rocm_jax/tests/pmap_test.py

652 lines
22 KiB
Python
Raw Normal View History

2019-01-28 11:13:34 -08:00
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2019-02-23 20:34:14 -08:00
from functools import partial
2019-03-19 16:54:55 -07:00
from unittest import SkipTest
2019-02-23 20:34:14 -08:00
2019-01-28 11:13:34 -08:00
import numpy as onp
from absl.testing import absltest
from absl.testing import parameterized
import jax.numpy as np
from jax import test_util as jtu
from jax import core
2019-02-23 20:34:14 -08:00
from jax import lax
2019-06-23 16:41:59 -07:00
from jax.api import (pmap, soft_pmap, jit, vmap, jvp, grad, make_jaxpr,
linearize, device_put)
2019-02-23 20:34:14 -08:00
from jax.lib import xla_bridge
2019-03-19 16:54:55 -07:00
from jax.util import prod
from jax.interpreters import pxla
2019-07-06 10:00:08 -07:00
from jax.interpreters import xla
2019-01-28 11:13:34 -08:00
from jax.config import config
config.parse_flags_with_absl()
class PmapTest(jtu.JaxTestCase):
2019-02-23 20:34:14 -08:00
def _getMeshShape(self, device_mesh_shape):
device_count = xla_bridge.device_count()
if any(size == -1 for size in device_mesh_shape):
try:
return onp.arange(device_count).reshape(device_mesh_shape).shape
except ValueError:
msg = "device mesh shape {} not compatible with device count {}"
raise SkipTest(msg.format(device_mesh_shape, device_count))
else:
if device_count % prod(device_mesh_shape):
msg = "device mesh size {} does not divide available device count {}"
raise SkipTest(msg.format(prod(device_mesh_shape), device_count))
else:
return device_mesh_shape
2019-03-19 16:54:55 -07:00
def testBasic(self):
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i')
2019-03-19 16:54:55 -07:00
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
expected = x - onp.sum(x, 0)
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testNestedBasic(self):
f = lambda x: lax.psum(lax.psum(x, 'i'), 'j')
2019-03-19 16:54:55 -07:00
f = pmap(pmap(f, 'i'), 'j')
2019-03-20 17:46:16 -07:00
def sum_and_broadcast(x, axis):
return onp.repeat(onp.sum(x, axis, keepdims=True), x.shape[axis], axis)
2019-03-19 16:54:55 -07:00
shape = (xla_bridge.device_count(), 1, 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
ans = f(x)
2019-03-20 17:46:16 -07:00
expected = sum_and_broadcast(sum_and_broadcast(x, 0), 1)
2019-03-19 16:54:55 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
@parameterized.named_parameters(
2019-03-19 17:01:10 -07:00
{"testcase_name": "_mesh={}".format(device_mesh_shape),
2019-03-19 16:54:55 -07:00
"device_mesh_shape": device_mesh_shape}
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
def testNestedShardingAndStacking(self, device_mesh_shape):
mesh_shape = self._getMeshShape(device_mesh_shape)
2019-03-19 16:54:55 -07:00
f = lambda x: x
f = pmap(pmap(f, 'i'), 'j')
shape = mesh_shape + (4,)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
2019-03-20 17:46:16 -07:00
2019-03-19 16:54:55 -07:00
ans = f(x)
2019-03-20 17:46:16 -07:00
expected = x
2019-03-19 16:54:55 -07:00
self.assertEqual(ans.shape, expected.shape)
self.assertAllClose(ans, expected, check_dtypes=False)
def testJvpAndPartialEval(self):
@partial(pmap, axis_name='i')
def f(x):
return np.sin(x)
def splitjvp(x):
_, jvp = linearize(f, x)
return jvp(np.ones_like(x))
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
expected = onp.cos(x)
ans = splitjvp(x)
self.assertAllClose(ans, expected, check_dtypes=False)
make_jaxpr(splitjvp)(x) # doesn't crash
def testGradBasic(self):
@partial(pmap, axis_name='i')
def f(x):
return np.sin(x)
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
ans = grad(lambda x: np.sum(np.sin(x)))(x)
expected = grad(lambda x: np.sum(f(x)))(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testGradOfJvp(self):
@partial(pmap, axis_name='i')
def f(x):
return np.sin(x)
def splitjvp(x):
_, jvp = linearize(f, x)
return jvp(np.ones_like(x))
fun = lambda x: np.sum(jvp(np.sin, (x,), (np.ones_like(x),))[1])
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
ans = grad(lambda x: np.sum(splitjvp(x)))(x)
expected = grad(fun)(x)
self.assertAllClose(ans, expected, check_dtypes=True)
def testTwoArgsGrad(self):
def f(x, y):
return lax.psum(5. * np.cos(x) * np.sin(y), 'i')
2019-03-19 16:54:55 -07:00
f = pmap(f, 'i')
def g(x, y):
tot = np.sum(5. * np.cos(x) * np.sin(y))
return tot * np.ones_like(x) # broadcast to map like pjit does
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
y = 4 + x
ans = grad(lambda x, y: np.sum(g(x, y)))(x, y)
expected = grad(lambda x, y: np.sum(g(x, y)))(x, y)
self.assertAllClose(ans, expected, check_dtypes=False)
@parameterized.named_parameters(
2019-03-19 17:01:10 -07:00
{"testcase_name": "_mesh={}".format(device_mesh_shape),
2019-03-19 16:54:55 -07:00
"device_mesh_shape": device_mesh_shape}
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
def testNestedWithClosure(self, device_mesh_shape):
mesh_shape = self._getMeshShape(device_mesh_shape)
2019-02-23 20:34:14 -08:00
@partial(pmap, axis_name='i')
2019-02-23 20:34:14 -08:00
def test_fun(x):
y = np.sum(np.sin(x))
@partial(pmap, axis_name='j')
2019-02-23 20:34:14 -08:00
def g(z):
return 3. * np.exp(np.sin(x).sum() * np.cos(y) * np.tan(z))
return grad(lambda w: np.sum(g(w)))(x)
@vmap
def baseline_fun(x):
y = np.sum(np.sin(x))
@vmap
def g(z):
return 3. * np.exp(np.sin(x).sum() * np.cos(y) * np.tan(z))
return grad(lambda w: np.sum(g(w)))(x)
2019-03-19 16:54:55 -07:00
shape = mesh_shape + (4,)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
2019-02-23 20:34:14 -08:00
ans = grad(lambda x: np.sum(test_fun(x)))(x)
expected = grad(lambda x: np.sum(baseline_fun(x)))(x)
self.assertAllClose(ans, expected, check_dtypes=True)
2019-02-01 16:59:28 -08:00
def testShardedDeviceArrays(self):
2019-03-19 16:54:55 -07:00
f = lambda x: 2 * x
f = pmap(f, axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
# test that we can pass in and out ShardedDeviceArrays
y = f(x)
self.assertIsInstance(y, np.ndarray)
self.assertIsInstance(y, pxla.ShardedDeviceArray)
2019-03-19 16:54:55 -07:00
self.assertAllClose(y, 2 * x, check_dtypes=False)
z = f(y)
self.assertIsInstance(z, pxla.ShardedDeviceArray)
2019-03-19 16:54:55 -07:00
self.assertAllClose(z, 2 * 2 * x, check_dtypes=False)
# test that we can pass in a regular DeviceArray
y = f(device_put(x))
self.assertIsInstance(y, pxla.ShardedDeviceArray)
2019-03-19 16:54:55 -07:00
self.assertAllClose(y, 2 * x, check_dtypes=False)
# test that we can pass a ShardedDeviceArray to a regular jit computation
z = y + y
self.assertAllClose(z, 2 * 2 * x, check_dtypes=False)
# test that we can handle device movement on dispatch
y.device_buffers = y.device_buffers[::-1]
z = f(y)
self.assertAllClose(z, 2 * 2 * x[::-1], check_dtypes=False)
# test that the repr doesn't crash
repr(z)
def testPsumMultiple(self):
f = lambda x: lax.psum(x, ('i', 'j'))
f = pmap(pmap(f, 'i'), 'j')
def sum_and_broadcast(x, axis):
return onp.repeat(onp.sum(x, axis, keepdims=True), x.shape[axis], axis)
device_count = xla_bridge.device_count()
num_pairs, ragged = divmod(device_count, 2)
if num_pairs > 1 and not ragged:
shape = (num_pairs, 2, 4)
else:
shape = (device_count, 1, 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
ans = f(x)
expected = sum_and_broadcast(sum_and_broadcast(x, 0), 1)
self.assertAllClose(ans, expected, check_dtypes=False)
def testReplicaGroups(self):
groups = pxla.replica_groups(8, [4, 2], (0,))
self.assertEqual(groups, ((0, 2, 4, 6), (1, 3, 5, 7)))
groups = pxla.replica_groups(8, [4, 2], (1,))
self.assertEqual(groups, ((0, 1), (2, 3), (4, 5), (6, 7)))
groups = pxla.replica_groups(8, [4, 2], (0, 1))
self.assertEqual(groups, ((0, 1, 2, 3, 4, 5, 6, 7,),))
groups = pxla.replica_groups(8, [4, 2], (1, 0))
self.assertEqual(len(groups), 1)
self.assertEqual((tuple(sorted(groups[0])),),
((0, 1, 2, 3, 4, 5, 6, 7,),)) # order doesn't matter
def testShardedDeviceTuple(self):
f = lambda x: core.pack((x, x))
f = pmap(f)
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
# test that we can pass in and out ShardedDeviceTuples (and unpack them)
y = f(x)
self.assertIsInstance(y, pxla.ShardedDeviceTuple)
self.assertIsInstance(y, core.JaxTuple)
self.assertAllClose(y, (x, x), check_dtypes=False)
z = f(y)
self.assertIsInstance(z, pxla.ShardedDeviceTuple)
self.assertAllClose(z, (y, y), check_dtypes=True)
# test that we can pass a ShardedDeviceTuple to a regular jit computation
w = jit(lambda x: list(x)[0])(y)
self.assertAllClose(w, x, check_dtypes=False)
@jtu.skip_on_devices("cpu", "gpu")
def testCollectivePermute(self):
device_count = xla_bridge.device_count()
2019-05-10 14:24:15 -07:00
rotation = [(i, (i + 1) % device_count) for i in range(device_count)]
f = lambda x: lax.ppermute(x, perm=rotation, axis_name='i')
f = pmap(f, 'i')
x = np.arange(4 * device_count).reshape((device_count, 4))
ans = f(x)
expected = onp.roll(x, shift=1, axis=0)
self.assertAllClose(ans, expected, check_dtypes=False)
@jtu.skip_on_devices("cpu", "gpu")
def testCollectivePermuteGrad(self):
device_count = xla_bridge.device_count()
shift_right = [(i, (i + 1)) for i in range(device_count - 1)]
f = lambda x: lax.ppermute(x, perm=shift_right, axis_name='i')
y = onp.pi + onp.arange(device_count, dtype=onp.float32)
g = lambda x: np.sum(y * pmap(f, 'i')(x))
x = onp.arange(device_count, dtype=onp.float32)
ans = grad(g)(x)
expected = onp.concatenate([onp.pi + onp.arange(1, device_count), [0]])
self.assertAllClose(ans, expected, check_dtypes=False)
@jtu.skip_on_devices("cpu", "gpu")
def testCollectivePermuteCyclicGrad(self):
device_count = xla_bridge.device_count()
shift_right = [(i, (i + 1) % device_count) for i in range(device_count)]
f = lambda x: lax.ppermute(x, perm=shift_right, axis_name='i')
y = onp.pi + onp.arange(device_count, dtype=onp.float32)
g = lambda x: np.sum(y * pmap(f, 'i')(x))
x = onp.arange(device_count, dtype=onp.float32)
ans = grad(g)(x)
expected = onp.roll(onp.pi + onp.arange(device_count), 1)
self.assertAllClose(ans, expected, check_dtypes=False)
@jtu.skip_on_devices("cpu", "gpu")
def testRule30(self):
# This is a test of collective_permute implementing a simple halo exchange
# to run a rule 30 simulation: https://en.wikipedia.org/wiki/Rule_30
# Halo exchange should be useful in spatially-sharded convolutions and in
# other simulations.
device_count = xla_bridge.device_count()
def send_right(x, axis_name):
left_perm = [(i, (i + 1) % device_count) for i in range(device_count)]
return lax.ppermute(x, perm=left_perm, axis_name=axis_name)
def send_left(x, axis_name):
left_perm = [((i + 1) % device_count, i) for i in range(device_count)]
return lax.ppermute(x, perm=left_perm, axis_name=axis_name)
def update_board(board):
left = board[:-2]
right = board[2:]
center = board[1:-1]
return lax.bitwise_xor(left, lax.bitwise_or(center, right))
@partial(pmap, axis_name='i')
def step(board_slice):
left, right = board_slice[:1], board_slice[-1:]
right, left = send_left(left, 'i'), send_right(right, 'i')
enlarged_board_slice = np.concatenate([left, board_slice, right])
return update_board(enlarged_board_slice)
board = onp.zeros(40, dtype=bool)
board[board.shape[0] // 2] = True
reshaped_board = board.reshape((device_count, -1))
boards = []
def print_board(board):
boards.append(''.join('*' if x else ' ' for x in board.ravel()))
print_board(reshaped_board)
for _ in range(20):
reshaped_board = step(reshaped_board)
print_board(reshaped_board)
ans = '\n'.join(boards)
expected = '\n'.join((
' * ',
' *** ',
' ** * ',
' ** **** ',
' ** * * ',
' ** **** *** ',
' ** * * * ',
' ** **** ****** ',
' ** * *** * ',
' ** **** ** * *** ',
' ** * * **** ** * ',
' ** **** ** * * **** ',
' ** * *** ** ** * * ',
' ** **** ** *** *** ** *** ',
' ** * * *** * *** * * ',
' ** **** ** * * ***** ******* ',
' ** * *** **** * *** * ',
' ** **** ** *** ** ** * *** ',
' ** * * *** * ** *** **** ** * ',
' ** **** ** * ****** * * *** ****',
' * * *** **** **** *** ** * ',
))
print(ans)
self.assertEqual(ans, expected)
@jtu.skip_on_devices("cpu", "gpu")
def testReduceMax(self):
f = pmap(lambda x: x - lax.pmax(x, 'i'), axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
expected = x - onp.max(x, 0)
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
@jtu.skip_on_devices("cpu", "gpu")
def testReduceMin(self):
f = pmap(lambda x: x - lax.pmin(x, 'i'), axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
expected = x - onp.min(x, 0)
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testDeviceCountError(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: x)
x = np.arange(device_count + 1)
self.assertRaisesRegexp(
ValueError,
".*requires.*replicas",
lambda: f(x))
f = pmap(lambda x: x)
x = onp.ones((device_count + 1, 10))
self.assertRaisesRegexp(
ValueError,
".*requires.*replicas",
lambda: f(x))
f = pmap(lambda x: pmap(lambda x: x)(x))
x = onp.ones((device_count, 2, 10))
self.assertRaisesRegexp(
ValueError,
".*requires.*replicas",
lambda: f(x))
def testPmapConstant(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: 3)
x = np.arange(device_count)
ans = f(x)
expected = onp.repeat(3, device_count)
self.assertAllClose(ans, expected, check_dtypes=False)
def testCollectiveConstant(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: lax.psum(1, 'i'), 'i')
x = np.arange(device_count)
ans = f(x)
expected = onp.repeat(device_count, device_count)
self.assertAllClose(ans, expected, check_dtypes=False)
def testCollectiveConstantNested(self):
device_count = xla_bridge.device_count()
@partial(pmap, axis_name='i')
def f(x):
@partial(pmap, axis_name='j')
def g(y):
a = lax.psum(1, 'i')
b = lax.psum(1, 'j')
c = lax.psum(1, ('i', 'j'))
return a, b, c
return g(x)
shape = (device_count, 1, 4)
x = np.arange(prod(shape)).reshape(shape)
a, b, c = f(x)
self.assertEqual(a.shape, shape[:-1])
self.assertEqual(b.shape, shape[:-1])
self.assertEqual(c.shape, shape[:-1])
self.assertEqual(a.ravel()[0], device_count)
self.assertEqual(b.ravel()[0], 1)
self.assertEqual(c.ravel()[0], device_count * 1)
def testAxisIndex(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: x + pxla.axis_index('i'), 'i')
x = np.ones(device_count)
ans = f(x)
expected = 1 + onp.arange(device_count)
self.assertAllClose(ans, expected, check_dtypes=False)
def testVmapOfPmap(self):
device_count = xla_bridge.device_count()
f0 = lambda x: x
f1 = pmap(f0, axis_name='i')
ax = onp.random.randn(2, device_count, 50, 60)
bx = vmap(f1)(ax)
self.assertAllClose(ax, bx, check_dtypes=False)
def testVmapOfPmapNonLeadingAxis(self):
device_count = xla_bridge.device_count()
f0 = lambda x: x
f1 = pmap(f0, axis_name='i')
ax = onp.random.randn(device_count, 2, 50, 60)
bx = vmap(f1, in_axes=2, out_axes=2)(ax)
self.assertAllClose(ax, bx, check_dtypes=False)
def testVmapOfPmapTuple(self):
device_count = xla_bridge.device_count()
f0 = lambda *x: x
f1 = pmap(f0, axis_name='i')
ax = onp.random.randn(device_count, 2, 50, 60)
ay = onp.random.randn(device_count, 30, 2)
az1 = onp.random.randn(device_count, 20)
az2 = onp.random.randn(2, device_count, 20)
bx, by, bz = vmap(f1, in_axes=(1, 2, (None, 0)), out_axes=(1, 2, 0))(ax, ay, (az1, az2))
self.assertAllClose(ax, bx, check_dtypes=False)
self.assertAllClose(ay, by, check_dtypes=False)
bz1, bz2 = bz
expected_bz1 = onp.broadcast_to(az1, (2,) + az1.shape)
self.assertAllClose(expected_bz1, bz1, check_dtypes=False)
self.assertAllClose(bz2, bz2, check_dtypes=False)
2019-06-23 16:41:59 -07:00
@jtu.skip_on_devices("gpu")
2019-06-08 08:57:34 -07:00
def testPswapaxes(self):
device_count = xla_bridge.device_count()
shape = (device_count, 3, device_count, 5)
x = onp.arange(prod(shape)).reshape(shape)
ans = pmap(lambda x: lax.pswapaxes(x, 'i', 1), axis_name='i')(x)
expected = onp.swapaxes(x, 0, 2)
self.assertAllClose(ans, expected, check_dtypes=False)
2019-06-23 16:41:59 -07:00
def testSoftPmapPsum(self):
n = 4 * xla_bridge.device_count()
def f(x):
return x / lax.psum(x, 'i')
ans = soft_pmap(f, 'i')(np.ones(n))
expected = onp.ones(n) / n
self.assertAllClose(ans, expected, check_dtypes=False)
def testSoftPmapAxisIndex(self):
n = 4 * xla_bridge.device_count()
def f(x):
return x * lax.axis_index('i')
ans = soft_pmap(f, 'i')(2 * np.ones(n))
expected = 2 * onp.arange(n)
self.assertAllClose(ans, expected, check_dtypes=False)
def testSoftPmapOfJit(self):
n = 4 * xla_bridge.device_count()
def f(x):
return 3 * x
ans = soft_pmap(jit(f), 'i')(onp.arange(n))
expected = 3 * onp.arange(n)
self.assertAllClose(ans, expected, check_dtypes=False)
def testSoftPmapNested(self):
n = 4 * xla_bridge.device_count()
@partial(soft_pmap, axis_name='i')
@partial(soft_pmap, axis_name='j')
def f(x):
i_size = lax.psum(1, 'i')
return x + lax.axis_index('i') + i_size * lax.axis_index('j')
ans = f(np.zeros((n, n)))
expected = onp.arange(n ** 2).reshape(n, n).T
self.assertAllClose(ans, expected, check_dtypes=False)
def testGradOfSoftPmap(self):
n = 4 * xla_bridge.device_count()
@partial(soft_pmap, axis_name='i')
def f(x):
return x * lax.axis_index('i')
ans = grad(lambda x: np.sum(f(x)))(np.zeros((n, n)))
expected = onp.repeat(onp.arange(n)[:, None], n, axis=1)
self.assertAllClose(ans, expected, check_dtypes=False)
2019-07-06 10:00:08 -07:00
def testSoftPmapDevicePersistence(self):
device_count = xla_bridge.device_count()
shape = (2 * 2 * device_count, 2, 3)
# check that we can maintain device persistence across calls
x = onp.arange(prod(shape)).reshape(shape)
x = soft_pmap(lambda x: x)(x)
self.assertIsInstance(x, pxla.ChunkedDeviceArray)
x._npy_value = onp.float32(onp.nan) # can't be coerced to ndarray for xfer
x = soft_pmap(lambda x: x)(x) # doesn't crash
self.assertIsInstance(x, pxla.ChunkedDeviceArray)
# check that we don't crash when we can't maintain device persistence
x = onp.arange(prod(shape)).reshape(shape)
x = soft_pmap(lambda x: x)(x)
self.assertIsInstance(x, pxla.ChunkedDeviceArray)
y = x.reshape(device_count, -1)
self.assertIsInstance(y, xla.DeviceArray) # should have forced collection
soft_pmap(lambda x: x)(y) # doesn't crash
z = x + 2
self.assertIsInstance(z, xla.DeviceArray) # should have forced collection
x._npy_value = onp.float32(onp.nan) # can't be coerced to ndarray for xfer
self.assertRaisesRegexp(
RuntimeError,
'.*does not match host shape or layout of computation parameter 0.*',
lambda: x + 2)
# check that different axis merges aren't a problem
x = onp.arange(prod(shape)).reshape(shape)
x = soft_pmap(lambda x: x)(x)
self.assertIsInstance(x, pxla.ChunkedDeviceArray)
x = x.reshape(2 * device_count, 2, 2, 3) # axis merge of the wrong size
self.assertIsInstance(x, xla.DeviceArray) # should have forced collection
2019-06-23 16:41:59 -07:00
@jtu.skip_on_devices("gpu")
def DISABLED_testSoftPmapAllToAll(self):
2019-06-23 16:41:59 -07:00
n = 4 * xla_bridge.device_count()
def f(x):
return lax.all_to_all(x, 'i', 0, 0)
ans = soft_pmap(f, 'i')(np.arange(n ** 2).reshape(n, n))
expected = onp.arange(n ** 2).reshape(n, n).T
self.assertAllClose(ans, expected, check_dtypes=False)
def testShardedDeviceArrayBlockUntilReady(self):
x = onp.arange(xla_bridge.device_count())
x = pmap(lambda x: x)(x)
x.block_until_ready() # doesn't crash
enable jit+pmap by merging pxla.py and xla.py This change is essentially de-duplicating the XLA lowering logic between xla.py and pxla.py. Only the latter was capable of handling collectives (aka pmap primitives), which meant that these didn't work: 1. some compositions of jit and pmap, like jit-of-pmap 2. collectives inside initial-style control flow like scan 3. jax.xla_computation on a function involving collectives By merging the logic into xla.py, now all the lowering machinery works with everything. Woo! The pxla.py file still exists and contains mostly dynamic/runtime components for pmap and functions used only by pmap and collectives translations. In particular, pxla.py has * the pmap impl, particularly the dispatching logic for top-level pmaps, including argument sharding and lazy sharded result persistence * the ShardedDeviceArray / ShardedDeviceTuple classes * the dynamic (trace-time) axis environment data structures and logic and the special axis_index primitive * the split-axis transformation for soft_pmap * the PmapPrimitive (just a tagged version of Primitive) * the static sharding/unsharding logic for pmap-inside-jit/pmap These things moved over to xla.py * the logic for lowering pmap primitives, especially the static axis environment used during xla lowering This change refactors the translation rule tables a bit. Instead of just having one table, there are now four, and they contain rules with slightly different type signatures: * the `translations` table has rules with the same signatures as always, i.e. `CompBuilder -> [XlaOperands] -> ParamsDict -> XlaOperandOut` * the `backend_specific_translations` table is keyed by platform name strings and has dict values that each have the same type as `translations` * the `parallel_translations` table is used for primitives modeling parallel collectives, and so it has rules with signature `CompBuilder -> [XlaOperands] -> ReplicaGroups -> ParamsDict -> XlaOpOut` * the `initial_style_translations` table is for the initial-style control flow primitives (like `scan`), for which the translation rules themselves lower jaxprs to XLA computations and thus require the static axis env to be passed in; the rules there have signature `CompBuilder -> AxisEnv -> [XlaOperands] -> ParamsDict -> XlaOpOut` * the `call_translations` table is sued for `xla_call` and `xla_pmap`, i.e. the primitives underlying `jit` and `pmap` respectively, and has rules with signature `CompBuilder -> Jaxpr -> AxisEnv -> [XlaOp] -> [XlaOp] -> ParamsDict -> XlaOp` Having these as separate tables is an uninteresting implementation detail. The lowering function `_jaxpr_computation` just does a case analysis on whether the primitive being translated has an entry in any table (where the `backend_specific_translations` table must be checked before the `translations` table, since some primitives may be entered in both). This change fixes #804 also addresses #852, in that the lax control flow impls for those primitives are now based on Python-level jaxpr interpreters rather than XLA compilation, but we should probably wait to close the latter issue until we benchmark and improve things more. This change at least seems not to be a performance regression: on my machine the lax control flow tests go from running in ~20s to running in ~14s. This change also adds a docstring for `jax.xla_computation` and some basic tests.
2019-07-02 13:17:31 -07:00
def testJitPmapComposition(self):
f = lambda x: x - lax.psum(x, 'i')
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
expected = x - onp.sum(x, 0)
ans = jit(pmap(f, 'i'))(x)
self.assertAllClose(ans, expected, check_dtypes=False)
ans = pmap(jit(f), 'i')(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testMakeJaxprOfOpenSpmd(self):
f = lambda x: x - lax.psum(x, 'i')
shape = (xla_bridge.device_count(), 4)
x = onp.arange(prod(shape), dtype=onp.float32).reshape(shape)
make_jaxpr(f)(x) # doesn't crash
2019-01-28 11:13:34 -08:00
if __name__ == '__main__':
absltest.main()