x : x )
mlir . register_lowering ( times_2_or_3 ,
mlir . lower_fun ( times_2 . bind ,
multiple_results = False ) , " cpu " )
mlir . register_lowering ( times_2_or_3 ,
mlir . lower_fun ( times_3 . bind ,
multiple_results = False ) , " cuda " )
times_2_or_3_or_4 = core . Primitive ( " __testing_times_2_or_3_or_4 " ) # x2 for cpu, x3 for cuda, x4 for tpu
times_2_or_3_or_4 . def_abstract_eval ( lambda x : x )
times_2_or_3_or_4_lowering_cpu_cuda = mlir . lower_fun ( times_2_or_3 . bind ,
multiple_results = False )
for platform in [ " cpu " , " cuda " ] :
mlir . register_lowering ( times_2_or_3_or_4 ,
times_2_or_3_or_4_lowering_cpu_cuda ,
platform )
mlir . register_lowering ( times_2_or_3_or_4 , mlir . lower_fun ( times_4 . bind ,
multiple_results = False ) ,
" tpu " )
@jax.jit
def f ( x ) :
return times_2_or_3_or_4 . bind ( x )
x = np . float32 ( 42. )
exp = export . export ( f , lowering_platforms = [ " cpu " , " cuda " , " tpu " ] ) ( x )
expected = x * np . float32 ( dict ( cpu = 2 , gpu = 3 , tpu = 4 ) [ jtu . device_under_test ( ) ] )
self . assertAllClose ( exp . call ( x ) , expected )
2023-08-27 13:27:34 +02:00
def test_multi_platform_and_poly ( self ) :
2023-09-27 12:10:06 -07:00
if jtu . test_device_matches ( [ " gpu " ] ) :
2023-08-27 13:27:34 +02:00
# The export is not applicable to GPU
raise unittest . SkipTest ( " Not intended for running on GPU " )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( lambda x : jnp . reshape ( _testing_multi_platform_func ( x ) , ( - 1 , ) ) ) ,
lowering_platforms = ( " cpu " , " tpu " ) ) (
2023-11-23 09:05:37 +02:00
jax . ShapeDtypeStruct ( export . symbolic_shape ( " b1, b2 " ) , np . float32 )
2023-08-27 13:27:34 +02:00
)
x = np . arange ( 12 , dtype = np . float32 ) . reshape ( ( 3 , 4 ) )
2024-06-10 09:45:09 +02:00
res = exp . call ( x )
2023-09-04 11:03:55 +03:00
self . assertAllClose ( res , _testing_multi_platform_fun_expected ( x ) . reshape ( ( - 1 , ) ) )
2023-08-27 13:27:34 +02:00
# Now serialize the call to the exported
2024-06-10 09:45:09 +02:00
exp2 = get_exported ( jax . jit ( exp . call ) ) ( x )
res2 = exp2 . call ( x )
2023-09-04 11:03:55 +03:00
self . assertAllClose ( res2 , _testing_multi_platform_fun_expected ( x ) . reshape ( ( - 1 , ) ) )
2023-08-27 13:27:34 +02:00
2023-10-06 21:32:28 +02:00
def test_multi_platform_and_sharding ( self ) :
export_devices = jax . devices ( ) [ 0 : 2 ]
export_mesh = Mesh ( export_devices , axis_names = ( " x " , ) )
a = np . arange ( 16 * 4 , dtype = np . float32 ) . reshape ( ( 16 , 4 ) )
@functools.partial (
jax . jit ,
in_shardings = ( jax . sharding . NamedSharding ( export_mesh , P ( " x " , None ) , ) , ) ,
out_shardings = jax . sharding . NamedSharding ( export_mesh , P ( None , " x " ) ) )
def f_jax ( b ) : # b: f32[16 // DEVICES, 4]
return b * 2.
res_native = f_jax ( a )
2023-12-11 23:22:16 -08:00
exp = get_exported ( f_jax ,
2024-02-01 22:59:46 +00:00
lowering_platforms = ( " cpu " , " tpu " , " cuda " , " rocm " ) ) ( a )
2023-10-06 21:32:28 +02:00
# Call with argument placed on different plaforms
for platform in self . __class__ . platforms :
run_devices = jax . devices ( platform ) [ 0 : len ( export_devices ) ]
if len ( run_devices ) != len ( export_devices ) :
continue
run_mesh = Mesh ( run_devices , ( " x " , ) )
a_device = jax . device_put ( a , jax . sharding . NamedSharding ( run_mesh , None ) )
2024-06-10 09:45:09 +02:00
res_exp = exp . call ( a_device )
2023-10-06 21:32:28 +02:00
self . assertArraysAllClose ( res_native , res_exp )
2023-08-25 15:01:09 +02:00
@jtu.parameterized_filterable (
kwargs = [
dict ( v = v )
for v in range ( export . minimum_supported_serialization_version ,
export . maximum_supported_serialization_version + 1 ) ] )
def test_ordered_effects_basic ( self , * , v : int ) :
2024-06-04 16:08:16 -07:00
with config . jax_serialization_version ( v ) :
logging . info (
" Using JAX serialization version %s " ,
config . jax_serialization_version . value )
x = np . arange ( 3 , dtype = np . float32 )
def f_jax ( x ) : # x: f32[3]
# Test also the calling convention for inner functions
def f_jax_inner ( x ) :
return (
testing_primitive_with_effect_p . bind ( x , effect_class_name = " ForTestingOrderedEffect2 " ) +
testing_primitive_with_effect_p . bind ( x , effect_class_name = " ForTestingUnorderedEffect1 " ) )
2023-08-25 15:01:09 +02:00
return (
2024-06-04 16:08:16 -07:00
10. +
jax . jit ( f_jax_inner ) ( x ) +
testing_primitive_with_effect_p . bind ( x , effect_class_name = " ForTestingOrderedEffect1 " ) +
testing_primitive_with_effect_p . bind ( x , effect_class_name = " ForTestingOrderedEffect2 " )
)
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( f_jax ) ) ( x )
2024-06-04 16:08:16 -07:00
self . assertEqual ( [ " ForTestingOrderedEffect1() " , " ForTestingOrderedEffect2() " ] ,
sorted ( str ( e ) for e in exp . ordered_effects ) )
self . assertEqual ( [ " ForTestingUnorderedEffect1() " ] ,
[ str ( e ) for e in exp . unordered_effects ] )
mlir_module_str = str ( exp . mlir_module ( ) )
# Inner functions use stablehlo.token for all versions
inner_fun_expected_re = (
r " func.func private @f_jax_inner \ ( "
r " %a rg0: !stablehlo.token .*jax.token = true.* "
r " %a rg1: tensor<3xf32>.*->.* "
# Results
r " !stablehlo.token .*jax.token = true.* "
r " tensor<3xf32> "
2023-08-25 15:01:09 +02:00
)
2024-06-04 16:08:16 -07:00
self . assertRegex ( mlir_module_str , inner_fun_expected_re )
# The wrapped_main function takens tokens after version 9, and takes
# i1[0] before version 9.
wrapped_main_expected_re = (
r " @_wrapped_jax_export_main \ ( "
r " %a rg0: !stablehlo.token .*jax.token = true.* "
r " %a rg1: !stablehlo.token .*jax.token = true.*->.* "
# Results
r " !stablehlo.token .*jax.token = true.* "
r " !stablehlo.token .*jax.token = true.* " )
self . assertRegex ( mlir_module_str , wrapped_main_expected_re )
# The main function takes tokens and has the same type as the wrapped main
main_expected_re = wrapped_main_expected_re . replace ( " @_wrapped_jax_export_main " , " @main " )
self . assertRegex ( mlir_module_str , main_expected_re )
# Now call the exported from a function that uses its own effects
def f_outer ( x ) :
return (
testing_primitive_with_effect_p . bind (
x , effect_class_name = " ForTestingOrderedEffect2 " ) +
testing_primitive_with_effect_p . bind (
x , effect_class_name = " ForTestingUnorderedEffect1 " ) +
2024-06-10 09:45:09 +02:00
exp . call ( x ) )
2023-08-25 15:01:09 +02:00
2024-06-04 16:08:16 -07:00
lowered_outer = jax . jit ( f_outer ) . lower ( x )
self . assertEqual ( [ " ForTestingOrderedEffect1() " , " ForTestingOrderedEffect2() " ] ,
sorted ( str ( e ) for e in lowered_outer . _lowering . compile_args [ " ordered_effects " ] ) )
self . assertEqual ( [ " ForTestingUnorderedEffect1() " ] ,
sorted ( [ str ( e ) for e in lowered_outer . _lowering . compile_args [ " unordered_effects " ] ] ) )
2023-08-25 15:01:09 +02:00
2024-06-04 16:08:16 -07:00
mlir_outer_module_str = str ( lowered_outer . compiler_ir ( ) )
self . assertRegex ( mlir_outer_module_str , main_expected_re )
res = jax . jit ( f_outer ) ( x )
self . assertAllClose ( 2. * 2. * x + 10. + 4. * 2. * x , res )
2023-08-25 15:01:09 +02:00
@jtu.parameterized_filterable (
2024-06-11 13:46:44 +02:00
kwargs = [
dict ( v = v )
for v in range ( export . minimum_supported_serialization_version ,
export . maximum_supported_serialization_version + 1 ) ] )
2023-08-25 15:01:09 +02:00
def test_ordered_effects_poly ( self , * , v : int ) :
2024-06-04 16:08:16 -07:00
with config . jax_serialization_version ( v ) :
logging . info (
" Using JAX serialization version %s " ,
config . jax_serialization_version . value )
x = np . arange ( 12 , dtype = np . float32 ) . reshape ( ( 3 , 4 ) )
def f_jax ( x ) : # x: f32[b1, b2]
return 10. + testing_primitive_with_effect_p . bind ( x , effect_class_name = " ForTestingOrderedEffect1 " )
2024-06-10 09:45:09 +02:00
exp = get_exported ( jax . jit ( f_jax ) ) ( jax . ShapeDtypeStruct (
2024-06-04 16:08:16 -07:00
export . symbolic_shape ( " b2, b1 " ) , x . dtype ) )
mlir_module_str = str ( exp . mlir_module ( ) )
wrapped_main_expected_re = (
r " @_wrapped_jax_export_main \ ( "
r " %a rg0: tensor<i..> { jax.global_constant = \" b1 \" .* "
r " %a rg1: tensor<i..> { jax.global_constant = \" b2 \" .* "
r " %a rg2: !stablehlo.token { jax.token = true.* "
r " %a rg3: tensor< \ ?x \ ?xf32>.* \ ) -> \ ( "
# Results
r " !stablehlo.token { jax.token = true.*, tensor< \ ?x \ ?xf32>.* \ ) " )
self . assertRegex ( mlir_module_str , wrapped_main_expected_re )
main_expected_re = (
r " @main \ ( "
r " %a rg0: !stablehlo.token { jax.token = true.*, "
r " %a rg1: tensor< \ ?x \ ?xf32>.* \ ) -> \ ( "
# Results
r " !stablehlo.token { jax.token = true.*, tensor< \ ?x \ ?xf32>.* \ ) " )
self . assertRegex ( mlir_module_str , main_expected_re )
2023-08-25 15:01:09 +02:00
2024-06-10 09:45:09 +02:00
res = exp . call ( x )
2024-06-04 16:08:16 -07:00
self . assertAllClose ( 10. + 2. * x , res )
2023-08-25 15:01:09 +02:00
@jtu.parameterized_filterable (
kwargs = [
dict ( v = v )
for v in range ( export . minimum_supported_serialization_version ,
export . maximum_supported_serialization_version + 1 ) ] )
def test_ordered_effects_multi_platform_and_poly ( self , * , v : int ) :
2024-06-04 16:08:16 -07:00
with config . jax_serialization_version ( v ) :
logging . info (
" Using JAX serialization version %s " ,
config . jax_serialization_version . value )
if jtu . device_under_test ( ) == " gpu " :
# The export is not applicable to GPU
raise unittest . SkipTest ( " Not intended for running on GPU " )
x = np . ones ( ( 3 , 4 ) , dtype = np . float32 )
def f_jax ( x ) : # x: f32[b1, b2]
return 10. + _testing_multi_platform_func ( x ,
effect_class_name = " ForTestingOrderedEffect1 " )
exp = get_exported (
2024-06-10 09:45:09 +02:00
jax . jit ( f_jax ) ,
2024-06-04 16:08:16 -07:00
lowering_platforms = ( " cpu " , " tpu " )
) ( jax . ShapeDtypeStruct ( export . symbolic_shape ( " b1, b2 " ) , x . dtype ) )
mlir_module_str = str ( exp . mlir_module ( ) )
wrapped_main_expected_re = (
r " @_wrapped_jax_export_main \ ( "
r " %a rg0: tensor<i..> { jax.global_constant = \" _platform_index \" .*, "
r " %a rg1: tensor<i..> { jax.global_constant = \" b1 \" .*, "
r " %a rg2: tensor<i..> { jax.global_constant = \" b2 \" .*, "
r " %a rg3: !stablehlo.token { jax.token = true.*, "
r " %a rg4: tensor< \ ?x \ ?xf32>.* \ ) -> \ ( "
# Results
r " !stablehlo.token { jax.token = true.*, tensor< \ ?x \ ?xf32>.* \ ) " )
self . assertRegex ( mlir_module_str , wrapped_main_expected_re )
main_expected_re = (
r " @main \ ( "
r " %a rg0: tensor<i..> { jax.global_constant = \" _platform_index \" .*, "
r " %a rg1: !stablehlo.token { jax.token = true.*, "
r " %a rg2: tensor< \ ?x \ ?xf32>.* \ ) -> \ ( "
# Results
r " !stablehlo.token { jax.token = true.*, tensor< \ ?x \ ?xf32>.* \ ) " )
self . assertRegex ( mlir_module_str , main_expected_re )
2024-06-10 09:45:09 +02:00
res = exp . call ( x )
2024-06-04 16:08:16 -07:00
self . assertAllClose ( 10. + _testing_multi_platform_fun_expected ( x ) ,
res )
2023-08-25 15:01:09 +02:00
2023-12-01 22:38:23 -08:00
@jtu.parameterized_filterable (
kwargs = [
dict ( v = v )
for v in range ( export . minimum_supported_serialization_version ,
export . maximum_supported_serialization_version + 1 ) ] )
def test_ordered_effects_with_donation ( self , * , v : int ) :
2024-06-04 16:08:16 -07:00
with config . jax_serialization_version ( v ) :
logging . info (
" Using JAX serialization version %s " ,
config . jax_serialization_version . value )
x = np . arange ( 3 , dtype = np . float32 )
def f_jax ( x ) :
return testing_primitive_with_effect_p . bind (
x , effect_class_name = " ForTestingOrderedEffect1 "
)
f_jax = jax . jit ( f_jax , donate_argnums = ( 0 , ) )
exp = export . export ( f_jax ) ( x )
mlir_module_str = str ( exp . mlir_module ( ) )
self . assertRegex ( mlir_module_str , r " @main.*tf.aliasing_output = 1 " )
self . assertRegex ( mlir_module_str , r " @_wrapped_jax_export_main.*tf.aliasing_output = 1 " )
2023-12-01 22:38:23 -08:00
2023-12-13 15:43:12 +01:00
@jtu.parameterized_filterable (
kwargs = [
dict ( name = name , expect_error = expect_error )
# name is the suffix for event name: ForTestingOrderedEffectxxx
for name , expect_error in (
( " 4NoNullary " , " must have a nullary constructor " ) ,
( " 5NoEq " , " must have a nullary class constructor that produces an "
" equal effect object " ) ,
)
] )
def test_ordered_effects_error ( self , * , name : str , expect_error : str ) :
x = np . ones ( ( 3 , 4 ) , dtype = np . float32 )
def f_jax ( x ) :
return 10. + _testing_multi_platform_func (
x ,
effect_class_name = " ForTestingOrderedEffect " + name )
with self . assertRaisesRegex ( Exception , expect_error ) :
2024-06-10 09:45:09 +02:00
_ = get_exported ( jax . jit ( f_jax ) ) ( jax . ShapeDtypeStruct ( ( 3 , 4 ) , x . dtype ) )
2023-04-20 12:21:41 +03:00
2024-05-11 06:40:18 -07:00
@jtu.parameterized_filterable (
kwargs = [
{ " m " : 5 , " k " : 4 , " n " : 3 , " group_sizes " : [ 5 ] } ,
{ " m " : 10 , " k " : 9 , " n " : 8 , " group_sizes " : [ 3 , 7 ] } ,
] )
def test_ragged_dot ( self , m , k , n , group_sizes ) :
def f_jax ( x , y , gs ) :
return jax . lax . ragged_dot ( x , y , gs )
dtype = np . float32
group_sizes = np . array ( group_sizes , dtype = np . int32 )
lhs = np . arange ( m * k , dtype = dtype ) . reshape ( ( m , k ) )
num_groups = group_sizes . shape [ 0 ]
rhs = np . arange ( num_groups * k * n , dtype = dtype ) . reshape ( ( num_groups , k , n ) )
res_native = f_jax ( lhs , rhs , group_sizes )
2024-06-10 09:45:09 +02:00
exp_f = get_exported ( jax . jit ( f_jax ) ) (
2024-05-11 06:40:18 -07:00
jax . ShapeDtypeStruct ( lhs . shape , dtype = lhs . dtype ) ,
jax . ShapeDtypeStruct ( rhs . shape , dtype = rhs . dtype ) ,
jax . ShapeDtypeStruct ( group_sizes . shape , dtype = group_sizes . dtype ) ,
)
2024-06-10 09:45:09 +02:00
res_exported = exp_f . call ( lhs , rhs , group_sizes )
2024-05-11 06:40:18 -07:00
self . assertAllClose ( res_native , res_exported )
2023-04-20 12:21:41 +03:00
if __name__ == " __main__ " :
absltest . main ( testLoader = jtu . JaxTestLoader ( ) )